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Abstract

Smoothing of data helps in understanding the data-generating process, but, by its nature, it of-

ten obscures interesting observations. In time series data, one kind of interesting observations is

a changepoint, that is, a point in the time series at which the data-generating process undergoes a

change. The change may be in the general trend of the data, or it may be a change in volatility.

These kinds of changes are of particular interest in economic and financial data, so it is impor-

tant that a smoothing method not obscure the changepoints. The nonparametric alternating trends

smoothing (ATS) technique is based on explicit identification of changepoints in the trends of the

means in a time series. ATS performs favorably in changepoint detection when compared to other

nonparametric smoothing methods such as moving averages. A disadvantage of the ATS approach,

however, is that the underlying model assumes that changing trends change in sign.
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1. Introduction: Smoothing Time Series

We consider the problem of smoothing a discrete time series, x1, x2, . . .. Smoothing of the

time series yields a related time series x̃1, x̃2, . . . that has less noise; it is smoother.

We smooth time series data for several different reasons. We may do retrospective

smoothing of a given set of time series data in order to understand the data-generating pro-

cess. If a parametric model such as an autoregressive integrated moving average (ARIMA)

or a generalized autoregressive conditional heteroscedasticity (GARCH) fits a given set of

time series well, the parameters in the fitted model provide information about autocorrela-

tions, about trends in the data, and something about the variance-covariance structure. Non-

parametric smoothing generally does not yield a model with parameters that are directly

interpretable, but nonparametric retrospective smoothing may identify patterns in trends

in the data that indicate important properties of the time series. Retrospective smoothing

is done on a given dataset; each observation in the dataset is already known. While ret-

rospective smoothing may provide useful information about the nature of the time series,

in applications, we are generally not interested in the past. Smoothing of time series is

generally sequential; that is, the smoothing process proceeds forward in time. Two reasons

for smoothing time series are to forecast future values and to identify changepoints in the

data-generating process.

1.1 Forecasting

Forecasting is an important objective of time series analysis. Forecasting presupposes some

regularity in the time series. Given a fitted parametric model such as an ARIMA model,

forecasting is trivial. The assumptions underlying the model determine the procedure,

which only involves plugging data into the fitted model.

A nonparametric analysis does not yield a simple model that can be used in forecasting.

The model underlying a nonparametric approach is a more general statement about the data
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generating process, possibly only that the data have the same mean over time, or that the

data have a linear trend in time.

Given data from a time series, x1, . . . , xt−1, in forecasting at time t, we are interested

in the values xt, and possibly xt+1, xt+2, . . .. Sequentially smoothing the time series from

time t forward, the forecasted values are x̃t, x̃t+1, x̃t+2, . . ..
In this paper, we occasionally refer to the “best forecast”. In this we are not using pre-

cise statistical language, but even with a definite model, we are motivated by the statistical

concepts of unbiased and minimum variance.

1.2 Changepoints

Changepoints are points in time at which characteristics of the data-generating process

changes, or the model itself changes. The exact meaning of a changepoint depends on the

model. Some models explicitly include changepoints. The knots in a spline model, for

example, may be considered to be changepoints. In an ATS model, for example, the points

at which the trends alternate are changepoints. In other cases, changepoints are those points

at which the underlying model changes. This may be a fundamental change in the nature of

the model, or it may be changes in specific aspects of the same general model (for example,

changing the parameter values in an ARIMA model).

2. Nonparametric Smoothing of Time Series

Smoothing presupposes some regularity in the time series. Each point in the time series

may be considered to be a random variable, and regularity of the series may be because

some aspects of the distributions of the random variables are the same, or at least the same

locally. Another possible aspect of regularity within a time series is that the distribution of

the random variable at a given point in time may be conditional on the realizations of vari-

ables at previous points in time. As we indicated above, we will not consider retrospective

smoothing where all the data are available; rather, we will focus on sequential smoothing

methods, that is, methods that use data up to the current point in time and predict future

values. We will also consider the use of these smoothing methods for identifying points at

which the underlying data-generating process undergoes a change.

2.1 Time Series Models

There are various models that are useful in expressing the behavior of time series, both the

individual observations and their relationship to each other.

2.1.1 Nonparametric Models

A nonparametric model is a general model whose main objective is to smooth the data or

to provide predictions.

