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Abstract 

Nowadays large companies have many systems and applications built as web-based 
services, to ensure undisrupted operations, one needs to closely monitor various metrics, 
such as total number of users, response time, or usages. Detecting anomalies in key 
metrics and making timely troubleshooting is crucial to prevent potential failure on 
relevant applications. This paper proposed automated ensemble anomaly detection 
methods composed by creating more than 20 different detectors, and over 15 different 
machine learning detection models, which is designed for large-scale metrics to be 
detected and lack of anomaly labeling. We compared our methods with published 
research work done by well-known professor Dan Pei and his students, our results are in 
competitive positions, and have been proved practical working, accurate, and efficient in 
real-world production.  
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1. Introduction 

 
Today due to the rapid digital transformation of enterprises, many companies run their 
business through online service systems, such as Google, Amazon, Microsoft and many 
large companies, consists of thousands of distributed components and support a large 
number of concurrent users[5]. Engineers need to actively monitor various key 
performance metrics (KPI henceforth) and write many rules to trigger alerts. For 
example, if the response time of an API exceeds a given threshold (e.g. 15 seconds), an 
alert is generated to notify the API responsible engineer. Then this engineer examines this 
alert to check if there is a potential system outage. However, simple manual rules cannot 
sufficiently adapt to the dynamic system behaviors, nor capture the patterns of complex 
and interacting factors that influences the alerts. Furthermore, it is labor intensive for 
engineers to manually define and maintain rules, because: 

1) Different business application systems have different behaviors, which makes 
different types of alerts 

2) New  types of alerts might be added due to system changes 
3) Engineers may have different preference to handle alerts [6]. 

 
There are many literatures focusing on detections of maintenance induced changes in 
service performance, see [5]-[9] for details. In [1], D. Liu et al. 2015 proposed a 
supervised machine learning based framework ‘Opprentice’ with following aspects. 
Performance data were extracted into difference anomaly features, a.k.a Detectors.  
Operators are asked to label the anomalies in the performance data with a convenience 
tool.  Then the features and labels are used to train a random forest classifier to 
automatically select the appropriate detector-parameter combinations and the thresholds. 
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H. Xu et al 2018 [2] proposed Donut, an unsupervised anomaly detection based on 
Variational Auto-Encoder (VAE).  Meanwhile, Zeyan Li et al 2019 [10] proposed an 
improved framework Bagel, a robust and unsupervised anomaly detection algorithm for 
KPI that can handle time information related anomalies, using Conditional Variational 
Auto-Encoder(CVAE) to incorporate time information and dropout layer to avoid 
overfitting.  Z. Li 2018 [11] proposed ROCKA, a robust and rapid KPI clustering 
algorithm, which consists of four steps: preprocessing, baseline extraction, clustering and 
assignment. 
 
Our paper focused on real-time large-scale KPI anomaly detection, which faces two 
major challenges:  

1. Dealing with over 20000 KPIs at real-time  
2. High accuracy is required to ensure the system operating normally (high 

precision and high recall are both required) 
 

The major contributions of the paper are summarized as follows. First, to the best of our 
knowledge, we handle over 20000 KPIs at real-time, which includes: preprocessing, 
feature extraction, detecting algorithms, and alarm sending. We achieved supreme 
precision: over 90%, and prefect recall: 100%. Second, we proposed an unsupervised 
machine learning algorithm, which does NOT require labelling at all. Third, we make 
good combination between statistical methods and machine learning algorithm, with 
which all models can produce anomaly detection results within 200ms for single KPI 
series.  
 
The rest of this paper is organized as follows. In Section 2, we describe the background 
of business problems, and the current challenging part. Then we specify our methodology 
and the feature engineering work in Section 3. Experimental results are analyzed in 
Section 4. Finally, we conclude our work and put forward future work in Section 5. 
 

2. Problem setting 

 

2.1 A real system failure case 

 

 
 

Figure 1: A system failure case caused by new version update with old SQL sequences 
to process data. 
 
