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Abstract  

When designing the dose escalation trials in oncology, it is recognized that the dose 
limiting toxicity (DLT) events may have different onset time frames. Focusing only on 
the events that are likely to occur within a short time period may result in missing some 
important late-onset events in the dose escalation consideration and thus under-estimating 
the overall toxicity level of each dose. On the other hand, suspending patient recruitment 
for a longer DLT observation window delays the dose finding stage of the drug 
development, especially when numerous dose steps are evaluated. Many existing dose 
escalation methods have been extended to accommodate the study designs with late-onset 
DLT events, with which the dose for a new patient or cohort can be recommended even 
before all existing patients finish their entire DLT observation window. However, these 
methods are not designed to integrate multiple categories of DLTs defined with different 
observation windows given their likely onset time frames. We propose to use a time-to-
event Bayesian piecewise proportional hazard (TITE-BPPH) model to handle the 
problem. We provide prior distribution specifications and the overall study design with 
the dose escalation rules derived based on the model inference. Simulation results are 
presented to demonstrate the operating characteristics of the method and compare it to the 
classical 3+3 with DLT status of all patients fully resolved before recruiting a new cohort 
as a benchmark, and also to an escalation with overdose control proportional hazard 
(EWOC-PH) method assuming constant hazard. The two model-based approaches reduce 
the trial duration and usually identify the maximum tolerated dose  more accurately than 
the 3+3. Also the TITE-BPPH method exhibits more consistent performance than the 
EWOC-PH method among different compositions of the early- and late-onset events and 
compares favorably with the later method in several scenarios.  
 

Key Words: Dose escalation, oncology, various DLT onset time frames, late-onset 
events, time-to-event data, piecewise proportional hazard model  
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1. Introduction 

 
First-in-Human (FIH) studies play an important role in oncology drug development by 
identifying the proper dose(s) for later phase investigations. To achieve this objective, a 
dose escalation is usually pursued. Traditionally, the development of cytotoxic therapies 
focuses on identifying the maximum tolerated dose (MTD) based on the safety profile of 
different doses of the drug, assuming monotonic relationships of the anti-cancer effect and 
toxicity level with the doses. In this case, the dose limiting toxicity (DLT) events defined 
in a predetermined DLT observation window are usually considered for making the dose 
escalation/de-escalation decisions, although the overall safety data should be examined as 
well. With the emergence of targeted and immuno- therapies, the drug activities reflected 
in pharmacodynamic parameters and/or (short-term) efficacy endpoints become important 
considerations in dose finding, on top of the toxicity signals. However, the safety profile 
of the drug remains critical in those studies.  
 
Regardless of the therapeutic classes and dose escalation methods, protecting patients’ 
safety in avoiding potential over-dosing is one of the top priorities of these trials. On the 
other hand, it is important to treat those cancer patients with an effective dose for ethical 
considerations. Balancing the two criteria along with a commonly limited sample size 
constitute unique challenges for the FIH studies in oncology. 
 
When identifying the MTD, the 3+3 method was widely used traditionally, although it has 
several major limitations that have been reported and acknowledged in the literature (Thall 
and Lee, 2003; Iasonos et al, 2008): 1) it lacks flexibility in handling different cohort sizes 
and/or targeted DLT probabilities; 2) it tends to treat larger portion of patients at sub-
therapeutic doses; and 3) importantly, it usually provides inferior performance due to the 
lack of solid statistical considerations in the dose escalation rules. Particularly, to illustrate 
the last point, assume the numbers of DLT events 𝑥𝑑  of the d-th dose follow a binomial 
distribution with the probability mass function 𝑏(𝑥𝑑; 𝑁𝑐 , 𝜃𝑑), where 𝑁𝑐 is the cohort size, 
𝜃𝑑  is the corresponding DLT probability, 𝑑 = 1, … , 𝐷 , and D is the total number of 
candidate dose steps in a pre-specified dose escalation path. Let 𝑑𝑀𝑇𝐷 represents the index 
of the true MTD. Then the probability for the 3+3 algorithm to identify the true MTD is 
∏ (𝑏(0; 𝑁𝑐 = 3, 𝜃𝑑) ∙ (1 + 𝑏(1; 𝑁𝑐 = 3, 𝜃𝑑)))

𝑑𝑀𝑇𝐷
𝑑=1 ∙ (1 − 𝑏(0; 𝑁𝑐 = 3, 𝜃𝑑𝑀𝑇𝐷+1) ∙ (1 +

𝑏(1; 𝑁𝑐 = 3, 𝜃𝑑𝑀𝑇𝐷+1))), for any 𝑑𝑀𝑇𝐷 < 𝐷, which is capped by the probability of the 

true MTD fulfilling the 3+3 escalation rule, 𝑏(0; 𝑁𝑐 = 3, 𝜃𝑑𝑀𝑇𝐷
) ∙ (1 + 𝑏(1; 𝑁𝑐 =

3, 𝜃𝑑𝑀𝑇𝐷
)), i.e., between 0.42 and 0.78 for a 𝜃𝑑𝑀𝑇𝐷

 between 1/3 and 1/6. And it can be 
seen that a flatter dose-toxicity curve would render the task even more challenging for the 
3+3 algorithm. 
 
