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Abstract
Spectral Density estimation is a well known problem for a directly observed time series. The

literature on spectral density estimation for a right-censored time series is next to none. A data-
driven spectral density estimator for a right censored time series is suggested. This estimator adapts
to unknown smoothness of the spectral density and unknown distribution of a censored random
variable. Asymptotic upper bound of the mean integrated squared error (MISE) of the proposed
estimator is obtained. The estimator is studied via simulated examples.
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1. Introduction

Spectral density provides a useful mathematical formulation to describe a time series in
frequency domain. Spectral analysis is very useful to identify seasonal components or
detect cyclical patterns. Assuming the variable of interest Xt is zero-mean and weekly
stationery, the spectral density is denfined on the support [−π, π] as

g(λ) := (2π)−1
∞∑

j=−∞
γj cos(λj)

= (2π)−1γ0 + π−1
∞∑
j=1

γj cos(λj), (1)

where γj := E[XtXt+j ] is the auto-covariance function.
There is a vast literature on spectral density estimation when data is fully observable.

Most nonparametric procedures use the smoothed periodogram. Early reference on s-
moothing periodogram can be traced back to Parzen (1961). Common smoothing tech-
niques can be categorized into two parts. The first approach is to directly smooth the data
(λj , I(λj)) or the log-periodogram (λj , ln I(λj)). For example, Wahba (1980) used a s-
moothing spline with a smoothing or bandwidth parameter to fit the log-periodogram. The
parameter and the degree of smoothing is chosen to minimize the MISE. Brillinger (2001)
mentioned in chapter 5 a large selection of earlier references back to the 1940s. The second
one is based on the quasi-Likelihood proposed by Whittle (1957)

L(g|X1, ..., Xn) :=
v∏
j=1

1

g(λj)
e−Uj/g(λj), (2)

where (U1, ..., Uv) forms the joint distribution and v = b(n−1)/2c due to the symmetry of
the periodogram. It is often referred to as the Whittle Likelihood. This likelihood involves
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the spectral density g directly, which is an advantage over using the true likelihood (Choud-
huri et al., 2004). Pawitan and O’sullivan (1994) introduced a penalized maximum likeli-
hood estimator (MLE), which maximizing the Whittle likelihood with a roughness penalty
term. Fan and Kreutzberger (1998) suggested a local polynomial technique to fit Whittle
likelihood. They also compared performance of the Whittle likelihood based approach and
the directly smoothing approach, and claimed that the former is better due to smaller MISE.
Besides, some bayesian approaches, based on the Whittle likelihood, have been developed
and discussed. It can be traced back to Carter and Kohn (1997), who used the Whittle like-
lihood to obtain a pseudo-posterior distribution of spectral density. Choudhuri et al. (2004)
proposed a Bernstein polynomials based prior and obtained a pseudo-posterior distribution
by updating the prior through Whittle likelihood, with emphasizes on consistency result-
s for the pseudo-posterior. Cadonna et al. (2017) developed another Bayesian approach
based on a local Gaussian mixture approximation to the Whittle likelihood.

However, not much has been done in estimating the spectral density for right censored
time series. Censoring creates extra complications in estimating spectral density because
the underlying time series is no longer directly available. Furthermore, we devoted to
random censoring where censoring effect is controlled by random variables, which is even
more challenging. We will need additional procedure to recover the spectral density. The
article is organized as follows. Section 2 explains the problem in detail and proposed
a universal non-parametric estimator based on series expansion. Section 3 presented an
asymptotic upper bound for estimator’s MISE. Section 4 provides a simulation study of
this new estimator.

2. Methodology

This section will focus on the methodology of non-parametric esitmation of a spectral den-
sity for a randomly right censored time series. First, let us describe the setup of our prob-
lem. Assume the variable of interest Xt is a stationary time series which is not directly
observed. Instead, a pair {Vt,∆t} is observed. In this pair, Vt := min(Xt, Ct) is the ob-
served time series and ∆t := I(Xt ≤ Ct) is an indicator function. ∆t = 0 if Xt is right
censored and 1 otherwise. The censoring variable Ct is not observed but assumed to be
identically independently distributed (i.i.d.) realizations of a random variable C imposing
right censoring and independent with Xt. Our goal is to estimate the spectral density of
unobserved Xt based on the observed pair {Vt,∆t}.

2.1 E-estimation

The form of (1) makes it natural to use a series expansion approach. That equation is indeed
a Fourier series expansion where γj =

∫ π
−π g(λ) cos(λj)dx. Due to the form of the spectral

density, cos(λj) is naturally chosen to be the basis function and autocovariance functions
γj also serve as Fourier coefficients of g(λ).

