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Abstract

Modeling spatially-temporally correlated data using parametric models is common, however semi-
parametric models are very limited in this area. This article introduces a semiparametric spatial-
temporal effects model, in which spatial effects are integrated into the single index function and
temporal effects are additive to the single index function. We refer to this model as “semipara-
metric non additive spatio-temporal single index model” (NST-SIM). For estimation, Monte Carlo
Expectation Maximization based algorithm is used. NST-SIM has many advantages demonstrated
by simulation studies and real data application. It has smaller mean square error and higher accurate
prediction compared to non-integrated spatial temporal single index model. It is applied to South
Korean mortality data of six major cities and interesting results are found.
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1. Introduction

Epidemiology has a long history of studying factors that affect the variability of mortality.
Among the factors that affect mortality is the geographical (or spatial) variable that plays
a crucial role in evaluating health care distribution. Spatio-temporal analysis has the ad-
ditional benefits over spatial analysis because it allows the investigator to simultaneously
study the existence of patterns over time. Because of the novel computational methods that
allow for analyzing the large spatio-temporal databases, the spatio-temporal data analysis
is an emerging research area.

Among many early authors who worked with spatio-temporal data and obtained sta-
tistical models are Goodall and Mardia (1994) and Cressie (1994). There are many others
articles studied this type of data in the last two decades because of the increase of the avail-
ability of these data (see, Landagan and Barrios, 2007; Arcuti et al., 2013; Lekdee and
Ingsrisawang, 2013; Sherman, 2011; Hayn et al., 2009; Nelson et al., 2009; Li et al., 2007;
Genton et al., 2006; Kanevski and Maignan, 2004). Many parametric statistical models
have been introduced by these articles to model spatio-temporal data, such as generalized
linear mixed model, generalized linear additive model, and spatio-temporal auto-regressive
model.

Mixed effects models and spatio-temporal models are different in terms of the form
of the variance-covariance matrix structure that defines the type of correlation between
random effects of time and spatial dependency. In spatio-temporal data, the spatial effects
covariance matrix structure depends on the distance between any two locations or cities
and it is assumed to follow some parametric function. There are many articles studied the
estimation and prediction of the covariance functions (see, Hayn et al., 2009; Cressie and
Wikle, 2011; Arcuti et al., 2013; Lekdee and Ingsrisawang, 2013). The common approach
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of modeling spatio-temporal data is using parametric models, however these parametric
models have strong assumptions on the model. These assumptions in many cases are not
satisfied to real data sets.

Nonparametric and semiparametric models relax these assumptions and as a result they
are more appropriate to analyzing spatio-temporal data, however the semiparametric mod-
els are very limited in this area. This article introduces two semiparametric models that are
more appropriate in modeling spatio-temporal data. The two models are extensions to the
single index model (SIM) to incorporate the spatial and time effects into the model.

Ichimura (1993) introduced the single index model and many articles extensively stud-
ied estimation and inference of the SIM (Hridtache et al., 2001; Wang et al., 2010; Chang
et al., 2010; Mahmoud et al., 2016; Mahmoud et al., 2016; Mahmoud and Kim, 2019) and
applied in many different areas, such as economics, medicine, biostatistics, and epidemiol-
ogy.

The SIM has many advantages over the parametric models that is because (1) it assumes
that the function that describes the relationship between the response variable and the ex-
planatory variables is an unknown function which make it avoids misleading results of
misspecifying the link function (Horowitz and Hardle, 1996), (2) it doesn’t assume specific
type of error distribution, and (3) it avoid the curse of dimensionality problem by using the
single index linear combination of the explanatory variables that reduces the p−dimension
to only one dimension. In SIM estimation, we need to have a restriction on parameters to
fix the identifiablility problem. One solution is to use the norm of the parameters equals
to 1 (Xia et al., 2004; Lin and Kulasekera, 2007), and another solution is to set the first
coefficient to be equal to 1 (Ichimura, 1993; Sheman, 1994). The second approach is used
in this article.

Incorporating the random effects as additive effects into the single index function was
introduced by Pang and Xue (2012), however random effects are assumed to be independent
in a longitudinal data analysis. This article introduces two models: the first one has the
correlated spatial and temporal effects are additive to the single index function and in the
second model, the spatial effect is incorporated into the single index function and the spatial
effects are additive to the unknown function. The first model is named ”Additive spatio-
temporal single index model (AST-SIM)” and the other model named ”Non additive spatio-
temporal single index model (NST-SIM)”. These two models are applied to a real data set
from Korea cover the time from 2000-2007. The data has many variables recorded daily:
mortality, temperature, humidity, pressure, and time for six major cities in Korea (Busan,
Seoul, Daejeon, Incheon, Gwangju, and Daegu). Figure 1 shows the location of these six
cities.

This article mainly focus on the second model. To the best of our knowledge, this such
model is not in the statistical literature. In Section 2, the additive and nonadditive models
are displayed. Section 3 is dedicated for the algorithm that is proposed for the two models
estimation. Section 3 describes the real data application and apply the two models on the
motivating data. Conclusions are provided in Section 5.

