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Abstract 
Variable selection (or feature selection) has been one of old topics in regression models. 
Beside many classical approaches, some metaheuristic approaches from the optimization 
research such as GA (Genetic Algorithm) or SA (Simulated Annealing) have been 
developed so far. These methods have a considerable advantage to deal with high 
dimensional problems over the conventional methods, but they must control associated 
fine-tuning parameters, which is very hard in practice. In this article, JAYA, one of the 
parameter-free approaches will be suggested and explored. Many methods such as GA, 
TBO, and JAYA will be compared to one another with the results from real-world 
datasets.  
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1. Introduction 
 
Variable selection (or feature selection) is a classical topic in regression models which 
has many applications in many areas including, but not limited to, engineering, medicine, 
psychology, or business.  
 
Among numerous variable selection methods developed, some classical sequential 
methods such as stepwise selection methods have been widely used because they are 
simple and work very well if there are not too many variables and they have low 
prediction error. But there are some drawbacks in these methods. Two most serious 
issues among them are (1) they tend to converge to local optima (Hans et al. (2012), 
Hocking (1976), Kiezun et al. (2009), Meiri & Zahavi (2006), Paterini & Minerva 
(2010)) and (2) they do not work very well in high dimensional spaces. (Hand et al. 
(2012), Kapetanios (2007)). Later in this section, it will be explained how these problems 
can be resolved with ‘metaheuristics’ in optimization research. 
 
The selection of the most adequate variables in regression models can be stated as a 
combinatorial optimization problem with the objective to select explanatory variables that 
maximize the adequacy of the model according to statistical criteria (objective function). 
(Meiri (2006), Paterlini & Minerva (2010)) Some methods or algorithms from 
optimization research have been used for variable selection, including but not limited to, 
genetic algorithm (Broadhurst et al.(1997), Kapetanios (2007), Kiezun et al. (2009), 
Jirapech-Umpai & Aitken (2005), Mohan et al. (2018), Paterini & Minerva (2010),  Peng 
et al. (2005),Sinha et al. (2015) ), simulated annealing (Kiezun et al. (2009), Meiri & 
Zahavi (2006)), iterated local search (Hans et al., 2012). These methods are characterized 
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as metaheuristics, a stochastic search strategy dedicated to solve difficult problems (NP-
hard problems) in optimization research. 
 
In particular, genetic algorithms (GA hereafter) and simulated annealing (SA hereafter) 
are known to be very effective to resolve the two issues mentioned above – (1) 
convergence to local optima (Kapatenios (2007), Kiezun et al. (2006), Meiri (2006), 
Paterini & Minerva (2010),) and (2) handling high dimensional spaces. (Kapatenious 
(2007), Meiri (2006))  
 
Even if these metaheuristics (GA or SA) have good properties such as tending to reach 
the global optima and capability to deal with many variables, their performance heavily 
depend on the choice of ‘tuning parameters’, which is very experimental and time 
consuming in practice. For example, the GA and SA need to fine tune four parameters 
(crossover type, crossover rate, mutation type, and mutation rate) and five parameters 
(initial temperature, final temperature, cooling ratio, temperature function, and accept 
function), respectively.  
 
To resolve these obvious and practical problems, this paper will suggest using 
‘parameter-free metaheuristics’ for variable selection in regression – Jaya (Rao, 2016) 
and Teaching Based Optimization (TBO hereafter) (Rao et al., 2011). 
In the next section, TBO and Jaya will be briefly described. 
 

2. Approach 
 
2.1 What is Teaching Based Optimization? 
The Teaching-learning-based optimization (TLBO) metaheuristic is a two-phase population-
based metaheuristic designed to solve continuous nonlinear optimization problems.  It was 
proposed by Rao et al. (2011) as a method for solving large constrained mechanical design 
optimization problems which involve no specific parameters to tune. Since the tuning of 
parameters in other metaheuristics can often be time consuming and largely experimental, 
Rao et al. (2011) describe a procedure in which the only parameters that need to be specified 
are those common to all other metaheuristics--population size and termination criterion.  
 