The spectral density is an infinite sum but we can approximate it with a partial sum

gJ(λ) = (2π)−1γ0 + π−1
J∑
j=1

γj cos(λj). (3)

The main task is to estimate γj and choose a cutoff J , and then get an estimate of spec-
tral density ĝ(λ). The methodology, E-estimation, was proposed by Efromovich (2018)
and can be adapted in context of spectral density estimate. It consists of three steps:
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1. Use series expansion (1) and suggest a sample mean estimator γ̂j . Calculate a sample
variance estimator v̂jn of the variance V(γ̂j) = vjn.

2. The E-estimator is

ĝ(λ) = (2π)−1
Ĵ∑

j=−Ĵ

γ̂jI(γ̂2j > cTH v̂jn) cos(λj), (4)

where

Ĵ = argmin0≤J≤Jn

J∑
j=0

(
2v̂jn − γ̂2j

)
. (5)

3. g(λ) is a non-negative function, so we need to use a non-negative projection (3.1.15)
of Efromovich (1999) on (4).

In that 3-step procedure, cTH is a generic constant and Jn is the maximum cutoff con-
sidered which needs to be specified later. For almost all functions, some Fourier coefficients
are very small or zero, so the indicator function used in (4) is used to filter out small co-
efficients, or in our context, the sample auto-covariances γ̂j . In equation (5), minimizing∑J

j=0

(
2v̂jn − γ̂2j

)
can be proved equivalent to minimizing the mean integrated squared

error (MISE)

MISE(ĝ, g) := E
{∫ π

−π
[ĝ(λ)− g(λ)]2

}
. (6)

Readers are referred to Efromovich (2018) for more thorough and complete explanation
of this method.

Step 2 and step 3 are the same for all spectral density estimation. The only difference
is in step 1: how to propose a sample mean estimator and derive its variance. This is al-
so the key step in constructing such a non-parametric estimator. For regular time series
without missing or censored observations, we can use the familiar sample auto-covariance
γ̂j = (n − j)−1

∑n−j
l=1 XlXl+j . With censored time series, however, we need some addi-

tional modifications. Under our setup of censoring, we suggest the following sample mean
estimator

γ̂Xj = (n− j)−1
n−j∑
l=1

VlVl+j∆l∆l+j

GC(Vl)GC(Vl+j)
. (7)

If the survival function of censoring GC is unknown, we can estimate it by

ĜC(v) = exp(−ĤC(v)), (8)

where ĤC(v) is estimated cumulative hazard

ĤC(v) = n−1
n∑
i=1

(1−∆i)I(Vi ≤ v)

ĜVl(Vi)
, (9)

and ĜVl(v) = n−1
∑n

s=1 I(Vs ≥ v). With equation (7), (8), and (9), we expressed γ̂Xj
only using information from the observed time series data.
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After auto-covariance, we need to suggest a data-driven cutoff. Following Efromovich
(2014), we set the maximum cutoff Jn = db−1n ln(n)e where bn = 1/ ln(ln(n)) and intro-
duce a statistic

F̂ (J) := π−1
Jn∑

j=J+1

(γ̂2j − γ̂2j+Jn), (10)

which is a sufficiently accurate estimate of F (J) := π−1
∑Jn

j=J+1 γ
2
j , and it is asymp-

totically equal to the integrated squared bias of the spectral density estimate. Next, we
set the data-driven cutoff Ĵ to be the smallest integer satisfying bn ln(n) ≤ Ĵ ≤ Jn and
F̂ (Ĵ) < bn ln(n)n−1.

3. Asymptotic Upper Bound

Before presenting asymptotic upper bound of MISE, the mixing theory is worth mention-
ing. This article deals with weekly dependent time series and many well known results for
independent random variables do not hold anymore. Mixing theorem can help us explore
the dependence properties. On this theorem, there is a vast literature which dates back to
Rosenblatt (1956), who introduced the strong mixing coefficient or α-mixing coefficient.
Using the notations from Dedecker et al. (2007) and Merlevède et al. (2009), for any two
σ-algebra F and G, the α-mixing coefficient is defined as

α(F ,G) := sup
F∈F ,G∈G

|P(F ∩G)− P(F )P(G)|. (11)

Let {Xt, t ≥ 1} be a stationary time series and we can write the strong mixing coeffi-
cient corresponding to Xt as

αX(s) := sup
k≥1

α(σ(Xt, t ≤ k), σ(Xt, t ≥ k + s)). (12)

Xt is called strongly mixing or α-mixing if αX(s)→ 0 as s→∞. Besides Rosenblat-
t’s α-mixing, a great variety of other mixing coefficients were proposed. The monograph by
Dedecker et al. (2007) provides a huge collection of these mixing coefficients, as well as a
rich amount of theoretical results and examples. Some mixing theorems in those references
can be used to derive the upper bound.