New methodologies with rigorous statistical inference were proposed aiming at improving 
the MTD identification accuracy while providing more flexibilities to handle various 
scenarios in real-life clinical trials. One class of them are model-based methods, such as 
the continual reassessment method (CRM, O’Quigley,et al, 1990), the escalation with 
overdose control method (EWOC; Babb et al, 1998), and the Bayesian logistic regression 
method (Neuenschwander, Branson, and Gsponer, 2008), which are built on a parametric 
dose-toxicity relationship. The  continual re-assessment methods have been mentioned in 
several regulatory guidelines (CHMP, 2007; FDA, 2011, 2019). A previous survey (Love 
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et al., 2017) also suggests the methods are widely accepted and implemented by the 
pharmaceutical companies. 
 
Another class of model-assisted methods were invented with the dose escalation rules also 
derived from statistical inference, which were Likely inspired by the need of transparency 
and implementation convenience. They are able to explicitly enumerate dose escalation 
decisions at the trial design stage for all the different data of one dose level that can be 
observed during the trial conduct, and thus provide excellent transparency to the clinicians. 
Some examples are the modified target probability interval design (mTPI; Ji et al, 2013), 
the Bayesian optimal internal design (BOIN, Yuan et al, 2016), the keyboard design (Yan, 
Mandrekar, and Yuan, 2017), and the recent i3+3 design (Liu, Wang and Ji,  2020). Note 
that to achieve the desired feature of enumerating all scenarios, the possible scenarios need 
to be limited. The model-based methods need to use data from all previous doses, making 
it impractical to enumerate all the combinations. The model-assisted methods are built on 
the assumption that the toxicities of the different doses are independent (Lin and Yuan, 
2018), or they ignore such a relationship if it exists.    
 
However, these methods all face the challenge that some important categories of toxicity 
events tend to occur in longer time frames.  These time frames are typically longer than the 
traditional DLT observation window, e.g., one or two treatment cycles. In this case, it is 
important to apply the targeted DLT rate control to an extended DLT observation window. 
Otherwise, the selected dose is likely to exhibit higher than expected toxicity level in the 
late phase trials when the patients are followed for a longer time period, which may render 
an effective drug being intolerable, complicating and/or delaying the overall drug 
development process. The dilemma here is that the extension of the DLT observation 
window with the traditional dose escalation methods will also result in a delay, amount of 
which depends on the patient accrual rate, enrollment method, e.g., rolling or by cohort, 
and how many doses are to be evaluated.  
 
In order to address the challenge while protecting patients’ safety, dose escalation methods 
without completing all patients’ DLT observation window were proposed and evaluated, 
some of which are direct extensions of the aforementioned methods.  
 
A rolling six design (Skolnik et al, 2008) built on the 3+3 rules and allowing continuous 
patients enrollment was originally proposed for pediatric trials. The authors enumerated 
rules for all possible combinations of the numbers of all patients on the current dose level, 
observed DLT events among them, and patients not finishing the entire DLT observation 
window yet. Generally, the dose can be escalated/de-escalated when the corresponding 3+3 
rules can be confirmed even if there are still patients with data pending; otherwise, a new 
patient will be recruited at the current dose until six patients are enrolled and then the 
recruitment will be suspended. Simulation studies show the rolling six design has similar 
chance of identifying the true MTD as the 3+3 and similar numbers of patients experienced 
a DLT, but reduces the overall study duration despite using more patients.  
 
On the other hand, various model-based and model-assisted methods have been extended 
or proposed to deal with the late-onset DLTs and/or fast accrual. In general, three different 
ways have been used by these methods to handle the incomplete DLT observation window. 
First, several methods assign weights to patients. For instance, the time-to-event (TITE)-
CRM method (Cheung and Chappell, 2000) weight patients by the proportion of completed 
DLT observation window over the duration of the entire window, which results in a 
weighted likelihood function. The TITE-EWOC method (Mauguen et al., 2011) adopts a 
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similar idea. Lin and Yuan (2019) also use a weighting method to extend the class of 
model-assisted methods built on the binomial distribution. They formulate the weight as 
the conditional probability that a patient experience a DLT in the proportion of completed 
DLT observation window conditional on that a DLT will occur, and propose different 
weight schemes, representing different assumptions. A data-driven adaptive weight is also 
mentioned, although the transparency advantage of the method class is likely to be lost and 
the scheme is not recommended by the authors. A second way is to treat the DLT events 
potentially occurring during the incomplete part of the DLT observation window as 
missing data and use an imputation method. For instance, Yuan et al., (2018) use a single 
mean imputation to extend BOIN to its TITE version. The imputation is based on the DLT 
probability of the same dose, which is estimated among patients with their DLT status fully 
resolved, as well as an assumed time-to-event distribution. The RED design (Ivanova, 
Wang, and Foster, 2016) takes a relatively conservative imputation approach and assigns 
fractional toxicity to the patients with data pending. Some of these methods are compared 
to the 3+3 and usually report a reduced study duration, improved MTD identification 
accuracy but with moderate increase in the overdosing probability. A third way is to 
directly model the time-to-DLT events, as proposed by Tighiouart, Liu, and Rogatko 
(2014). They use a parametric proportional hazard model, based on which they propose the 
EWOC-proportional hazard (EWOC-PH) method. Although the authors note that various 
parametric models can be used, prior specifications are only provided for two parameters, 
which is used for a constant hazard model and in their simulation studies.  
 