In nonparametric analysis, we generally do not assume specific distributions, such as

normal or Cauchy, but we may make assumptions about specific aspects, such as the mean

or median. We may assume, for example, that the means of the random variables consti-

tuting the time series are the same, or at least are the same locally; that is, for example, the

mean of the random variable at time t, Xt, is the same as the mean of Xt−1. Under that

assumption, given the observed values xt−1 and xt, the smoothed values of the two, x̃t−1

and x̃t, should be close together, and without further assumptions about characteristics of

the data-generating process, there is no reason for one smoothed value to be larger than the

other.
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The general form of a nonparametric model for a time series model is

xt ≈ f(xt−1, xt−2, . . .), (1)

where the function f just expresses some relationships that characterize the data-generating

process. It may be the case that xt does not depend explicitly on previous values, only that

their distributional properties are related. If there are no relationships among the points

in the time series, or there are no distributional properties in common, we cannot proceed

with a meaningful statistical analysis. The function f in the model above often cannot be

written as some simple equation involving xt−1, xt−2, . . ., and we do not attempt to express

the functional relationship f completely.

2.1.2 White Noise and Related Time Series

A process {wt} that is a sequence of random variables with mean 0, constant finite variance,

and 0 autocorrelations at all lags is called white noise. The 0 autocorrelation condition can

be stated as

Cor(wt, wt+h) = 0 for h = 1, 2, . . . (2)

A special type of white noise is Gaussian white noise, defined as white noise in which

the random variables have a normal (Gaussian) distribution.

The main differences from one white noise process to another is the variance, V(wt) =

σ2
w .

A white noise process can serve as an approximate model for the returns of a time series

of prices of financial assets, (Pt − Pt−1)/Pt−1.

The variance, or the standard deviation, is important in modeling financial time series

(the standard deviation is called the volatility or the risk.) An important type of changepoint

is a point at which the volatility changes significantly, (of course, in practice, the volatility

seems to undergo small changes constantly).

Because white noise processes include no relationships among the terms in a time se-

ries, they are rarely useful models for observed time series. Another use of white noise is

in modeling the error term in time series models, for example reexpressing equation (1) as

xt = f(xt−1, xt−2, . . .) + wt. (3)

2.1.3 Random Walk

A simple model of a time series is the random walk, in which the model function f above

is just xt−1,

xt = φ(xt−1) + wt, (4)

and {wt} is a white noise.

The mean of a random variable following a random walk process starting at x0 is

E(xt) = E(x0) + E

(

t
∑

i=1

wi

)

= x0; (5)

that is, the unconditional mean of a random walk is constant, depending only on x0. The

variance of a random walk variable, on the other hand, is

V(xt) = V(x0) + V

(

t
∑

i=1

wi

)
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= 0 +
t
∑

i=1

V(wi)

= tσ2
w,

that is, it depends on t and in fact, grows linearly as t grows.

A random walk is sometimes used as an approximate model for the movement of asset

prices. (The random walk hypothesis basically states that a random walk is an adequate

model of stock prices.)

Given data . . . , xt−2, xt−1, the best forecast under a random walk model for xt, xt+1 . . .

is just xt−1, xt−1 . . ..
A changepoint is a point at which the model changes, so for a random walk, it may be

a point at which the variance of the white noise changes, or it may be due to a jump, or, in

financial parlance, a “gap”, where xt, instead of being xt−1 + wt is δ + xt−1 + wt.

2.1.4 Random Walk with Drift

A variation is a random walk with drift, given by

xt = δ + xt−1 + wt, (6)

where, again, {wt} is a white noise.

Given a random walk with drift δ, and the data . . . , xt−2, xt−1, the conditional expec-

tation of Xt is The has E(xt) = tδ + x0.

E(Xt|xt−1, xt−2, . . .) = E(Xt|xt−1) = δ + xt−1. (7)

(The process is Markovian.)

The mean of the random walk with drift is dependent on the time.

Many financial analysts, without explicitly mentioning the model, use an approximate

random walk with drift model. The “trendlines” drawn by technical analysts are line seg-

ments with a slope of δ.

Given data . . . , xt−2, xt−1, the best forecast under a random walk model with drift for

xt, xt+1 . . . is just

xt−1 + δ̂, xt−1 + 2δ̂ . . . ,

where δ̂ is a “best” estimate of δ.