Figure 1 describes the real system failure cases happened before. The evening before the 
failure, Software Engineering (SE henceforth) released the new version of the 
application, checked the data process, tested the system function, which all looked fine.  
However, the next day morning, many users experienced slow response of that app, 
which were under the tolerance of users in the early morning before 8am without many 
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users using at one time. However, after 9am, the application can’t work at all, and two 
serious types of alarms send out: the application cluster usage over 80% alarm, and the 
dial test http code status 500 alarm. SREs and SEs worked hard whole day to figure out 
which part caused this failure and finally around 6pm they fixed the problem, and the 
application system functioned normally.  
 
This case intrigued the SREs to seek help: is there any technique that can tell them if 
there is a potential system outage in the coming 20 minutes or 1 hour? Fortunately, the 
famous Heinrich law says: “that in a workplace, for every accident that causes a major 
injury, there are 29 accidents that cause minor injuries and 300 accidents that cause no 
injuries.” We, statisticians, were boarding to seek such methods that we can tell from the 
historical data performance and detect if there are any anomalies in the new coming KPI 
performance. 
 
2.2 Problem Setting 

 

We structure the problem as a time series anomaly detection problem. We define an 
anomaly as follows:  

At any time t, given historical observations 𝑥{𝑡−𝑇+1},  … . ,  𝑥𝑡 .  Determine whether an 

anomaly occurs (𝑦𝑡 = 1).    

𝑃(𝑦𝑡 = 1|𝑥{𝑡−𝑡+1} ,  … . 𝑥𝑡)  
We asked the SREs to collect the historical data for each KPI, and we use Flink to 
aggregate the raw collected data into certain time interval, i.e. 5mins average. Then we 
extract features from the aggregated data. Meanwhile, the SREs asked us to send them 
back the potential system failure alarm within 5 mins after the data aggregated.  
 

3. Our Methodology 

 

In order to overcome aforementioned two major challenges, we designed a robust and 
rapid algorithm framework: 
 

 
 

Figure 2: our robust and rapid anomaly detection framework 
 
First of all, we impute the missing points with median of the closest historical N 
observations for each KPI. Secondly, we start the feature engineering process, which we 
will describes in details later. Then we use three kinds of detections methods: 
unsupervised machine learning algorithm, exponential weighted moving average with 3-
sigma，and dynamic threshold, which composites 17 detection results. Thirdly, we 
gather all 17 results, and set up a voting rule, such as 90% of the results determine the 
current observation is an anomaly as a true anomaly from the algorithm. Fourthly, we 
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incorporate some domain knowledge, such as during 5 consecutive time window, if there 
is more than 3 anomalies then the alarm should be sent out.  Finally, the SREs and the 
application system owners will be notified with the detection results and explanation.  
 
3.1 Feature Engineering 

As mentioned in [1], inspired by [15, 16], they represent different detectors with a unified 
model: 

 
We follow the detector requirements in [1], and specified following 8 detectors with 28 
configurations: 
 
Table 1: Basic detectors and sampled parameters.  Abbreviation: win(dow). 
 

 
 
Simple threshold was already used by SREs, for example, they set up a threshold as 15s 
for response time, which simply intrigue a failure alarm when the response time of an 
application is greater than or equal to 15s.  “Diff” simply measures anomaly severities 
using the difference between the current point and the point of last slot, the point of last 
day, and the point of last week. “Moving average” aims at identifying local anomalies 
with a short window. “Moving average of diff” measures severities using the moving 
average of the difference between current point and the point of last slot. “Exponential 
weighted moving average (EWMA henceforth)” uses following formula: 
 

𝑆𝑡 =  {
𝑌1, 𝑡 = 1

𝛼 ∗ 𝑌𝑡 + (1 − 𝛼) ∗ 𝑆𝑡−1, 𝑡 > 1
. 

 
𝛼  is the decay factor, which is specified as 0.1, 0.3, 0.5, 0.7, and 0.9. Using above 
formula, we transfer the original data points 𝑌𝑡  into the EWMA series  𝑆𝑡  . “Median 
Absolute Distance” around the median instead of the standard deviation around the mean, 
which can improve the robustness to missing data and outliers [8, 17]. “Dynamic 
threshold” simply uses the 90th percentile of the data points within a window, 1 week or 4 
weeks.  
 
3.2 Ensemble Method 

We adopt the classical machine learning methodology: ensemble method and majority 
vote. However with little changes, since we don't have labels from the historical data 
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points, we combine the results comparing with thresholds and set up a majority vote level 
as 90% of the model. The majority vote idea is described in Figure 3. 
 