Despite the rich arsenal of methods handling late-onset events, it remains an issue how to 
integrate the escalation rules based on both the early- and late-onset events, especially that 
there isn’t much prior information regarding which category would eventually dominate 
the DLT events that will be observed for the new drug, or both of them could occur with 
non-ignorable probabilities. Note that all of the aforementioned model-based and model-
assisted methods above except the EWOC-PH method inherently build their weighting or 
imputation method on an assumed distribution of the time-to-DLT event, determined a 

priori without using the actual time-to-event data. For instance, the commonly used weight 
by the proportion of completed DLT observation window assumes a uniform distribution 
within the observation window. When several categories of DLT events of different onset 
time frames need to be taken into consideration, different DLT observation windows could 
be specified for them, since clinically it does not make sense to count the early-onset events 
with an extended observation window. The investigators may want to evaluate dose for a 
new cohort when all the patients finish the early-onset DLT window. In this case, we argue 
that it is more reasonable to assume different DLT hazards at different periods of time and 
thus propose to use a piecewise model to take into account different categories of events. 
And thus we propose the TITE-piecewise proportional hazard (TITE-BPPH) dose 
escalation method.  
 
The subsequent content of the paper will be organized in the following way. Section 2 will 
describe the proposed dose escalation method in detail including the statistical model, prior 
distribution specifications, the study design with the dose escalation rules. Section 3 will 
present simulation studies to evaluate the operating characteristics of the proposed method 
and compare it to another two methods: the classical 3+3 design, which always complete 
the longest DLT observation window before recruiting a new cohort, as a benchmark, and 
the EWOC-PH method assuming constant hazard. We provide conclusions and discussions 
in Section 4. 
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2. The Dose Escalation Method 

 
We build on the idea of modeling time-to-DLT of Tighiouart, Liu, and Rogatko 
(2014) and extend the EWOC-PH method for the scenario of multiple DLT 
categories of different DLT observation windows. Suppose there are 𝐾 different 
categories of DLTs. The categories are determined by their likelihood of onset time 
frames, which is usually suggested by the clinicians. In order to control model 
complexity, DLTs expected to have similar onset time frames should be grouped 
into one category. However, only the number of categories of different observation 
windows is used by the model. It does not need to distinguish the DLT events by 
categories. For each category, the corresponding observation window is pre-
specified. It is assumed that the DLT status of each category should be fully 
resolved within the corresponding window. From another perspective, the DLT rate 
is only controlled with respect to the DLT observation windows for each category, 
which should be included in the DLT definitions.  
 

2.1 The Piecewise Proportional Hazard Model 

We consider the different categories of DLTs as competing risks and combine them 
together assuming a multi-state competing risk model (Kalbfleisch and Prentice, 
2002). 
 
Following the idea of Tighiouart, Liu, and Rogatko (2014), we assume the time-to-
event of each category follow a proportional hazard model, except that it is “cause-
specific”. Given the pre-specified DLT observation window for each category, the 
hazard of the specific category of DLTs is 0 by design outside the corresponding 
window. We use the follow cause-specific model for the k-th DLT category: 
 

ℎ𝑘(𝑡|𝑑, µ𝒌, β) = {
ℎ0,𝑘(𝑡|µ𝒌) ∙ exp (β ∙ (log(𝑑) − log (𝑑0))),   0 ≤ 𝑡 ≤ τ𝑘 

0,                                                                                     𝑡 > τ𝑘
,  

𝑘 = 1, . . , 𝐾,  
 
Where d denotes the dose, 𝑑 ∈ {𝑑1, … , 𝑑𝐷}, and [0,  τ𝑘] is DLT observation 
window for the k-th category of DLTs, 0 < τ1 < τ2 < ⋯ < τ𝐾, ℎ0,𝑘(𝑡|µ𝒌) 
represents “baseline” hazard of a minimum reference dose 𝑑0 within the 
observation window with unknown parameter(s) µ𝒌, and β is an unknown 
parameter capturing dose effect to the DLT hazard. The 𝑑0 usually takes a small 
value that is believed a priori to be definitely lower than the true MTD. This 
model setting facilitates the prior distribution specification. More details are 
provided in Section 2.2.  
 