A changepoint is a point at which the model changes, so for a random walk with drift,

it may be a point at which the variance of the white noise changes, or it may be due to a

break in the trend where δ changes in value. A type of changepoint important in financial

analysis is one where the sign of δ changes, a “top” or a “bottom”.

2.2 Global Smoothing: Fitting Lines and Curves

A simple nonparametric model for a time series is that all observations come from distri-

butions with the same mean or median. In this model the “best” smoothed series is just the

constant series equal to the mean or the median of all available observations.

Another simple nonparametric model is that all observations come from distributions

with a mean or median that is linear in time. Although this may seem grossly oversimpli-

fied, many technical stock analysts use a variation of this model over selected time periods.

In realistic versions of these models, they are limited to restricted time periods, which

obviously results in the question of where are the changepoints.
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A regression line is an example of global smoothing that fits a trend,

x̃t = a + bt, (8)

where appropriate values of a and b may be determined by least squares regression.

A global model of course could be restricted to a given time regime, and another global

model could be used in a subsequent regime.

2.3 Local Smoothing: Moving Averages and Kernel Smoothing in Time Series

Given data from a time series, x1, . . . , xt−1, we may reasonably assume that the mean of the

random variable Xt is close to the mean of the more recent observations. Hence, we may

choose the “locally” smoothed value of Xt, x̃t, as the mean of some previous observations.

We let h be a positive integer with h ≤ t − 1, and let x̃t be the sample mean

x̃t =
1

h

h
∑

i=1

xt−i. (9)

This smoother is a moving average with a window of length h. For a time series in which

the unit of time is a day, this is an “h-day moving average”. In smoothing daily financial

time series such as stock prices, a 50-day moving average or a 200-day moving average is

common. The larger is h, the more slowly the moving average changes from one day to the

next.

2.3.1 Weighted Moving Averages

At time t, instead of averaging all previous h values equally, it may be better to use a

weighted average in which values closer in time are weighted more heavily. We have a

smoother of the form

x̂t =
1

h

t−1
∑

i=1

xt−iK

(

t − i

h

)

, (10)

where h is a positive number less than t. The function K(·), which must be nonnegative, is

called a kernel function and the smoother is a time series kernel smoother.

Kernel functions and kernel-based smoothing methods are used in many areas of non-

parametric data analysis. Retrospective smoothing of time series is similar to other types

of nonparametric smoothing, but the more practical sequential smoothing of a time series

at any given point can only depend on values before that point in time. Note that the sum-

mation includes all observations up to time t.

Most kernels used in smoothing are positive functions symmetric about 0 and they

integrate to 1. Some common kernels are rectangular, triangular, and Gaussian (normal).

The symmetric rectangular kernel, for example, is

KT(t) =

{

1 if |t| ≤ 1/2
0 otherwise;

the triangular kernel is

KT(t) =

{

2 − |t| if |t| ≤ 1/2
0 otherwise;

and the Gaussian kernel is

KG(t) =
1√
2π

e−x2/2.
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The kernel used in sequential time series smoothing, however, must be one-sided. A

kernel for use in time series can be formed from a symmetric kernel by folding the function

about 0. To preserve the area under the curve, either the width or the height must be

changed.

A moving average smoother corresponds to a kernel smoother in which the kernel is a

folded rectangular kernel; that is,

KFR(t) =

{

1 if − 1 ≤ t ≤ 0
0 otherwise.

A folded version of any symmetric kernel can be used. A folded triangular kernel, for

example, is

KFT(t) =

{

1 + t if − 1 ≤ t ≤ 0
0 otherwise.

A folded kernel with no lower bound allows all observations in a time series prior to

time t to be included in the fit of xt.

2.3.2 Exponentially Weighted Moving Average

A variation of a moving average is called an exponentially weighted moving average (EWMA).

An EWMA is a weighted average of the current price (in financial applications, the previ-

ous day’s price) and the previous EWMA. If at time t (with t ≥ 2), the most recent price is

pt−1, and the proportion assigned to the current price is α, then

EWMAt = αtpt−1 + (1− αt)EWMAt−1, for t ≥ 2, (11)

with the weighting factor αt often taken as 2/t, and

EWMA1 = p1.