 

 
 
Figure 3: how majority voting works in classification 
 
3.2.1 Isolation Forest 

In the interest of space, we only introduce some basic ideas of isolation forest. More 
details are in [12, 21]. Isolation forest builds an ensemble of iTrees for a given data set, 
then anomalies are those instances which have short average path lengths on the iTrees. 
There are only two variables in this method: the number of trees to build and the sub-
sampling size. The algorithm is described in Figure 4. 

 
Figure 4: Isolation Forest Algorithm 
 
A rich body of literature has been devoted to anomaly detection, e.g., One-Class SVM 
[18], Local Outlier Factor [19] and clustering based methods [20]. However, these 
algorithms suffer from either high computational cost or poor performance. Isolation 
Forest is a popular anomaly detection algorithm and has shown good performance with a 
linear time complexity [21], and thus we leverage Isolation Forest to detect anomalies in 
our scenario. The normal and outliers can be illustrated in Figure 5.  
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Figure 5: Normal data points (left) versus Outlier (right) 
 
We use detectors with various configurations as input of Isolation Forest model, hence 
we got 10 different combinations shown in Table 2.  
 
Table 2: 10 Isolation Forest models with different combinations of detectors. 
 

 
 
3.2.2 EWMA with adjusted 3-Sigma 

For this method, we made a little change to the confidence interval method with adjusted 
standard deviation, which makes the threshold band even larger (i.e. upper level threshold 
higher, lower level threshold smaller) . First the mean and standard deviations were 
derived from aforementioned EWMA St series, then the upper level and lower level with 
over 99% confidence level were calculated with this formula: 

𝑚𝑒𝑎𝑛 ± 3𝜎𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 , 𝜎𝑎𝑗𝑢𝑠𝑡𝑒𝑑 = 𝜎 ∗ √
𝛼

2 − 𝛼
 

3.2.3 Statistical Discrimination method 

In order to find extreme large value of a series quickly, such as data points within a week 
or 4 weeks, we adopt the percentile method: we calculate the 90th percentile of a series, 
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and if the current data point is greater than the 90th percentile of the past 1 or 4 week’s 
data points, then this data point is marked as outlier. 
 

4. Results 

 

The fundamental goal of anomaly detection is to be accurate, i.e. identifying more 
anomalies and avoiding false alarms. We use recall and precision formulas specified as 
follows to measure the detection accuracy. Precision describes what matters to SREs 
better than false positive rate (FPR), because anomalies are infrequent [22]. Precision is 
also equivalent to 1-FDR (false discovery rate).  
 

Precision =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
=  

# 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 𝑝𝑜𝑖𝑛𝑡𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

# 𝑜𝑓 𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 𝑝𝑜𝑖𝑛𝑡𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
 

Recall =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
=  

# 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 𝑝𝑜𝑖𝑛𝑡𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

# 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 𝑝𝑜𝑖𝑛𝑡𝑠
 

FDR =  
# 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 𝑝𝑜𝑖𝑛𝑡𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

# 𝑜𝑓 𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 𝑝𝑜𝑖𝑛𝑡𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
 

We asked our SREs to give feedbacks on the anomalous points detected with a 
convenient online tool. The following Table 3 shows the summary feedback during one 
earlier week after using our methodology. Currently the SREs feed that the precision of 
our detection method is higher than 90%, and recall is over 95%.  
 
Table 3: Summary of evaluation during one week. 
 

Evaluation Metric Score  Formula 

Recall 89% （24/27） TP/(TP+FN) 
Precision 87.3%（152/174） TP/(TP+FP) 

F-Score 88.30%（beta=1.2） 
(1 + 𝛽2) ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 
5. Conclusions and Feature work 

 

Applying anomaly detection to an Internet-based service has been challenging in practice. 
This is because the anomalies are difficult to quantitatively define, and existing detectors 
have parameters and thresholds to tune before they can be deployed. Our proposed 
framework tackles the above challenges through an unsupervised machine learning based 
approach, which overcomes the “No label” issue. The unclear anomaly concepts are 
captured by machine learning from real data, while numerous existing detectors can be 
automatically combined by machine learning to train an Isolation Forest classifier to 
identify the anomalies. Our evaluation on real-world KPIs show that our method 
consistently performs very well with high precision and high recall.   
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