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Abstract
In this article, we briefly overview the simultaneous confidence interval method in pairwise compar-
isons based on quasi-likelihood estimation of regression coefficients in generalized linear models.
The simultaneous confidence intervals for the associated odd ratios are obtained by direct end-point
transformation. A real example is used for illustration.
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1. Introduction

Dichotomous responses, obtained from surveys or experiments in scientific investigations,
are often fit to generalized linear models to inference the regression coefficients as well as
the unknown responding probabilities. Researchers often compare the odds for a given pair
values of a predictor variable to examine the sensitivity of the responding probability to
level changes. In multiple comparisons for a family of odds, a natural consideration is to
control the family-wise error rate, or equivalently, to attain the prescribed joint confidence
level.

Large-sample approximation methods have been widely used in simultaneous infer-
ence for a collection of responding probabilities, Kutner et al (2004). Simulation studies,
including Simonoff and Tsai (1988) and Li (2020), have provided a caveat of using large-
sample approximation method when data show over-dispersion. It is noted in Li (2020)
that when over-dispersion presents, simultaneous confidence interval method based on nor-
mal theory provides liberal interval estimation of linear contrasts of regression coefficients;
percentile-t bootstrap method is proposed as a resampling-based alternative. When func-
tions of responding probabilities are of interest in a study, for instance, all pairwise odds
ratios among treatment groups in case-control studies in Breslow and Day (1980), we con-
struct simultaneous confidence intervals for odds ratios based on bootstrap method in Li
(2020).

2. Simultaneous Confidence Intervals for Odds Ratios in Oneway Layouts

Let Yij be the j−thBinomial observation from the i−th treatment group, i = 1, · · · , a, j =
1, · · · , ni such that the variance and the mean follow the structure
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V ar(Yij) = φnipi(1− pi), (2.1)

where φ is the scale parameter and pi is the common responding probability for each bino-
mial response in group i. Note that φ is often used to capture over-dispersion in count data
analysis, Wedderburn (1974), Hoef and Boveng (2007), Auer and Doerge (2010), and Li
(2020a). We assume that logit function of pi is fit to the mean structure of Oneway ANOVA
model that

log(
pi

1− pi
) = µ+ τi, (2.2)

where µ is the overall mean and τi denotes the treatment i effect,
∑a

i=1 τi = 0. For details
of quasi-binomial models, see section 5 of Li (2020).

To proceed, let C be the k × (a+ 1) Tukey-Type contrast matrix such that

Cβ = [τ1 − τ2, τ1 − τ3, · · · , τa−1 − τa]′ (2.3)

where k =
(
a
2

)
and β = [µ, τ1, · · · , τa]′.

Let β̂Q = [µ̂Q, τ̂1,Q, · · · , τ̂a,Q]′ be the quasi-likelihood estimation of β in (2.2), Wed-
derburn (1974). We have that (1 − α)100% simultaneous confidence intervals of Cβ are
given by

Cβ̂Q ± q1−α[φ̂Λ̂1]1/2 (2.4)

where (i) 1 is a k × 1 vector of 1′s; (ii) Λ̂ is a k × k diagonal matrix whose l − th di-
agonal element equals c′l(X

′ŴX)−1cl, l = 1, · · · , k; (iii) Ŵ = diag{nieµ̂Q+τ̂i,Q/(1 +

eµ̂Q+τ̂i,Q)2}i=1,··· ,a; (iv) the plug-in estimation of the scale parameter φ̂ =
∑

i,j(Yij −
µ̂i,Q)2/{(N − a)[µ̂i,Q(ni − µ̂i,Q)/ni]} with µ̂i,Q = nie

µ̂Q+τ̂i,Q , i = 1, · · · , a, N =∑a
i=1 ni; (v) a widely used approximation method for the quantile q1−α is based on normal

theory, Kutner et al (2004) and Li (2020). In specific, Kutner et al (2004) used Bonferroni
method and Li (2020) approximate q1−α by the (1 − α) − th quantile of the multivari-
ate normal distribution with specifications MVN(0, Λ̂−1/2C(X ′ŴX)−1C ′Λ̂−1/2). The
simulation study of Li (2020) shows that the quantiles generated by the corresponding mul-
tivariate normal distribution are below the “true” quantiles, obtained through Monte-Carlo
simulation.

Li (2020) provided a resampling-based method to approximate q1−α. In brief, at the
b − th step of the bootstrap method, b = 1, · · · , B we draw a sample with replace-
ment from Pearson residuals to obtain b − th bootstrap copy of the pivotal quantities

T bQ = (φ̂(b)Λ̂(b))−1/2C(β̂
(b)

Q − β̂Q) and that of the maximum modulus statistic T bQ,M =

max{|T bQ|}. In the expression, the term with superscript (b) denotes the estimation of the
corresponding parameter using the same estimation method above, based on b − th boot-
strap dataset. The (1 − α) − th quantile of the sampling distribution of T (b)

Q,M gives a
resampling-based approximation of q1−α in (2.4).

