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Abstract

There exists a variety of methods that have been used to analyze eye-tracking data. One of the gen-
eral methods involves the use of Areas of Interest (AOIs). AOIs are predefined areas of an image
used to determine characteristics of eye-tracking data. While most AOIs are defined by hand, we dis-
cuss the use of systematic AOIs and the application of the systematic Voronoi Tessellation Method.
Differentiated eye-tracking data can then be compared within the AOIs to determine whether sub-
jects from a treatment group looked at the images differently than subjects from a control group and
where those differences occurred.

Key Words: Voronoi Tesselation Method, USU Posture Study, Data Visualization

1. Introduction

A primary goal of eye-tracking technology and analyses is to gain insight into what individ-
uals give their attention to. To collect this information, the eye-tracking device records eye
movements of a participant and produces a series of coordinates that describe the location
of the subject’s gaze. The raw x and y coordinates the eye-tracking device produces are
called gaze points. There are several methods researchers can use to analyze gaze points
produced by eye trackers. This article focuses on a specific method which uses Areas of
Interest (AOISs).

In any given eye-tracking study, each participant is asked to look at a provided stimulus.
This stimulus is referred to as the image of interest. According to Hessels et al. (2016),
AOIs are predefined areas of an image that are used to determine characteristics of eye-
tracking data. These AOIs divide the image of interest into segments determined by the
researcher. While many AOIs are defined by subjective hand-drawn segments (Hessels
et al., 2016), these areas could be defined more systematically.

The USU Posture Study provides the opportunity to analyze eye-tracking data using
systematic AOIs. This study aims to determine whether judgment of others’ action capa-
bilities is based on one’s own action experiences (Symanzik et al., 2017, 2018; Studenka
et al., 2020). This study uses two groups of participants: those with extensive recent yoga
experience serve as the treatment group and those with minimal yoga experience serve as
the control group. The primary goal of this article is to analyze differences in gaze point
proportions within each AOI between the treatment and the control groups in 22 different
human postures.

This article is structured as follows: In Section 2, we provide further details of the USU
Posture Study. In Section 3, we introduce the Voronoi Tessellation Method and we outline
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Figure 1: Posture IDs 1-22 ordered from left to right, then top to bottom.

the application to creating AOIs for our eye-tracking data in Section 4. Section 5 reports
the results of the study. In Section 6, we provide our conclusions and an outlook on the
next steps in our ongoing analysis. All of our visualizations and analyses are conducted
with the R statistical computing platform (R Core Team, 2019).

2. The USU Posture Study

The primary research question for the USU Posture Study asked: “Does a person’s judge-
ment of action capabilities of another person depend on personal knowledge and experience
with human movement?” (Symanzik et al., 2017, 2018; Studenka et al., 2020). Specifically,
when subjects look at an image to judge the stability of a posture, are there differences be-
tween subjects with and without recent yoga experience? If so, where do those differences
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Figure 2: Methods for defining AOIs. Hand-drawn (left), grids (middle), and Voronoi
(right).

occur?

To answer these questions, data were collected from 40 subjects. The control group
consisted of 20 participants with minimal yoga experience and the treatment group con-
sisted of 20 participants with extensive yoga experience. Each of the 40 participants was
asked to look at a series of 22 images of an actor holding a posture in random order. Eye-
tracking technology captured the gaze points where each participant looked to make the
judgement. Each image was given an identification number referred to as the posture ID.
Figure 1 shows each of the 22 images labeled as Posture IDs 1-22 that were viewed by all
40 participants.

3. Systematic AOI Methods

A variety of techniques have been used to create AOIs in the existing literature. The most
common method for defining AOIs is having an expert in the application area being studied
draw the AOIs by hand (Hessels et al., 2016; Cantoni et al., 2012; Fichtel et al., 2019). Be-
cause this approach is highly subjective, this method is far from ideal. Due to the subjective
nature of this method, more systematic approaches have been developed. A systematic ap-
proach to defining AOIs that is most frequently applied involves using regular grids across
the observation area (Wistlund et al., 2018). This method is useful since these AOIs are
content independent, and consequently, easily generated. However, inferential statistics
have shown to be dependent on the granularity of the grid (Duchowski, 2007; McKinney
and Symanzik, 2019).