TLBO consists of two phases referred to by Rao et al. (2011) as the teaching phase and the 
learning phase.  The first phase of TLBO, the teaching phase, utilizes a global search 
procedure which really uses intensification-focused moves as discussed in Hill and Pohl 
(2019).  The “difference mean” is created by subtracting the quality of the best solution with 
the current mean solution. The objective here is to improve all solutions by this difference. 
The operator creating a new solution in the teaching phase is given as the following: 

( )   –   ,new old teacher f meanX X r X T X= +   where Xold  is a current solution of a population 
being modified, r is a random number in the range [0,1], Xteacher is the best solution of a 
population, Tf  = round(1+rand(0.1)) implying that Tf takes on the values 1 or 2 with equal 
probability  and Xmean is the mean solution of a population (Rao et al, 2011). Here, two 
variables r and Tf could have been used as parameters; however, they are defined as being 
random numbers and therefore their values are not specified as input parameters. The 
teaching phase is completed by checking if the new solution is better than the current.  
 
The second phase of TLBO adjusts each solution relative to a randomly selected solution 
(another learner).  The learning phase involves diversification-focused moves as discussed in 
Hill and Pohl (2019).  The operator is given by the following (for a minimization problem): 
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where, similar to the teaching phase, r is randomly chosen in the range of [0,1], Xi is the 
current solution and Xj is a randomly chosen solution where i j .  For both phases of 
TLBO, since Xj is a vector of real numbers, the actual implementation of TLBO requires the 
use of these update formulas on each component of Xj.  For more information on TLBO, we 
suggest reading Rao et al. (2011). 
 
In this paper, Teaching-based Optimization (TBO), which is a special case of TLBO with 
only teaching phase will be used because the learning phase will be replaced with a local 
search which will also be incorporated into Jaya. 
 
2.2 What is Jaya? 
The Jaya metaheuristic by Rao (2016) is a single phase population-based metaheuristic 
designed to solve continuous nonlinear optimization problems.  It is very similar to the 
teaching phase of TLBO except that a different transformation formula is used to update 
each solution in the current population.  Specifically, if Xj,k,i is the value of the jth variable 
for the kth candidate solution during the ith iteration, then this value is modified based on the 
equation Xnew

j,k,i = Xj,k,i + R1j,i(Xj,best,i - Xj,k,i) – R2j,i(Xj,worst,i - Xj,k,i), where Xj,best,i  is the value 
of the variable j for the best candidate solution in the current population and Xj,worst,i  is the 
value of the variable j for the worst candidate solution in the current population. Xnew

j,k,i is 
the updated value of Xj,k,i and R1j,i  and R2j,i are two random numbers for the jth variable 
during the ith iteration in the range [0,1].  This transformation equation is trying to move the 
current solution toward the best solution and away from the worst solution. We suggest 
reading Rao (2016) for more details on Jaya.    
 
2.3 Binarization of TLBO and Jaya 
Both TLBO and Jaya are designed to solve continuous nonlinear optimization problems; 
whereas, variable selection is a zero-one constrained optimization problem (either a variable 
is in the model or not). The solutions in the population of a problem using the original 
versions of TLBO or Jaya will be vectors of real (rational) numbers. The solutions in the 
population for the variable selection problem are bit strings (zeros and ones).  To adapt 
TLBO and Jaya to deal with bit strings, we used the approach that Lu and Vasko (2015) 
used successfully for the Set Covering Problem. In any of the transformation formulas 
(teaching, learning, or Jaya), the variables are now bits.  The random numbers that took on 
any values between 0 and 1 now take on only 0 or 1 with equal probability.  As in the 
original TLBO, the teaching factor in TLBO takes on the values 1 or 2 with equal 
probability. Also, in the teaching phase, the mean solution is replaced by the median 
solution.  If, after a transformation formula is performed, a variable value is less than 0, it is 
set to 0. If it is greater than 1, it is set to 1. Intuitively, if the result of a transformation 
formula produces a variable that “wants” to have a value less than 0, we simply set it to 0. In 
a like manner, variables that “want” to have a value greater than 1 are set to 1. The empirical 
results will demonstrate that this simple binarization approach yields good results. 
Additionally, it is important to note that there are other (more complicated) approaches in the 
literature for binarization of metaheuristics originally designed to solve continuous nonlinear 
optimization problems (Lanza-Gutierrez, 2016). However, Vasko and Lu (2017) reported 
that the simple approach outlined above performed the best for the set covering problem. 
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3. Data and Application 
 
