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Abstract

High-resolution, bias-corrected climate data is necessary for climate impact studies
at local scales. Using gridded historical data for bias correction is convenient but
may contain biases resulting from interpolation. Long-term, quality-controlled station
data better represent true climatological measurements, but as the spatial distribution
of climate stations over the landscape is irregular, station data are challenging to
incorporate into downscaling and bias-correction approaches. The use of station data
in creating full-coverage, bias-corrected climate products is not well-represented in
the literature. In this study, we developed and compared six novel methodologies
using station data to produce daily, high-resolution, bias-corrected climate products
with maximum temperature simulations from a regional climate model (RCM). The
methods differed with respect to interpolation methods and bias-correction techniques.
We quantified performance of six methods with the root mean square error (RMSE) and
Perkins skill score (PSS) and used two ANOVA models to analyze how performance
metrics varied among methods. We temporally validated the six methods using two
calibration sets of observed station data (1980-1989 and 1980-2014) and two testing sets
of RCM data (1990-2014 and 1980-2014). RMSE for all methods varied considerably
throughout the year and was larger in cold seasons, while PSS was more consistent.
Quantile-mapping bias-correction techniques performed best in improving PSS, while
simple linear transfer functions performed best in improving RMSE. For the 1980-
1989 station calibration dataset, simple quantile-mapping techniques outperformed
empirical quantile mapping (EQM) in improving PSS; conversely, when the calibration
and testing sets represented the same time period, EQM performed best in improving
PSS. No one method simultaneously improved RMSE and PSS; however, the simple
quantile-mapping based techniques perform as well or better than more sophisticated
methods such as empirical quantile mapping.

Key Words: bias-correction, downscaling, high-resolution, maximum temperature,
kriging, inverse distance weighting

1 Introduction
High-resolution (≤1km) gridded climate products with both fine spatial and tem-

poral resolutions crucial to assessing the effects of a changing climate on social and
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ecological systems at local scales (Flint and Flint, 2012; Holden et al., 2011; Franklin
et al., 2013). Furthermore, such products are also important for climate impact assess-
ments, agricultural modeling (Hansen, 2005), and ecological studies (Holden et al.,
2011; Fridley, 2009). General circulation models (GCMs) provide useful information
about larger-scale climate, but their spatial resolution (100 - 450km) is too coarse to
gain insight into localized responses to climate change (Ekström et al., 2015; Lafon
et al., 2013) and require substantial computation power. In addition, GCMs simplify
climate processes through parameterization schemes, resulting in the unrealistic repre-
sentation of some climate processes (Maraun et al., 2017). Consequently, output from
GCMs is characterized by a non-trivial degree of bias (Lafon et al., 2013; Cannon et al.,
2020; Maraun et al., 2017). Typically, post-processing steps such as downscaling and
bias-correction are applied to climate model output prior to its use in applications or
other downstream models. In this study, we develop six novel methodologies for gener-
ating daily, high-resolution, bias-corrected climate products. We apply the methods to
maximum temperature simulations over a region northeastern United States.

In the downscaling process, output generated by climate models is transformed
from a coarse to finer resolution. The two main types of downscaling are dynamical and
statistical. In dynamical downscaling, a regional climate model (RCM) is forced by a
GCM or reanalysis data. An RCM simulates climate processes at a finer resolutions
than forcing data by incorporating fine-scale landscape and atmospheric processes
(Ekström et al., 2015; Caldwell et al., 2009; Leung et al., 2003; Wilby et al., 2004).
RCMs are computationally intensive, although they typically require less processing
power than GCMs (Feser et al., 2011; Giorgi et al., 2009). Statistical downscaling,
in contrast, involves establishing statistical relationships between coarse-scale and
fine-scale climate variables, often leveraging local, observed phenomena or attributes
(Wilby et al., 2004). Statistical downscaling is computationally efficient and can be
applied to both precipitation and temperature (Mearns et al., 2003; Fang et al., 2015).
In contrast to dynamical downscaling, a substantial amount of observational data
is necessary to derive statistical relationships necessary for statistical downscaling
(Wilby et al., 2004). Approaches for statistical downscaling include regression-based
methods (Ekström et al., 2015), principal components analysis (Huth, 1999; Kettle
and Thompson, 2004), weather classification schemes, and weather generators (Wilby
et al., 2004). Recently, machine learning methods such as artificial neural networks
(Schoof and Pryor, 2001), deep learning (Vandal et al., 2017), and random forests
(Hutengs and Vohland, 2016) have been used for downscaling both temperature and
precipitation variables. Downscaling is especially important for accurate representation
of temperature in regions characterized by topographically varied terrain (Hanssen-
Bauer et al., 2005; Holden et al., 2011).