Another approach to defining AOIs systematically is called the Voronoi method adapted
from Voronoi (1909). This method requires the center of each AOI to be defined. Lines that
separate each AOI at the exact midpoint from the centers are drawn and form tessellations.
These tessellations become the AOIs. Each gaze point or fixation point belongs to the AOI
where the distance from that point to the AOI center is the shortest. This approach has the
advantage of being a systematic approach that is not being restricted to the shape or size
of grid cells. This approach is unique in that every part of the image of interest is defined
under an AOI because the outermost AOIs extend to the edges of the image. However,
the centers of the AOIs, while optimally defined by content subject experts, can be still be
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Figure 3: Scatter plot (left) and contour plot (right) of the collective set of gaze points
from all subjects for posture with ID 5.

subjective in nature. Nystrom et al. (2013) used the Voronoi method as calibration targets.
A depiction of these three approaches to defining AOIs can be seen in Figure 2 where the
left image shows a “hand-drawn” method, the center image shows the use of a regular grid,
and the right image depicts Voronoi tessellations of the AOIs.

4. Voronoi Tessellation AOI Application to the USU Posture Study Data

The overall goal of the USU Posture Study is to compare gaze points from the treatment
and the control groups. The goal for this article is to use a systematic method for defin-
ing AOISs to analyze the differences in gaze points patterns between the treatment and the
control groups. Our hypotheses are as follows: Hy: There are no differences in gaze point
proportions within AOIs between the treatment and the control groups. H4: There are
differences in gaze point proportions within AOIs between the treatment and the control
groups. To visualize the eye-tracking data, we chose to use scatter plots in instances where
individual gaze point locations matter and contour plots to understand where the bulk of
the gaze points were concentrated. These visualizations applied to gaze points from all 40
participants looking at posture with ID 5 are represented in Figure 3.

Every participant was shown a series of dots in each corner of an image at the beginning
and end of the study to serve as a calibration check. When we combined the data for all 40
participants from the beginning and end of the study, we found that the gaze points were
not centered over the calibration dots as depicted in the left and center plots of Figure 4.
An affine transformation (Flusser and Suk, 1993) was applied to the gaze points for each
participant separately which more accurately plotted the gaze points as is seen in the right
plot of Figure 4. An affine transformation was chosen because it preserves colinearity
and ratio of distances through any combination of rotation, translation, dilation, and shear
transformations (Flusser and Suk, 1993). The Morpho R package (Schlager, 2017) was
used to compute the transformation matrices and apply the transformation to all x and y
coordinates from the gaze points produced by the eye tracker.

The centers of each AOI for each of the 22 postures were defined by a kinesiology
expert who identified major joints, the center of mass, and the head. The centers were
numbered for consistency, however, not all major joints were visible in every posture im-
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Figure 4: Calibration photo (left) contour plot of raw data (middle) and contour plot of
transformed data (right).
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Figure 5: Expert-defined AOI centers for the posture with ID 5 (left) and Voronoi Tessel-
lations for the posture with ID 5 (right).

age. Therefore, if any of these defined AOI centers were obstructed from view, they were
excluded from the analysis of that particular posture. The identified centers were used to
calculate the tessellations for posture ID 5 as shown in Figure 5.