Now we can prsent the results on estimation of the spectral density for randomly cen-
sored time series.

Assumption 1. {Xt} is Gaussian zero-mean and strictly stationary time series, and E[Xk
t ] <

∞ for k = 8.

Assumption 2. E
∣∣∣ X8

1

[GC(X1)]7

∣∣∣2+δ <∞ for some δ > 0.

Theorem 1. Under assumption 1 and assumption 2, the spectral density estimate

ĝX(λ, Ĵ) := (2π)−1
Ĵ∑

j=−Ĵ

γ̂Xj cos(λj) (13)
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has the following upper bound for its MISE:

MISE(ĝX(λ, Ĵ), gX(λ)) ≤ (2πnr)−1 ln(n)d∗(gX)(1 + on(1)), (14)

where

d∗(gX) :=

{
E
[

V 2∆

(GC(V ))2

]}2

+ 2

∞∑
j=1

(γXj )2 (15)

4. Simulation

This section carries out a simulation study of our proposed estimator. We will consider
the following experiment. Sample sizes n are set to be 100, 300, and 500. The underlying
time series Xt is ARMA(1,1) with MA to be 0.4 and AR to be 0.3, 0.5, and 0.7. Then
we simulated the censoring variable C from N(2.1,1), N(0.8,1), and N(0,1) to impose light
(6%), medium (25%) and heavy (50%) right censoring, respectively.

For each combination of model and sample size, we obtain 1000 replications of ob-
served pairs {Vt,∆t} and try to recover the real spectral density. Then we compare our
estimator with Naive and Oracle estimators. Naive estimator treats Vt as Xt, ignoring the
censoring effect. Oracle estimator sees the hidden Xt and use Xt to estimate real spectral
density which also serves as the best achivable one for our estimator. We presented here
two graphs as examples.
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Both figures are generated with AR=0.5, MA=0.4, n=100. Figure 1 is under medium
censoring and figure 2 is under heavy censoring. I do not show the case of light censoring
since all three estimators perform almost the same. Under medium censoring, Naive esti-
mator (blue) cannot keep up with the performance of our E-estimator (green). The curve of
E-estimator is still smooth and close to the underlying spectral density. Even if we increase
the censoring level to an average of 50%, the situation remains the same. The Oracle (red)
and E-estimator are sufficiently accurate while the Naive one is almost a horizontal line.

Next we simulated data with random ARMA coefficients. We increased the replica-
tions of simulation to 2000. AR and MA coefficients will be chosen randomly in each
replication. Three models were considered in our experiment: ARMA(1,1) under Normal
censoring, ARMA(1,1) under Laplace censoring, and ARMA(3,3) under Normal censor-
ing. This article takes the first model to illustrate. For ARMA(1,1) model, MA and AR
coefficients are randomly chosen from the set (0.2, 0.4, 0.6, 0.8). MISEs are generated for
different estimators to make comparisons.

Table 1 shows MISEs of different estimators under various scenarios with the excep-
tion of last line. The last line is the ratio of MISEs of E-estimator and Naive estimator.
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n=100 n=300 n=500
Light Medium Heavy Light Medium Heavy Light Medium Heavy

E-Est 0.0289 0.0385 0.0448 0.0164 0.0236 0.0326 0.0136 0.0206 0.0261
Naive 0.0326 0.0471 0.0650 0.0157 0.0334 0.0545 0.0139 0.0330 0.0502
Oracle 0.0278 0.0261 0.0261 0.0128 0.0123 0.0129 0.0105 0.0104 0.0087
E-Est/Nai 0.8974 0.8176 0.6891 1.0448 0.7083 0.5979 0.9746 0.6245 0.5203

Table 1: MISE, ARMA(1,1), Normal Censoring, Random AR and MA

Almost all such ratios are less than 1, meaning the E-estimator has smaller MISE and thus
better than the Naive one. Thus, our estimator is superior to the Naive for ARMA(1,1) with
Normal censoring. Besides, we also considered and tested other two models which was
mentioned above. All simulation results confirm the conclusion and show that our estima-
tor adapts to unknown smoothness of the spectral density and unknown distribution of a
censored random variable.
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