High-resolution climate data can also be generated by applying statistical down-
scaling to RCM output (Haas and Pinto, 2012). While this combination of dynamical
and statistical downscaling is complex, it is an effective workflow for generating high-
resolution climate data simulations (Engen-Skaugen, 2007; Winter et al., 2016; Han
et al., 2019).

Bias-correction is another post-processing procedure that can correct the mean,
variance, and higher moments of climatological variables (Lafon et al., 2013; Cannon
et al., 2020). Generally, bias-correction methods can be classified into four categories:
1) linear scaling (Lenderink et al., 2007; Hay et al., 2000); 2) nonlinear scaling (Leander
and Buishand, 2007); 3) distribution mapping (Piani et al., 2010); and 4) empirical
(distribution-free) quantile mapping (Teutschbein and Seibert, 2012; Cannon et al.,
2015; Wood et al., 2002). The techniques differ in their ability to correct higher-
order moments of simulated climatological variables. For bias-correcting temperature
variables, linear scaling and empirical quantile mapping (EQM) are often used (Maurer
and Duffy, 2005; Hayhoe et al., 2008; Wood et al., 2004; Bennett et al., 2014; Fang
et al., 2015). EQM, a sophisticated technique, can correct the mean, variance, and
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higher moments of temperature and precipitation variables (Fang et al., 2015; Themeßl
et al., 2011). Linear scaling is a simple technique in which the difference between
monthly mean observed and simulated data is added to simulated data. Despite its
simplicity, it is effective for bias-correcting temperature variables (Shrestha et al., 2017;
Lenderink et al., 2007). Most bias-correction methods assume stationarity of model
errors over time (Roberts et al., 2019), and sufficient observational data is necessary to
derive robust transfer functions.

Gridded, observational climate products (e.g. Livneh, (Livneh et al., 2015); Daymet,
(Thornton et al., 2012); and PRISM, (Daly et al., 2000)) are often used for bias-
correction due to their extensive spatial and temporal coverage. However, the interpo-
lation algorithms used to create gridded climate products can introduce bias (Behnke
et al., 2016) and additional uncertainty when used for bias-correcting climate model
output (Walton and Hall, 2018). In particular, (Behnke et al., 2016) found that in
the United States, gridded observational products (including Livneh, Daymet, and
PRISM) generally exhibited a negative bias for maximum daily temperature and that
biases were exacerbated in topographically complex regions. Similarly, Bishop and
Beier (2013) found that in the Northeastern US, PRISM data products (Daly et al.,
2000) demonstrated a cold bias for mean monthly temperature that increased at higher
elevations.

A valuable alternative to gridded observational data products are long-term, curated
station data, such as data from the Global Historical Climate Network (National Oceanic
and Atmospheric Administration, 2018). Station data represent direct climatolgical
measurements and have extensive global availability (Peterson and Vose, 1997; Durre
et al., 2010). The use of station data, rather than gridded observational products, for
bias-correction could potentially reduce uncertainty in bias-correction. Station data are
often used to validate the accuracy bias-corrected climate model output but can also
be effectual for bias-correcting output from climate models. For instance, Mejia et al.
(2012) downscaled monthly temperature and precipitation simulations from an RCM to
climate stations and bias-corrected the simulated climate variables with station data,
resulting in appreciable improvement in the accuracy of a hydrologic model. Poggio and
Gimona (2015) showed that incorporating station data in a geostatstical downscaling and
bias-correction approach resulted in full-coverage, high-resolution monthly temperature
and precipitation data that better captured the complex topographical features of their
study area.