Let Oddsi = pi/(1− pi), i = 1, · · · , 1. The odds ratio of (i, i′)− th treamtent groups
is given by

ORi,i′ = Oddsi/Oddsi′ = eτi−τi′ (2.5)
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for i 6= i′ = 1, · · · , a. By end-point transformation, for example, page 562 of Kutner et
al (2004), we have (1 − α)100% simultaneous confidence intervals for all pairwise odds
ratios {ORi,i′}i6=i′=1,··· ,a given by

[eLi,i′ , eUi,i′ ] (2.6)

where Li,i′ is the lower bound of the simultaneous confidence interval for τi − τi′ in (2.4)
and Ui,i′ is the upper bound of the interval.

Though we focus on all pairwise comparisons in this article, an extension of the pro-
posed method to many-to-one comparisons is straightforward.

3. Example

To study the effect of plant nutrients on germination rate, two types of seeds (O.aegyptiaca
75 and O.aegyptiaca 73) were cultured under diluted root extracts from beans and cucum-
bers. The data is from Crowder (1978), who fit logit function of the unknown germination
rates pi, i = 1, · · · , 4 to the mean structure of Oneway ANOVA model with 4 treatment
groups: O.aegyptiaca 75 with root extracts of beans, O.aegyptiaca 75 with root extracts
of cucumbers, O.aegyptiaca 73 with root extracts of beans, O.aegyptiaca 73 with root
extracts of cucumbers, in order.

By fitting the model in (2.2), the scale parameter has plug-in estimation φ̂ = 1.86(> 1),
and Pearson statistic (N−4)φ̂ = 31.65 gives p−value = 0.017, indicating over-dispersion
among observations, McCullagh and Nelder (1989) and Agresti (2007). The group av-
eraged mean-variance plot in Figure 1 shows that the quadratic form presumed in (2.1)
roughly holds for mean values less than 30 and a linear trend is observed for mean values
greater than 30. The simulation results in Li (2020) show that the large-sample approxima-
tion method is sensitive to such deviation and the percentile-t bootstrap method in section 2
provides a robust alternative. The robustness of validity holds when the working variance-
mean structure in (2.1) lies in a neighborhood of the “true” variance-mean structure, im-
plied by mean-variance plot in practice. Hence, we apply the bootstrap method in section
2 to obtain 95% simultaneous confidence intervals for ORi,i′ , i 6= i′ = 1, · · · , 4. As a
comparison, we include the interval estimation based on normal theory in section 2 and
Bonferroni method discussed in Kutner et al (2004). The results are summarized in Table
1. It shows that the bootstrap method in section 2 provides wider intervals than that using
the large-sample approximation method in all pairwise comparisons for odds ratios. This
is consistent with the results in inference linear contrasts of regression coefficients such
as (2.3) in Li (2020). Moreover, Bonferroni method gives almost similar (slightly wider)
interval estimation as that of the large-sample approximation method.
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Table 1: Confidence Intervals of All Pairwise Comparisons for Odds Ratios - Nominal
Confidence Level 1− α = 0.95

Comparisons mvn† BS Bonferroni
OR1,2 (0.144, 0.498) (0.137, 0.524) (0.141, 0.507)
OR1,3 (0.396, 1.886) (0.372, 2.010) (0.387, 1.930)
OR1,4 (0.241, 1.052) (0.227, 1.117) (0.236, 1.075)
OR2,3 (1.483, 7.031) (1.391, 7.495) (1.449, 7.195)
OR2,4 (0.903, 3.921) (0.850, 4.165) (0.884, 4.007)
OR3,4 (0.243, 1.395) (0.226, 1.499) (0.237, 1.432)

The bootstrap size B = 1,000,000.
† We use the package “mvtnorm” of Genz et al (2017) to generate the quantiles q1−α in (2.4).
The user time to generate the results in Table 1 is 106.5 seconds on a desktop with the processor: Intel(R)
Core(TM) i5-7600 CPU @ 3.50GHz, 3504 Mhz and Installed physical memory (RAM): 16.0 GB
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Figure 1. Scatter plot of group averaged means µ̂i versus group averaged residual squares
(Yi − µ̂i)

2 for seed germination data, i = 1, · · · , 4. The diameter of each circle is pro-
portional to the size of the group, which has bin width 6.5. A lowess (locally-weighted
smoothing scatterplot) curve is included to observe the trend by using the smoother span
f = 0.75.
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