We used two analyses to test the hypotheses. The Chi-square test for independence
(McHugh, 2013) was used to compare the proportion of treatment and control gaze points
in each AOI where the degrees of freedom were one less than the number of AOIs in each
posture. However, the Chi-square test of independence makes the assumption that 80%
of cells (AOIs) have expected values of at least 5 observations (gaze points) and that no
cell has an expected value of 0 observations. Hence, the Fisher’s exact test (Upton, 1992)
was used as a non-parametric alternative to the Chi-square test for independence for any
postures that did not meet the assumptions for the Chi-square test for independence. We
used simulated p-values for the Fisher’s exact test based on 9999 replicates. Both tests were
conducted at the 5% significance level.
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Figure 6: Comparison of proportion of treatment and control gaze points by AOI for the
posture with ID 5 (left). Scatterplot of gaze points on the posture with ID 5 with overlaid
Voronoi Tessellations (right).

The Bonferroni adjustment (Napierala, 2012) was used as a conservative approach to
correct for multiple comparisons for both the Chi-square p-values and the Fisher’s exact p-
values. The Bonferroni adjustment accounts for the multiple comparisons by multiplying
each p-value by the number of tests conducted (Napierala, 2012).

5. Results

The most significant results were obtained from the posture with ID 5 which was introduced
in Figures 3 and 5. The analyses on this posture revealed a Chi-square p-value of 3.36e ™33
and a Bonferroni adjusted Chi-square p-value of 7.39e32. The Fisher’s exact p-value
was 0.0001 (1.00e ~%%) with the Bonferroni adjusted Fisher’s p-value of 0.0022 (2.20e~%3).
Thus, we see that the two tests lead to the conclusion that there is highly significant evidence
that there are differences in gaze point proportions within AOIs between the treatment and
the control groups for the posture with ID 5.

The statistical test results are confirmed in Figure 6 which explicitly shows how the
treatment and control proportions differ in each AOI and depicts where the gaze points are
located specifically on the image. The bar chart in Figure 6 shows that the proportion of
gaze points from the control group are much higher in the center of mass and left shoulder
AOQIs than the proportion of gaze points from the treatment group. We also observe that
the proportion of gaze points for the treatment group are much higher in the right shoulder
and right hip AOIs when compared to the proportion of gaze points from the control group.
The p-values for the posture with ID 5 from both tests are highly significant. In fact, this
posture has the lowest Chi-squared p-values among all 22 postures which can be seen in
Table 1.

In contrast the posture with ID 8 has the highest Chi-squared p-values. However, these
p-values also show statistical significance. Figure 7 shows a side-by-side barchart of pro-
portions of gaze points per AOI by treatment group and a scatterplot of the gaze points for
the posture with ID 8. Table 1 shows that the posture with ID 8 has a Chi-square p-value
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Table 1: P—values for each Posture ID (Alternative = “Two-Sided”). All test outcomes are
highly statistically significant, rejecting the null hypothesis in favor of the alternative, i.e.
there are differences in gaze point proportions within AOIs between the treatment and the
control groups.

Posture || Chi-square test for Bonferroni adjusted  Fisher’s  Bonferroni adjusted
ID independence Chi-square test exacttest  Fisher’s exact test
1 2.11e7 18 4.64e17 1.00e 04 2.20e~ %3
2 1.17e=27 2.57e~2%6 1.00e~%4 2.20e7%3
3 4.05e~27 8.91e—26 1.00e %4 2.20e793
4 1.45¢=25 3.19¢ % 1.00e=%4 2.20e 93
5 3.36e733 7.39¢ 32 1.00e %4 2.20e793
6 2.70e 18 5.94¢17 1.00e=%4 2.20e93
7 5.59¢733 1.23e731 1.00e %4 2.20e7%3
8 3.45¢705 7.59¢ 04 1.00e 04 2.20e93
9 4.99¢ 12 1.10e~10 1.00e~%4 2.20e793
10 9.34e~ 19 2.05¢13 1.00e—%4 2.20e93
11 3.67¢ 18 8.07¢~17 1.00e~%4 2.20e7%3
12 1.03e=20 2.27e~19 1.00e %4 2.20e793
13 2.59e21 5.70e~20 1.00e~04 2.20e7%3
14 5.64e722 1.24e=20 1.00e %4 2.20e793
15 2.03e~ 12 4.47e 11 1.00e=%4 2.20e7%3
16 1.24e—2%6 2.73e=% 1.00e %4 2.20e793
17 4.58e~17 1.01e~15 1.00e=%4 2.20e 93
18 1.0le~ 2.22¢713 1.00e 04 2.20e793
19 2.79¢26 6.14¢=2° 1.00e 04 2.20e—93
20 4.90e97 1.08e 9% 1.00e~%4 2.20e793
21 1.76e =31 3.87¢ 30 1.00e—%4 2.20e93
22 3.10e~18 6.82e~ 17 1.00e~%4 2.20e7%3