Note that we assume the same dose effect across different DLT categories, and 
therefore, the “all-cause” hazard model is still a proportional hazard model: 
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ℎ(𝑡|𝑑) = ∑ ℎ𝑘(𝑡|𝑑, µ𝒌, β)

𝐾

𝑘=1

= {

ℎ0,1
∗ (𝑡|µ𝟎,𝟏

∗ ) ∙ exp (β ∙ (log(𝑑) − log (𝑑0))),                                 0 ≤ 𝑡 ≤ τ1,

ℎ0,𝑘
∗ (𝑡|µ𝟎,𝒌

∗ ) ∙ exp(β ∙ (log(𝑑) − log(𝑑0))) ,   τ𝑘−1 < 𝑡 ≤ τ𝑘 , 𝑘 = 2, … , 𝐾,

0,                                                                                                                    𝑡 > τ𝐾 .

 

 

(1) 

 
 
where ℎ0,𝑘

∗ (𝑡|µ0,𝑘
∗ ) = ∑ ℎ0,𝑗(𝑡|µ𝒋)𝑘

𝑗=1  is the all-cause baseline hazard of 𝑑0. Note 
that for the dose escalation, we are interested in the overall rate of all categories of 
DLTs. In other words, we are interested in the all-cause hazard rather than the 
cause-specific ones. Therefore, we propose to directly model the all-cause hazard. 
Specifically, we propose to apply a (different) constant baseline hazard for each 
of the time intervals [0, 𝜏1]  and  (𝜏𝑘−1, 𝜏𝑘]′s for 𝑘 > 1, and argue that this 
proposal not only addresses the specific design of multiple DLT observation 
windows, but also strives a balance between model simplicity and the flexibility 
of allowing inconstant hazard over time for the late-onset categories of DLTs. On 
one hand, in many cases the DLTs are only expected to occur in a portion of the 
patients. If we assume a mixture model of patients will or will not develop a DLT 
and a constant hazard for the patients that will develop DLT, the overall hazard 
will decrease over time. On the other hand, delayed toxicities are unlikely to 
occur in a short time period, e.g., within one treatment cycle, indicating a lower 
hazard during that time. Therefore, a constant hazard assumption may be violated 
in different directions. The impact of the misspecification could be more profound 
when the observation window is long and/or the recruitment is fast, such that by 
the time of recruiting new patient(s), many existing patients are still at their early 
observation period, resulting in over- or under-estimation of the true toxicity 
level. Without the need of identifying any cause-specific hazard but only focusing 
on an all-cause hazard for each time interval, a piecewise constant hazard model 
takes a data driven approach and can adapt to the different scenarios. The 
piecewise constant model generated from (1) is 
 

ℎ(𝑡|𝑑)

= {

µ0,1
∗ ∙ exp (β ∙ (log(𝑑) − log (𝑑0))),                                 0 ≤ 𝑡 ≤ τ1,

µ0,𝑘
∗ ∙ exp(β ∙ (log(𝑑) − log(𝑑0))) ,   τ𝑘−1 < 𝑡 ≤ τ𝑘, 𝑘 = 2, … , 𝐾,

0,                                                                                                      𝑡 > τ𝐾.

 
(2) 

 
 
With this model, only one more parameter is needed for each additional category of DLT 
events. For the Bayesian inference, we propose a simple way to give vague priors for the 
parameters when there is limited information about the DLT rates by each time point.  
 
At any dose escalation decision point of the trial, assume there are 𝑛 patients enrolled in 
the study. Let   𝑇 = {𝑡𝑖, 𝑖 = 1, … , 𝑛}, where 𝑡𝑖 is the time to a DLT event or time to 
censoring of Patient i, and ᴆ= {𝛿𝑖 , 𝑖 = 1, … , 𝑛}, where 𝛿𝑖 equals 1 when a DLT event is 
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observed for Patient i at 𝑡𝑖 and otherwise equals 0.  For the ease of notation, we let τ0 ≡
0. Then the likelihood function corresponding to (2) is 
 

𝐿 (β, µ0,1
∗ ,  … , µ0,𝐾

∗ |𝑇, ᴆ) = ∏ µ0,𝑘(𝑡𝑖)
∗ 𝛿𝑖𝑛

𝑖=1 ∙ ex p (− (∑ µ0,𝑗
∗ ∙ (τ𝑗 − τ𝑗−1) ∙𝑘(𝑡𝑖)−1

𝑗=1

I(𝑘(𝑡𝑖) > 1) + µ0,𝑘(𝑡𝑖)
∗ ∙ (𝑡𝑖 − τ𝑘(𝑡𝑖)−1)))  

 
Where 𝑘(𝑡𝑖) is the time interval that 𝑡𝑖 falls into.  
 