2. Proposed Models

Two models are introduced to model the spatio-temporal data. In the first model, the spatial
effects are additive to the single index function, we call it “Semiparametric additive spatio-
temporal single index model”, and in the second model, the spatial effects are non additive
to the single index function and refer it to “Semiparametric additive spatio-temporal sin-
gle index model”. Let Ys,t is a discrete response variable at location s and time point t,
us, s=1,. . . , S, be a spatial random process, wt, t = 1, . . . ,n, be a time random process,
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Figure 1: A map shows the location of the six major cities in South Korea

x1(s,t),x2(s,t), . . . ,xp(s,t) are p the explanatory variables at location s and time point t.
The first model takes the form:

Ys,t|µs,t ∼ Pois(µs,t|us,νt), µs,t|us,νt = g(X(s,t)β) +us+wt,

The second model takes the form:

Ys,t|µs,t ∼ Pois(µs,t|us,νt), µs,t|us,νt = g(X(s,t)β+us) +wt,

where g(·) is an unknown function, β is a vector of coefficient parameters, and µ is the mean
function. One of the differences of these models is that the first one needs a restriction on
the coefficient parameters.

Gaussian kernel is used to construct the variance covariance matrix of the spatial cor-
related random effects that has mean E(us) = 0 and cov(us+a,us) = C(a), where a is the
distance between any to locations. For temporal effects, random walk with first order will
be used to construct the variance covariance matrix of time effect.

3. Estimation Method

Models estimation is based on a modified Monte Carlo Expectation Maximization (MCEM)
algorithm. It is modified for our semiparametric regression models. Initializing β, g(·), us,
(s = 1, . . . ,S), wt, (t = 1, . . . ,T ), σ2

w, σ
2
u, and estimates of ρu and ρw (ρ̂u and ρ̂w) is

required to run the MCEM. The introduced algorithm, in this paper, to estimate AST-SIM
and NST-SIM parameters and spatial and time effects, takes the following steps:

• I-step: parameters initialization:

– σ
2(0)
u , u(0)

s , σ2(0)
w , and w(0)

t are initialized;

– Y ∗
s,t = Ys,t−u(0)

s −w(0)
t ;

– Estimate β, β(0), and ĝ(·)(0) by any semiparametric method, Ichimura’s method
is used.

• E-step: Generate a random sample from each location effect (us1,us2, . . . ,usN )
given all the previous initials, and each time effect wt1,wt2, . . . ,wtN from
logf [Y,u,w|µ = f [X(s,t)β] +Zu +Ww,σ2

uΣu,ρ̂u ,σ
2
wΣw,ρ̂w ] via the Metropolis-

Hastings algorithm.
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• M-step Maximize 1
N

∑N
k=N0+1 logf{uk|σ2

uΣu,ρ̂u} and 1
N

∑N
k=N0+1 logf{wk|σ2

wΣw,ρ̂w}:

– Get σ2(1)
u and σ2(1)

w ;

– Calculate us(1) = 1
N

∑N
k=1usk,wt(1) = 1

N

∑N
k=1wtk and Y ∗

s,t = Ys,t−us(1)−
wt

(1);

– Estimate β, β(1), and ĝ(·)(1).

• E-step and M-step are iterated until convergence achieved.

4. Mortality Data

The two spatio-temporal models that are introduced in this paper are applied to the South
Korea data to find which model is more appropriate to describe the data based on some
model selection criteria. For each model, we need to estimate the unknown function, the
model parameters, and the dependence range. In the two models, the response variable
is the mortality Y and the explanatory variables are temperature (x1), pressure (x2), and
mean humidity mean temperature (x3). The data is collected from six cities (Busan, Seoul,
Daejeon, Incheon, Gwangju, and Daegu). The monthly data is used rather than daily data to
avoid the problem of big “N” (Banerjee et al., 2004) that will make the computing time very
big because of the variance covariance matrix rank, and the form of the mortality functions
during the year can be studied. The time and location represent the temporal and spatial
effects. The population sizes of the six cities are different, so we calculated the number of
deaths per ten thousands of people.

Figure 2(a-c) show that the mortality-temperature relationship is negative, the mortality-
humidity is positive, and the mortality-pressure relationship is positive. Figure 2(d) reveals
that mortality is high at the beginning and at the end of the year and the highest mortality
is of Busan city and the lowest is of Gwangju.