of 3.45e% and a Bonferroni adjusted Chi-square p-value of 7.59e =%, The Fisher’s exact
test gives a p-value of 0.0001 and a Bonferroni adjusted Fisher’s p-value of 0.0022.

Figure 7 clarifies how the treatment and control proportions differ in each AOI and de-
picts where the gaze points are located specifically on the image. The bar chart in Figure 7
shows that the proportion of gaze points from the treatment group are much higher in the
center of mass and left shoulder areas than the proportion of gaze points from the control
group. We observe that the proportion of gaze points for the control group are much higher
in the left elbow and right hip/ left hand areas when compated to the proportion of gaze
points from the treatment group. The center of mass AOI is an AOI in both postures that
demonstrates a dramatic difference in proportions of gaze points. However, it is interesting
to note that group with the higher proportion of gaze points is not consistent in these two
postures.

Overall, Table 1 shows that all Fisher’s exact test p-values are the same: 0.0001. These
p-values were computed using 9999 permutations. The p-value 0.0001 demonstrates that,
assuming there is no difference in the proportions for the treatment and the control groups,
none of the permutations distributed the data more disproportionately than the observed
data. The consistency in p-values for the Fisher’s exact test explains the similar consistency
in p-values for the Fisher’s Bonferroni adjusted p-values and we see that these p-values
of 0.0022 are calculated by multiplying the Fisher’s exact p-values by 22, the number of
postures analyzed.
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Figure 7: Comparison of proportion of treatment and control gaze points by AOI for the
posture with ID 8 (left). Scatterplot of gaze points on the posture with ID 8 with overlaid
Voronoi Tessellations (right).

6. Conclusions and Outlook

All p-values provided in Table 1 show that the 22 postures have gaze point proportions
that are significantly different between the treatment and the control groups. Therefore, we
can conclude that there are differences in gaze point proportions within AOIs between the
treatment and the control groups. These results suggest that there is an association between
personal knowledge and experience with human movement and a person’s judgement of
action capabilities of another person.

In this article, we used the Voronoi Tessellation method to define areas of interest and
analyze gaze point proportions differences between the treatment and the control groups.
While we can conclude that there are differences in gaze point proportions within AOIs
between the treatment and the control groups, we also suspect that the results are dependent
on the number of AOIs and the distance of the expert-defined AOI centers. We plan to use
the information we gather from the margin of error observed around the calibration dots
and the gaze points themselves to inform the kinesiologist who will create a second data
driven round of AOIs. The results from the second round of AOIs can then be compared to
the results presented in this article.

Furthermore, there is a fourth approach to define AOIs that Hessels et al. (2016) ex-
plained which could also be implemented in our future analyses. This approach is called
the Limited-Radius Voronoi Tessellation (LRVT) method. This method uses the same un-
derlying idea as the original Voronoi method in creating the AOIs with expert-defined AOI
centers. However, this modified approach adds a maximum radius from the center that lim-
its the extent of each AOI. The LRVT method provides the same advantages as the Voronoi
method and adds the benefit of a user-defined maximum radius from each defined cen-
ter. Researchers can be more confident when classifying any eye-tracking data found in a
particular AOI that outlying gaze points are not inappropriately classified.

The use of the LRVT method to define AOIs merits its future application in the USU
Posture Study. We anticipate applying this method using knowledge gained from the mar-
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gin of error found from the calibration gaze points to inform the chosen maximum radius.
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