Similar as Tighiouart, Liu, and Rogatko (2014), we can re-parameterize the piecewise 
constant hazard model for the ease of prior specification: we will parameterize the model 
by the true MTD, 𝛶, and the probabilities 𝜌𝑘 of any DLT occurring within [0,  τ𝑘] for 𝑑0: 

𝛶 = 𝑑0 ∙ (−
log(1−𝜃)

∑ µ0,𝑘
∗ ∙(𝜏𝑘−𝜏𝑘−1)𝐾

𝑘=1
)

1

β
, 

 
𝜌𝑘 = 1 − exp (− ∑ µ0,𝑗

∗ ∙ (𝜏𝑗 − 𝜏𝑗−1)𝑘
𝑗=1 )  , k = 1, … , K 

 
Where 𝜃 is the targeted DLT rate by the end of the longest DLT observation window 𝜏𝐾 
corresponding to the true MTD, e.g., 0.3. Let 𝜌0 ≡ 0. Then we have,  
 
 

µ0,𝑘
∗ = − 

1

τ𝑘−τ𝑘−1
log (

1 −𝜌𝑘

1−𝜌𝑘−1

) , 𝑘 = 1, … , 𝐾, and 

 

β =
1

log (𝛶/𝑑0)
∙ 𝑙𝑜𝑔 (

log(1−𝜃)

log (1−𝜌𝐾)
).                                         

 

(3) 

 
2.2 Prior Distributions 

The prior distribution for 𝛶 should reflect the prior belief of where the true MTD is 
located. The relevant information may be obtained from the pre-clinical and other 
relevant data that was used to determine all the candidate dose levels, including the 
minimum and maximum doses in the pre-specified dose escalation steps. Tighiouart, Liu, 
and Rogatko (2014) use a uniform distribution between the minimum and maximum 
candidate doses, 𝑑1 and 𝑑D. Then by Bayes rule, the  posterior probability of 𝛶 ≥ 𝑑D is 
always 0, and the probability of 𝛶 ≤ 𝑑1 is always 1, no matter what data are 
observed during the trial. Since the dose escalation criteria are based on the posterior 
probabilities as specified in Section 2.3, 𝑑D cannot be recommended and 𝑑1 will not be 
deemed as overly toxic. From this perspective, it can be considered as an informative 
prior distribution. Depending on how 𝑑1 and 𝑑D are determined, we can instead 
determine the prior by specifying prior probabilities for 𝑑1 and 𝑑D to be higher than the 
true MTD, 𝑝1 and 𝑝2, based on a uniform distribution. Then  

𝑙𝑜𝑔(𝛶)~𝑢(log(𝑑1) −
𝑝1

𝑝2 − 𝑝1
log (

𝑑D

𝑑1
) , log(𝑑1) +

1 − 𝑝1

𝑝2 − 𝑝1
log (

𝑑D

𝑑1
)) 

 
Which will reduce to 𝑢(log(𝑑1) , log(𝑑D)) when 𝑝1 = 0 and 𝑝2 = 1. 
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It is then natural to set 𝑑0 to be the lower bound of the distribution of the MTD , and use 
a 𝑢(0, 𝜃) as prior distribution for 𝜌𝐾. For 𝜌1, …, 𝜌𝐾−1, in order to apply the constraint 
that 𝜌1 ≤ 𝜌2 ≤ ⋯ ≤ 𝜌𝐾, we give prior to the ratios 𝜌k−1

𝜌k
 ~ 𝑏𝑒𝑡𝑎(0.5,  0.5), 𝑘 = 2, … , 𝐾. 

If prior knowledge is available, other 𝑑0 and the prior distributions of its DLT 
probabilities can be used. It can be seen from (3) that as long as the prior probability of 
𝑑0 larger than 𝛶 is 0 and the upper bound of the prior distribution of 𝜌𝐾 is no higher than 
𝜃, the probability of β > 0 is 1, forcing a monotonically increasing dose-toxicity 
relationship. This could be important for a TITE design, where patients on lower dose 
could complete longer observation period with an DLT observed while the patients on 
higher dose are still under observation. The prior distributions for 𝜌𝑘’s are independent 
from that of β.  
 
2.3 The Model-Based Dose Escalation and the Trial Design 

Based on the likelihood function in Section 2.1 and the prior distributions in Section 
2.2, we could use an MCMC algorithm to sample from the corresponding posterior 
distribution of the unknown model parameters µ0,𝑘

∗ ’s and β, based on which we 
could obtain the posterior distribution of the overall DLT probability of any dose, 
𝑝𝑟𝑜𝑏(𝐷𝐿𝑇|τ𝐾, 𝑑) = 1 − s(τ𝐾|𝑑), where s(.) is the survival function. Then the dose 
escalation rule is applied to the posterior distribution of 𝑝𝑟𝑜𝑏(𝐷𝐿𝑇|τ𝐾, 𝑑): 

 

prob( 𝑝𝑟𝑜𝑏(𝐷𝐿𝑇|τ𝐾, 𝑑)> 𝜃 | 𝑇, ᴆ) < a feasibility bound (4) 
 

Next we describe the study design. The design we describe here recruits patients by 
cohorts of size 𝑁𝑐. It also apply to rolling enrollment by setting 𝑁𝑐 = 1. A waiting 
period is pre-specified since the last patient is enrolled in the study before new 
patient(s) can be recruited.  Usually the period is selected among 𝜏𝑘’s. For instance, 
when there are two categories of DLTs, namely the early- and late-onset events, we 
can wait till all the patients finish the early-onset observation window.  
 