3.1 Real-world data set – Crime data 
 
3.1.1 Background 

This dataset is generated from Communities and Crime Unnormalized Data Set on UCI 
Machine Learning Repository. (Redmond, 2011) 
 
The original dataset combines socio-economic data from the '90 Census, law enforcement 
data from the 1990 Law Enforcement Management and Admin Stats survey, and crime 
data from the 1995 FBI UCR. This dataset includes 2215 cases and 147 variables, but the 
‘crime dataset’ used in this section consists of 760 randomly selected cases 
(communities) with the population size between around 14,000 and 43000 and 31 
variables. One variable (the number of burglaries) is used as the response variable and the 
30 remaining variables, including per capita income and median gross rent, are used as 
explanatory variables for a linear regression model. 
  
Among the 760 cases, 380 randomly selected cases are used for the training set to fit the 
model and the remaining 380 cases are used for the validation set to evaluate the model 
selected from the training set. These two sets are used for analysis and comparisons in the 
next section.. 
 
3.1.2 Analysis and Result 

In this section, a multiple linear regression model is used to find a relationship between 
the response variable and the explanatory variables described in the previous section. The 
programming language C++ was used for analysis on the computer with Windows 10 Pro 
edition (64 bit) and Intel core i5-6300U. 
 
The weighted average of the Akaike Information Criterion (AIC) (Akaike, 1974) is used 
as the (ad hoc) objective function for optimization: 

 (1 )  t vwAIC AIC p Cp AI+ −=                            (2) 

where p and 1-p are the proportions of the training set and the validation set from the 
whole dataset, respectively. In the crime dataset, p=0.5 because the training set and the 
validation set have the same size of 380. AICt and AICv are the AICs calculated from the 
training set and the validation set, for each.  
 
AICt is used to estimate the coefficients in multiple regression with the training set and 
then AICv is used to evaluate a model derived in the previous step with the cases in the 
validation set. 
 
Now, it is explained briefly how to conduct variable selection process (for getting 
relevant variables and the corresponding coefficients) step by step. 
 
 
1. Generate a population of a fixed size of bit strings for a given metaheuristic method. 
2. With a selected bit string from the population in step 1, use the data points in the 

training set, estimate coefficients and calculate the corresponding AICt. 
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3. Use the data points in the validation set and the coefficients (or model) from step 2, 
calculate the corresponding AICv and then calculate the AICw. 

4. Repeat steps 2-3 as needed and update population as desired until the stopping 
criteria are satisfied (either the limit of 3600 second of running time or no observed 
improvement in terms of AICw, whichever comes first.) 

 
Basic comparison of three metaheuristics. GA, TBO, and Jaya are used as our main 
metaheuristics in this section, but specific procedures for each method are not given in 
the steps above due to their complexity. One can easily check them in the references 
mentioned in section 1 for GAs, if needed. For TBO and Jaya, one can check section 2.  
 
These three methods are used for analysis and compared with one another for their 
performance and efficiency in terms of the magnitude of objective function (AICw) and 
running time, for each. Four cases for GA and one case for TBO and Jaya, respectively, 
are used as described:  
 
1) Case 1: GA with random selection of parents. 
2) Case 2: GA with random selection of parents plus mutation. 
3) Case 3: GA with crossover. 
4) Case 4: GA with crossover plus mutation. 
5) Case 5: Jaya. 
6) Case 6: TBO. 
 
Each case used 5 lists with the population size of 300 for calculation.  
 