Despite the advantages of station data, its use in constructing full-coverage, bias-
corrected, downscaled climate data, especially at high spatial and temporal resolutions,
is limited. The density and spatial distribution of climate are often irregular, especially
in mountainous and high-elevation regions (Daly et al., 2000). Another challenge is
that for constructing full-coverage, bias-corrected climate datasets, it is not sufficient to
bias-correct only at station locations, as bias-correction must be applied at locations
where stations are not present. There is a need for methods in which station data is used
to create full coverage, high-resolution bias-corrected climate data.

In this study, we leverage station data to develop and compare the performance of
six downscaling and bias-correction methods for constructing high-resolution (1km),
daily gridded datasets. The 1-km resolution was chosen based on spatial resolution
requirements for local climate impact assessments (Wang et al., 2012; Winter et al.,
2016). All of the six methods are specifically developed to address the challenge
of creating full-coverage, high-resolution, bias-corrected climate products using only
station data. We apply the methods to daily RCM simulations of 2-meter maximum
air temperature (TMAX) over a region in the northeastern United States. Methods
differ mainly with respect to bias-correction and interpolation techniques. We validate
the methods using two calibration time periods, and we assess the ability of methods
to bias-correct in a spatially coherent manner by applying a spatial cross-validation
procedure.
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This paper aims to address the following questions:
1. How do the different bias-correction techniques and interpolation methods affect

performance metrics (root-mean square error and Perkins skill score)?
2. Does performance among methods vary by month, and do performance metrics

improve when elevation lapse rates are used during downscaling?
3. Is any one method particularly well-suited for high-resolution downscaling and

bias correction?
The article is organized as follows: in section 2, we describe the study area, station

and WRF data, and downscaling and bias-correction methods. In section 2, we also
provide specific justifications for each of the six methods and describe validation of the
methods. In section 3, we present our results, and in section 4 we discuss our results
and provide conclusions.

2 Methods

2.1 Study area and data
The study area, the Lake Champlain Basin, consists of parts of Vermont, New Hamp-

shire, eastern New York and southern Quebec, Canada (Figure 1). Four watersheds
drain into Lake Champlain. The Green Mountains, Adirondack Mountains, and White
Mountains span portions of Vermont, New York, and New Hampshire, respectively
(Winter et al., 2016). Elevations in the study area range from 30 to 1500 m above mean
sea level (MSL). The region is topographically varied; the northern portion of the study
region is relatively flat, while mountain ranges cover the remaining portion.

Daily historical TMAX simulations over 1980-2014 were generated by the Ad-
vanced Weather and Research Forecasting model (WRF) version 3.9.1 (Skamarock
et al., 2019). WRF is a widely used as both a regional climate model numerical weather
prediction system (Skamarock et al., 2019). Initial and lateral boundary conditions
were obtained from ERA-Interim, produced by the European Centre for Medium-Range
Weather Forecasts (ECMWF). ERA-interim has an approximate spatial resolution of 80
km (Dee et al., 2011) and was downscaled to 4 km using three one-way nests (36 km,
12 km, 4km) (Huang et al., 2020). Only output from the inner, 4km resolution domain
was used in this study. Specific physics settings for WRF are shown in in Table 7. A
total of 4387 WRF grid cells covered the study area.

Historical daily weather station data was obtained from the Global Historical Cli-
mate Network (GHCND) (https://www.ncdc.noaa.gov/cdo-web/search?datasetid=GHCND).
GHCND data records are adjusted to account for changes in instrumentation and other
anomalies (National Oceanic and Atmospheric Administration, 2018; Peterson and
Vose, 1997). We retained only those stations with at least 70% complete records over
the historical time period 1980-2014 (73 stations). In this study, WRF simulations were
downscaled to a 1km grid; elevation estimates at each 1km grid cell were derived by
interpolating elevation from a 30m digital elevation model (DEM) (U.S. Geological
Survey, 2019). Elevation values were interpolated to the 1km grid using inverse distance
weighting (IDW).

2.2 Description of downscaling and bias-correction methods
Elevation has a major effect on climatological variables such as maximum tempera-

ture (Winter et al., 2016; Barry, 1992). Therefore, during downscaling, it is important
to account for lapse rates, especially in topographically rich regions, such as the Lake
Champlain Basin (Winter et al., 2016). However, we found that when elevation was
incorporated (using lapse rates) during downscaling, it became difficult to disentangle
the effects of downscaling with those of bias-correction. Therefore, all methods were
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implemented with and without the use of lapse rates or an elevation covariate (depend-
ing on the interpolation method). When elevation was not accounted for, neither lapse
rates nor the inclusion of an elevation covariate were included during interpolation of
WRF data. In this study, we will regard steps involving the interpolation of WRF to
station locations or the fine-scale grid as downscaling.