It is important to only include patients that have good compliance to the study 
treatment for the safety evaluation of the doses. Although the proposed method can 
make use of data from patients that discontinue study treatment early due to reasons 
other than safety, and consider them censored at the time of treatment 
discontinuation, we do not recommend including patients with a short treatment 
duration, such as those that do not even finish treatment for the early-onset event 
observation window.  
 
By the time of each cohort finish the pre-specified waiting time, the BPPH model 
is fitted with all the data available, and Criterion (4) is evaluated for each candidate 
dose with respect to a feasibility bound, e.g., 0.5. The highest dose that meets the 
criterion will be recommended for the new cohort. The process will continue until 
a pre-specified maximum number of patients are met. Before recommending the 
final dose, the patients are observed till all the patients have finished all their DLT 
observation windows, and the statistical model is fitted again to recommend the 
MTD, under the constraint that the dose must have been evaluated for at least one 
cohort.  
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In the simulation studies, we apply a comparable rule as 3+3 to stop trial when the 
dose has been evaluated for two cohorts and is recommended again. In this case, 
the patient recruitment will be suspended and all patients will be followed to the 
end of their observation windows. If the same dose or another dose previously 
evaluated for two cohorts is recommended, then the currently recommended dose 
will be the identified MTD and the trial will be stopped. Otherwise, the trial will 
continue to recruit new patients to evaluate the recommended dose. The results 
show reasonable operating characteristics of such a design with a cohort size of 3 
and not allowing dose skipping.  
 

3. Simulation Studies 

3.1 Simulation Settings 

We examine the operating characteristics of the TITE-BPPH method in various 
scenarios and compared it to the 3+3 and the EWOC-PH methods.  
 
We simulate six doses and two categories of DLT events: the early-onset events 
have a 4-week observation window, while a 12-week window is specified for the 
late-onset ones. The early- and late-onset events are simulated independently. The 
true early-and late-onset DLT rate for each dose are provided in Table 1.  We 
have a targeted overall DLT rate of 0.3. The different dose-DLT rate profiles are 
used to evaluate the methods when different doses are the true MTD. They also 
deviate from the proportional hazard model used by the EWOC-PH and TITE-
BPPH methods. Then in order to compare the two model-based methods that 
handled hazard over time differently, for each true MTD, we further simulate 
three scenarios, with the early-onset event rates of the true MTD being 0.01, 
0.163, and 0.29, respectively, with the overall DLT rate all being fixed at 0.3. The 
0.163 corresponds to the same early- and late-onset event rates. Given the pre-
specified DLT rates, the time to early- and late-onset DLT events are simulated 
from exponential distributions. Patients are recruited with a cohort size of 3. 
Patients’ arrival time is simulated using a homogeneous Poisson process with an 
average accrual rate of two patients every four weeks. The patient enrollment is 
suspended after the three patients have been recruited, until new patients can be 
recruited per the dose escalation method as specified in Section 3.1.1 below. 
 
Although the data used for the different methods cannot be exactly the same since 
they may recommend different doses during the escalation process, in order to 
facilitate the comparison, we randomly generated beforehand simulation seeds for 
patients’ arrival time and different seeds for the time-to-event data for a set of  
cohorts under each dose in each simulation. The different methods share the same 
set of seeds, so that the patient arrival time will be the same, and as long as the 
methods recommend the same doses, even if in different orders, the time-to-event 
data will also be the same.   
 
3.1.1 The implementation of the dose escalation methods 

The TITE-BPPH method will recruit new cohort when the last patient of the 
current cohort completes the 4-week early-onset event observation window. At 
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each decision making time point, the highest dose with its posterior median DLT 
probability < 0.3 will be recommended. However, in order to make a fair 
comparison with 3+3, we do not allow dose skipping during the escalation 
process. A trial stopping rule described at the end of Section 2.3 is used. The 
piecewise proportional hazard model assumes different hazards for the [0, 4] and 
the (4, 12] weeks intervals. The prior distribution for the logarithm of true MTD is 
specified assuming it is a uniform distribution and the lowest and highest dose 
steps have 0.15 and 0.85 overdosing probabilities, respectively. This result in a 
𝑢(log (10), log (1094)). The prior distribution for a minimum reference dose of 
9mg is 𝑢(0, 0.3). The 9mg is chosen to be close to but smaller than the lower 
bound of the prior MTD distribution. The prior distribution for the ratio of the 
DLT rates by Week 4 vs. by Week 12 is 𝑏𝑒𝑡𝑎(0.5, 0.5).  
 
For the 3+3 method, we always wait for every patient in the current cohort to 
finish the entire 12-week observation window before recruiting the new cohort. 
Therefore, it usually has access to more data compared to the other two methods 
during the dose escalation process. 
 