In addition to applying the two models on mortality data, we need to find the best model
that is appropriate for this data based on fitting and prediction criteria. The following are
the two models for our motivating data:

• AST-SIM Ys,t|µs,t ∼ Pois[µs,t|us,wt],
µs,t|us,wt = g[x1s,tβ1 + x2s,tβ2 + x3s,tβ3] + us + wt,

• NST-SIM Ys,t|µs,t ∼ Pois[µs,t|us,wt],
µs,t|us,wt = g[x1s,tβ1 + x2s,tβ2 + x3s,tβ3 + us] + wt,

The proposed Algorithm is used for AST-SIM and NST-SIM parameters estimation,
and spatial and temporal effects estimation. For the initial values, generalized linear mixed
effects model is used to find the initial values for the introduced algorithm. Metropolis-
Hastings algorithm is run 5000 times to sample spatial and time effects after discarding
2% of the MCMC. To estimate the model parameters, MCEM algorithm is iterated until
convergence achieved. Using variogram, the dependence range is estimated and found it is
equal to 1, ρ = 1.5, however NST-SIM does not have this problem so we can estimate all
the parameters.

Table 1 shows that the standard error of the parameter estimates of NST-SIM is smaller
than the standard error of AST-SIM parameter estimates. In terms of log likelihood value,
NST-SIM is much better than AST-SIM, and NST-SIM has higher R2 value (0.94) com-
pared to AST-SIM (0.83). The coefficient parameter of x2 in AST-SIM is set to be equal to
1 to fix the identifiabiltiy problem.
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Figure 2: The relationship between temperature and mortality (a), the relationship between
humidity and mortality (b), the relationship between pressure and mortality (c), and the
relationship between month and mortality (d) for the cities.

Table 1: The AST-SIM and NST-SIM parameter estimates along with their 95% confidence
intervals, R2 values, and the log loglikelihood values

AST-SIM NST-SIM
Estimate 95% CI Estimate 95% CI

x1 -0.005 (-0.005, -0.005) -2.173 (-4.23, -0.11)
x2 0.005 (0.004, 0.0046) 1 0
x3 0.003 (0.003, 0.0026) 3.740 (3.44, 4.03)
log Likelihood -236.4 -313.8
R2 0.94 0.83

Table 2 shows that both models confirmed that Busan city has the highest mortality and
the lowest mortality is for Seoul city.

Figure 3 shows that the mortality functions of the six cities have the same form using
the AST-SIM and the mortality functions of the six cities do not have the same form using
the NST-SIM. This is one of the advantages of NST-SIM over AST-SIM, it is more flexible
so it enables mortality functions to be different over locations.

To evaluate the performance of the models that this paper introduces, AST-SIM and
NST-SIM, predicted mean square error (PMSE) criterion is used to evaluate their predic-
tion performance, and mean square error (MSE) and R2 criteria are used to evaluate their
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Table 2: Spatial random effects estimates from the two introduced models (AST-SIM and
NST-SIM)

AST-SIM NST-SIM
Busan 26.4381 0.197
Seoul -17.1974 -0.071
Incheon -13.1910 -0.031
Daegu 10.7913 0.103
Daejeon -18.9257 -0.089
Gwangju -12.4628 -0.064
σ2
u 231.4672 0.001
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ĝ(Xα)
Seoul
Busan
Daegu
Incheon
Gwangju
Daejeon

Figure 3: Smoothed mortality functions (NST-SIM at the left and AST-SIM at the right) of
the cities and their confidence intervals at 95%.

appropriateness for describing the data. In terms of fitting the data, Table 3 shows that
NST-SIM is better than AST-SIM, it has higher R2 (0.945 vs 0.879), lower MSE (57.97
vs 180.19), and higher log likelihood (-236.54 vs -309.23). In terms of prediction, again
NST-SIM is better than AST-SIM, it has higher PMSE median. The sample sizes of the
data that is used in the evaluation are 2 and 6. In sum, NST-SIM performance is better
than AST-SIM in terms of describing the mortality data and prediction of the South Korea
mortality data.

5. Conclusion

This paper introduces two semiparametric models for modeling spatio-temporal correlated
data. In one of them, the spatial effect is an additive effect to the single index model
(AST-SIM) and in the other model, the spatial effect is a nonadditive effect (NST-SIM). An
algorithm is proposed that is based on the Expectation Maximization algorithm to estimate
the the two model parameters. It is found that the nonadditive model outperforms the
additive model. The advantages of the NST-SIM are: (1) it does not need restriction on
the coefficient parameters such as AST-SIM, (2) it does not enforce the mortality functions
to have the same form over locations, such as AST-SIM. For the real data, it is found that
NST-SIM is more appropriate to describe the mortality data of South Korea in terms of
fitting and prediction, and the two models showed that Busan city has the highest mortality
among the six cities.
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Table 3: Median of the predicted mean square error (PMSE), mean of the mean square
Error (MSE), the mean of log likelihood, and the mean of R2 values of 250 estimates of
fitting and prediction criteria of AST-SIM and NST-SIM under two cases: all data, and at
different sizes of evaluating data sets (n= 2and6).

Median Mean Mean Mean
PMSE log likelihood MSE R2

All data AST-SIM — -309.23 180.19 0.876
NST-SIM — -236.54 57.97 0.945

n=2 AST-SIM 227.70 -257.2 169.20 0.88
NST-SIM 184.60 -195.7 101.0 0.904

n=6 AST-SIM 284.2 -158.7 130.9 0.90
NST-SIM 829.3 -104.7 131.2 0.87
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