1 Best (smallest) AICw from 5 lists in each case. 
2 If the index i is shown, it implies the ith explanatory variable is selected. (i=1,···, 30) 
3 The unit of time is minute. 
 
Table 1 shows the summary from the 5th list. (other lists show similar results.) It can be 
checked the global optimum (minimum) of AICw is 3555.72 from different methods 
including exhaustive methods or sequential methods.  
  
All GAs (Cases 1 to 4) and Jaya (Case 5) attained the global optimum, but TBO did not. 
Jaya was much faster than GAs (16.07 vs. 36.22 or 64.04 or 63.32 or 103.32) and TBO 
was fast (19.50) comparing with GAs but wound up with a sub-optimum. 
 
More comparisons with different Jaya population sizes. Based on the results above, Jaya 
looks superior to other metaheuristic methods. In this section, it will be explored how 
Jaya can be improved with controlling population size, which is one of only two 

Table 1: Comparison of metaheuristic methods I – Crime. 
 

Case Best 
AICw

1 
Explanatory variables selected Time3 
Number Index2 

1 3555.72 13 1,2,8,10,12,16,23,24,25,26,27,28,29 36.22 
2 3555.72 13 1,2,8,10,12,16,23,24,25,26,27,28,29 64.05 
3 3555.72 13 1,2,8,10,12,16,23,24,25,26,27,28,29 63.32 
4 3555.72 13 1,2,8,10,12,16,23,24,25,26,27,28,29 103.32 
5 3555.72 13 1,2,8,10,12,16,23,24,25,26,27,28,29 16.07 
6 3558.65 12 1,2,8,9,10,12,24,25,26,27,28,29 19.50 
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parameters (population size and stopping criteria) used in Jaya. Four scenarios are 
defined as J1, J2, J3, and J4 with the different population size of 300, 200, 100, and 50, 
respectively. Each scenario used five lists with the same population size for calculation.  
 

Table 2: Comparison of Jaya with different 
population sizes – Crime. 

 
Scenari
o 

Number of lists  
detecting the optimum1 Time2 

J1 2 14.10 
J2 3 11.71 
J3 0 13.44 
J4 0 2.91 

1 Number of trials in which the minimum AICw is detected among 5 lists. 
2 The unit of time is minute. 

 
It provides a clue that Jaya can be improved by a certain amount of population size 
reduction. It also suggests a trade-off between the quality of results and the size of 
population. If a small-sized population is used, running time will be reduced at the cost of 
more likelihood of getting sub-optima.  
 

4. Summary 
 
In this paper, variable selection, one of the classical topics in regression, was dealt with 
using metaheuristic methods. It can be stated as a combinatorial optimization problem 
with the goal to select variables that maximize (or minimize) the given objective 
function. Even if some metaheuristics such as Genetic Algorithm (GA) or Simulated 
Annealing (SA) have shown better performance in many problems over conventional 
methods, it turned out that ‘fine tuning of parameters’ is very challenging.  
  
This paper explored some ‘parameter-free’ metaheuristics like Teaching-Based 
Optimization (TBO) and Jaya and compared them to GA. The previous sections 
illustrated that Jaya is superior to other metaheuristic methods in terms of performance 
and efficiency when it is properly used with relatively small population and 
neighborhood search.  
  
It must be noted that one of the main purposes of this paper is not to develop a complete 
package to solve many different problems but to suggest how parameter-free 
metaheuristics such as Jaya can be used for variable selection.  
  
Also, it must be admitted that the algorithms used for the datasets serve as an initial trial 
for the development of better parameter-free metaheuristic algorithms to come. Even if 
some simulations in high dimensional, say 100, space were conducted, their results were 
not included in the paper, due to issues arising from complexity and too much ‘noise’, 
which implies that there is a lot of room for improvement.  
  
Lastly, a possible direction for future research may include, but is not limited to, handling 
highly correlated variables and developing stronger computing methods to manage ‘the 
curse of dimensionality’ to some extent.    
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