The EWOC-PH method adopts the same dose escalation and trial stopping rules, 
and similar prior settings as the TITE-BPPH method, except that a constant 
overall hazard is assumed during the entire 12-week observation window, and 
therefore there is no need to specify prior distributions for the ratio of the DLT 
rates by the different time points.  
 
3.1.2 The operating characteristics 

The following operating characteristics are examined to evaluate and compare the 
different methods: 
 Average study duration (in weeks), 
 Average study duration when the true MTD was found (in weeks), 
 Average number of patients recruited, 
 Average number of patients recruited when the true MTD was found, 
 Percentage of identifying the true MTD, 
 Percentage of recommending a dose higher than the true MTD (overdosing), 
 Percentage of patients treated with a dose higher than the true MTD during the 

trial, 
 Percentage of recommending a dose lower than the true MTD (underdosing). 
 
3.2 Simulation Results 

Simulation results are shown in Figures 1-8 and discussed in the following sections. For 
each true MTD, we take the average of the operating characteristics of the 3+3 method 
among the three scenarios with different early-onset DLT rates, since as excepted, these 
results are very similar. 
 

3.2.1 Study duration and number of patients recruited 

Figure 1 shows the average study duration. It can be clearly seen that the overall study 
duration is significantly reduced by the EWOC-PH and TITE-BPPH methods, especially 
for the Scenarios S7-S15, where the true MTD is at the higher dose steps.  The average 
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reduction in study duration ranges from 10 to 50 weeks. The study durations using the 
EWOC-PH and TITE-BPPH methods are very similar. The study duration among the 
scenarios of different early-onset DLT rates but with the same MTD is also similar. We 
further look at the average study duration when the true MTD was found (Figure 2). 
Similar trend is observed, although the differences between 3+3 and the other two 
methods are slighted larger. 
 
Although the EWOC-PH and TITE-BPPH methods reduce the overall study duration, 
they do tend to recruit more patients than the 3+3 (Figure 3). It is partially due to the fact 
that they have lower underdosing probabilities than the 3+3 (Figure 8). When we look the 
at the numbers of patients when the true MTD is found, the numbers are closer among the 
methods (Figure 4). Between EWOC-PH and TITE-BPPH, the numbers are very similar.  
 
3.2.2 The MTD identification accuracy 

Figure 5 clearly shows that the EWOC-PH and TITE-BPPH methods provide higher 
accuracy in identifying the true MTD than the 3+3 for all the simulation scenarios. 
However, on average, the improvement of the EWOC-PH method over the 3+3 among 
the scenarios with different true MTDs is reduced from 19% to 16% to 12% when the 
early-onset DLT rate increases from 0.01 to 0.163 to 0.29, while remarkably, the average 
improvement of the TITE-BPPH is always around 19% across different early-onset DLT 
rates, which demonstrates the superiority of the proposed method with the flexibility of 
dealing with different combinations of early- and late-onset DLT rates. The performance 
of the TITE-BPPH is consistent across different early-onset DLT rates, and its superiority 
over the EWOC-PH method appear to be more obvious when the advantage of both of 
them over 3+3 is more profound.  
 
3.2.3 Overdosing and underdosing probabilities 

Figures 6 and 7 indicate that both of the model-based methods increase the likelihood of 
overdosing.  Excluding Scenarios 12-15, where the true MTD is the highest dose, the 
average overdosing percentage of the EWOC-PH method is 7.3% higher than that of the 
3+3 method and the number is 9.6% for the TITE-BPPH method. Note that on average 
the percentage of patients treated with a dose larger than the true MTD during the trial is 
only slighted increased by the two methods (1.8% and 3.6%, respectively). The increased 
overdosing probability compared to the 3+3 is also seen in other TITE methods (Yuan et 
al., 2018; Lin and Yuan, 2019). It is argued that the overdosing probability should be 
balanced with precision for identifying the MTD and the chance of underdosing. From 
Figure 8, on average the EWOC-PH method reduces the percentage of underdosing by 
21% from the 3+3, and TITE-BPPH reduces 27%. Clearly the overall MTD 
misspecification percentage is lowest for the TITE-BPPH method, followed by the 
EWOC-PH and 3+3 methods. 
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Table 1: The True DLT Rate Profile of the Simulation Scenarios 

True 

MTD 

(mg) 

Scenario 

Rate of early-

onset DLT events 

of the true MTD 

at Week 4 

Rate of late-onset 

DLT events of 

the true MTD at 

Week 12 

Overall DLT 

rate of the true 

MTD at Week 12 

Early-onset DLT event rate by Week 4 
Overall DLT event rate by Week 

12 

20 60 120 240 360 540 20 60 120 240 360 540 

60 
S1 0.01 0.29 0.3 <0.01 0.01 0.02 0.03 0.05 0.06 0.12 0.3 0.5 0.7 0.85 0.9 
S2 0.163 0.163 0.3 0.06 0.16 0.29 0.45 0.61 0.68 0.12 0.3 0.5 0.7 0.85 0.9 
S3 0.29 0.01 0.3 0.12 0.29 0.49 0.69 0.84 0.89 0.12 0.3 0.5 0.7 0.85 0.9 