2.3.3 Forecasting Using Moving Averages

A forecast based on a moving average is just the moving average using data up to that point,

either the actual observed data, or for farther beyond the current time, observed data plus

other forecasts.

2.3.4 Changepoints Identified by Moving Averages

When a changepoint occurs, a moving average may or may not reflect the change.

Change in Mean

If the changepoint is because of a change in mean of the time series, a moving average

with a smaller window width will reflect the change better than one with a larger window

width. A moving average that places more weight on recent values will also better reflect

the change. Of course, in any case, the issue is whether the change in mean is significant

with respect to the overall variability in the time series.
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Change in Variance

If the changepoint is because of a change in variance of the time series, a moving average

also becomes more variable, but it does not directly indicate the change. If the time series

is differenced, and a moving average is formed on the time series of the absolute values

of the differences, the change in variance will be manifested by a change in the mean

of the absolute values of the differences. As mentioned above, a moving average with a

smaller window width will reflect the change better than one with a larger window width,

and a moving average that places more weight on recent values will also better reflect the

change. Also, as mentioned above, in any case, the issue is whether the change in the mean

of the absolute differences is significant.

Change in Linear Trend

Trend lines are the basic elements of many patterns in the technical analysis of stock prices,

and so changepoints that involve a change in trend are of particular interest. The differenced

series represents the trend from one point to the next. A trend in the time series would yield

a sequence of differences that are similar. As up trend would yield a differenced time

series of positive values, and a down trend would yield a differenced time series of negative

values.

If the changepoint is because of a change in the linear trend of the time series, then a

moving average of the differenced time series will reflect that change. A moving average

with a smaller window width will reflect the change better than one with a larger window

width, and a moving average that places more weight on recent values will also better

reflect the change.

Another way that moving averages can be used to identify changes in trends is by

comparing two moving averages with different windows.

Changepoints in trends can also be identified by crossovers of moving averages over

varying windows, although the detection of the changepoint occurs beyond the actual

changepoint.

2.4 Local Smoothing: Trends in Time Series

In many applications of time series, the objective is to identify and model trends. Although

interesting trends may be curvilinear (“parabolic” in the parlance of financial analysts),

here, for simplicity, we will focus on linear trends. A change in the slope of a trendline

is a changepoint, and hence, smoothing based trends is linked with the identification of

changepoints.

Retrospectively, trends can often be identified by visual inspection of a plotted time

series, and following retrospective smoothing, trends may be even more obvious visually.

Our interest is in the current and future trends.

2.4.1 Differencing to Detect Trends

Analysis of the first-order integrated series can identify linear trends because if the differ-

ences of first order of lag 1 are constant, then the time series has a linear trend.

In a time series that has linear trends over various subregions, the integrated series is

constant over each subregion. Changepoints can be identified as the points at which the

constant value of the integrated series changes.
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2.4.2 Alternating Linear Trends and Changepoints

A method called alternating trends smoothing, or ATS, identifies changepoints in a time

series using alternating (up and down) linear trends. ATS uses a smoothing parameter, h, ,

which specifies the step size within which to look for changepoints.

ATS provides changepoints and their corresponding trendlines. A trendline can be used

to forecast values within a given regime.

ATS has been used in the past to detect specific patterns in financial data such as a

Head and Shoulders pattern, post-pattern trends, and volatility measures before and after a

pattern (Shine, Gentle and Perry, 2015,2017).

The algorithm for ATS is given below. It is reprinted by permission from Gentle and

Wilson (2018).

Alternating Trends Smoothing (h)

1. Set d = 1 (changepoint counter)

2. While (more data in first time step)

(a) for i = 1, 2, . . . , m, where m = h if h additional data available or else m is

last data item:

input xi;

(b) set bd = 1; cd = x1

(c) determine j+, j−, xj+, xj− such that

xj+ = maxx1, . . . , xh and xj− = minx1, . . . , xh

(d) set s = (xk − xi)/(k − i) and r = sign(s)

(e) while r = 0, continue inputting more data; stop with error at end of data

3. Set j = i (index of last datum in previous step); and set d = d + 1

4. While (more data)

(a) for i = j + 1, j + 2, . . . , j + m, where m = h if h additional data available or

else j + m is last data item:

input xi;

i. while (sign(s) = r)

A. set k = min(i + h, n)

B. if (k = i) break

C. set s = (xk − xj)/(k − j)

D. set j = k

ii. determine j+ such that rxj+ is the maximum of rxj+1, . . . , rxj+m

iii. set bd = j+; and set cd = xj+

iv. set d = d + 1; set j = j+; and set r = −r

(b) set bd = j+; and set cd = xj+
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Within a given regime, a regression trendline, such as in equation (8), could be fit to the

data between the changepoints defining the regime.