120 
S4 0.01 0.29 0.3 <0.01 <0.01 0.01 0.02 0.03 0.05 0.05 0.16 0.3 0.52 0.67 0.81 
S5 0.163 0.163 0.3 0.03 0.08 0.16 0.31 0.42 0.56 0.05 0.16 0.3 0.52 0.67 0.81 
S6 0.29 0.01 0.3 0.05 0.15 0.29 0.51 0.66 0.80 0.05 0.16 0.3 0.52 0.67 0.81 

240 
S7 0.01 0.29 0.3 <0.01 <0.01 <0.01 0.01 0.02 0.03 0.02 0.07 0.14 0.3 0.45 0.6 
S8 0.163 0.163 0.3 0.01 0.04 0.07 0.16 0.26 0.37 0.02 0.07 0.14 0.3 0.45 0.6 
S9 0.29 0.01 0.3 0.02 0.07 0.13 0.29 0.44 0.59 0.02 0.07 0.14 0.3 0.45 0.6 

360 
S10 0.01 0.29 0.3 <0.01 <0.01 <0.01 <0.01 0.01 0.02 0.01 0.02 0.05 0.16 0.3 0.5 
S11 0.163 0.163 0.3 <0.01 0.01 0.03 0.08 0.16 0.29 0.01 0.02 0.05 0.16 0.3 0.5 
S12 0.29 0.01 0.3 <0.01 0.02 0.05 0.15 0.29 0.49 0.01 0.02 0.05 0.16 0.3 0.5 

540 
S13 0.01 0.29 0.3 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.01 0.02 0.03 0.04 0.1 0.3 
S14 0.163 0.163 0.3 <0.01 0.01 0.02 0.02 0.05 0.16 0.01 0.02 0.03 0.04 0.1 0.3 
S15 0.29 0.01 0.3 <0.01 0.02 0.03 0.04 0.10 0.29 0.01 0.02 0.03 0.04 0.1 0.3 
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Figure 1: Simulation results: average study duration (in weeks)  
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Figure 2: Simulation results: Average study duration when the true MTD was 
found (in weeks) 
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Figure 3: Simulation results: Average number of patients recruited 
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Figure 4: Simulation results: Average number of patients recruited when the true 
MTD was found 
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Figure 5: Simulation results: Percentage of identifying the true MTD 
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Figure 6: Simulation results: Percentage of recommending a dose higher than the 
true MTD (overdosing) 
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Figure 7: Simulation results: Percentage of patients treated with a dose higher 
than the true MTD during the trial 
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Figure 8: Simulation results: Percentage of recommending a dose lower than the 
true MTD (underdosing) 
 

4. Conclusion and Discussion 

 
In this paper, we propose a TITE-BPPH method with the essence of using a 
Bayesian piecewise proportional hazard model to support dose escalation decision 
when there are multiple categories of DLTs with different observation windows. 
In simulations studies, the proposed method demonstrates consistent performance 
across scenarios of different early- and late-onset DLT rates. It always 
outperforms the 3+3 in identifying the true MTD and also tends to perform better 
than a EWOC-PH method assumed constant hazard over time, when the overall 
DLT hazard over time deviates from the constant hazard assumption. Both of the 
methods reduce the overall study duration compared to a classical 3+3 method 
that requires all patients to complete the DLT observation window before 
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recruiting new patients. Both methods tend to increase the overdosing probability, 
which can be better controlled by adopting a more stringent feasibility bound in 
(4) than 0.5, if overdosing outweighs underdosing when balancing the two risks. 
 
As mentioned in the introduction, various model-assisted methods are readily 
available to handle late-onset toxicities, although the methods are not designed to 
handle the specific situation of combining the different DLT categories without 
prior knowledge of their relative rates. Also we note that for these methods with 
some patients not completing the entire DLT observation window, although all 
dose escalation and de-escalation scenarios can still can laid out, they become 
more complicated, as the missing observation period needs to be taken into the 
decision rules. The underlying statistical models may still need to be explained in 
order to fully appreciate the rules, which, otherwise, may be regarded to be 
arbitrary. The proposed method falls into the model-based category, for which it 
is usually impractical to tabulate all scenarios especially with the TITE-type 
design. On the other hand, it fit a dose-toxicity curve, one benefit of which is that 
it can be used to suggest if an optional dose should be explored between two 
standard doses.   
 
The proposed design is flexible in the waiting time. It can be made variable at 
different escalation steps and extended when a given dose on the escalation path 
start to be evaluated. This method can be used when the first doses in the escalation 
path are considered relatively safe. 
 
Finally, we note that the method can be naturally extended for combo-therapy dose 
escalation, which will be described in a separate article.  
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