The trendline

xt = a + bt

may be fitted by least squares, but least absolute values yield a more robust fit. The least

absolute values or L1 determines a and b so as to minimize

n
∑

i=1

|xi − a + bi|.

3. Examples

3.1 Comparing Different Smoothing Approaches

Figure 1 shows the daily closing values of Intel stock for first three quarters of 2017, along

with smoothing estimates from moving averages, an EMWA, and the ATS algorithm.

The values themselves are in black. The light green curve is a 20-day moving average,

and the dark blue curve is a 40-day moving average, the purple curve is an exponentially

weighted moving average, and the red alternating lines are the results from the ATS algo-

rithm, using a value of h = n/10 where n is the total number of points.

Intel Stock Prices 1/1/2017−9/30/2017

Time

x

0 50 100 150

3
4

3
5

3
6

3
7

3
8

MA20

MA40

EWMA

ATS

Figure 1: Comparison of different smoothing approaches

This example shows the precision of the ATS algorithm in identifying changepoints.

We have shown the optional graphic produced by ATS, but the algorithm also lists the

actual changepoints xi, yi in its output, as below. The moving average and EWMA curves

are not precise in identifying changepoints and require manual interpretation.

ATS(x,addtoplot=TRUE,col="red")

[,1] [,2]

[1,] 1 36.60
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[2,] 18 37.98

[3,] 54 35.04

[4,] 80 37.43

[5,] 126 33.46

[6,] 147 36.64

[7,] 165 34.65

[8,] 188 38.08

3.2 ATS with different step sizes

The h (step size) parameter in ATS can be adjusted to look for short-term or long-term

trends. Figure 2 shows the ATS algorithm used on randomly generated data with a N (0, 25)
distribution. The red lines show the algorithm with a step size of 5, and the blue lines show

the algorithm with a step size of 25. With a smaller step size, more changepoints are found.

Random Normal Data, Standard Deviation of 5

Time

x

0 10 20 30 40 50

−
1
0

0
1
0

2
0

ATS stepsize 5

ATS stepsize 25

Figure 2: ATS with different step sizes

3.3 Two Random Walks with Two Different Drifts

Figure 3 shows ATS applied to 4 different random walk models. In these models, the first

50 points follow a random walk with drift δ1 and the next 100 points follow a random walk

with drift δ2. For a small δ ATS does not pick up the changepoint, as in the upper left graph,

but for larger δs ATS does identify the changepoint, as in the other three graphs.

4. Conclusions and Future Directions

Based on preliminary experiments, the ATS algorithm demonstrates promise as a nonpara-

metric smoothing approach for identifying changepoints in time series data.

In our ongoing work, we are generating data sets and evaluating our method on these

data sets. This will allow us to better determine how well this model works and what

improvements might be necessary.
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σ1= 5; σ2= 5; δ1= 0.5; δ2= −0.5

Time

x

0 50 100 150

−
4

0
−

2
0

0
2

0
4

0

X

σ1= 5; σ2= 5; δ1= 1; δ2= −1

Time

x

0 50 100 150

−
2

0
0

2
0

4
0

6
0

X

σ1= 5; σ2= 5; δ1= 2; δ2= −1

Time

x

0 50 100 150

0
5

0
1

0
0 X

σ1= 5; σ2= 5; δ1= 2; δ2= −2

Time

x

0 50 100 150

−
5

0
0

5
0

1
0

0
1

5
0 X

Figure 3: Changepoints in Two Simulated Random Walks with Drifts

A key feature we are working on is the ability to identify a changepoint with ATS

without a change in the slope. Currently the lines are alternating in slope, but we want

to allow a changepoint to be identified with the two slopes (before and after) retaining

the same sign. We also are developing a metric to determine the ”strength” of an ATS

changepoint, to determine which changepoints are ”strongest” or ”best”. We also have

done preliminary work on ”bounding lines” around the data for each segment identified by

ATS, and hope to develop that work further.
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