2.2.1 Empirical quantile mapping-based methods: EQM_krig, EQM_-
IDW, and EQM_grid

One way station data can be leveraged for bias-correcting WRF simulations in
locations where stations are not present is to 1) interpolate WRF simulations to station
locations, 2) bias-correct interpolated WRF simulations at station locations using
empirical quantile mapping (EQM), and 3) interpolate bias-corrected WRF simulations
at station locations to the fine-scale grid. This general workflow is implemented in
EQM_krig and EQM_IDW (Figure 2; for a detailed description, see Appendix, Figure
12). As the suffixes suggest, the interpolation methods for EQM_krig and EQM_IDW
were kriging and IDW, respectively. Both kriging, a geostatistical procedure, and IDW,
a deterministic one, are common interpolation methods for downscaling (Wikle et al.,
2019; Poggio and Gimona, 2015; Daly, 2006).

For both methods EQM_krig and EQM_IDW, daily WRF simulations were first
interpolated to GHCND station locations. For EQM_IDW, interpolation was completed
using IDW with and without topographic downscaling (Winter et al., 2016). IDW
with topographic downscaling combines IDW with elevational lapse rates to adjust for
elevation and has been applied to high-resolution downscaling (Winter et al., 2016)
(full details on topographic downscaling and IDW are given in Supplementary Material,
section 4). Two parameters, the power, p, and number of nearest neighbor observations
used in averaging, n, control the smoothness of IDW interpolation. Higher values of
p and n result in progressively smoother interpolated surfaces. Based on results from
Winter et al. (2016), who used a very similar study area and data, as well as our own
assessment, we chose values of 2 and 9 for p and n, respectively. Elevational lapse rates
were calculated using historical GHCND TMAX data within the study region following
the methods in (Winter et al., 2016).

For EQM_krig, WRF simulations were interpolated via kriging. To account for
fine-scale elevation, elevation (either at station locations or at the fine-scale grid) was
included as a covariate in a universal kriging model. In the case when fine-scale
elevation was not accounted for, ordinary kriging was used. IDW and kriging were
implemented with the gstat package (Gräler et al., 2016) in R (R Core Team, 2018).
The prediction surface resulting from kriging depends on the location of observational
data as well as the strength of spatial dependence among the data, which can be
assessed with a variogram. Based on inspection of empirical variograms of daily WRF
TMAX data, all kriging models were fit with the exponential covariance function. The
effective range, partial sill and nugget were set to 150km, 15, and 0.2, respectively
(full kriging details are described in Supplementary Material, section 3). We compared
the two interpolation techniques, kriging and IDW, because we wanted to determine
whether a geostatistical (kriging) or deterministic (IDW) interpolation technique would
significantly influence performance metrics. Kriging methods often work better for
interpolating sparsely distributed data (Varouchakis and Hristopulos, 2013; Hofstra
et al., 2008), such as the GHCND station data, but IDW is simple and computationally
efficient. However, any interpolation method that incorporates relationships between
temperature data and topographic features such as elevation is likely to produce more
realistic predictions of climate variables, especially in regions of varying topography
(Daly, 2006).

Once WRF simulations were interpolated to GHCND station locations for all
days in the historical time period, WRF interpolations were bias-corrected at each
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GHCND station location using EQM (1). The EQM transfer function is expressed by
the empirical cumulative distribution function (ecdf) and its inverse (ecdf−1).

Xcorr,t = ecdf−1
obs,m(ecdfraw,m(Xraw,t)). (1)

In 1, Xcorr,t is the corrected WRF TMAX value on day t, ecdf−1
obs,m is the inverse

ecdf of GHCND station data for month m, and ecdfraw,m is the ecdf of interpolated
WRF TMAX simulations at a GHCND station location for month m, and Xraw,t is the
interpolated, uncorrected WRF TMAX at a GHCND station location on day t. Thus,
daily WRF simulations in a specific month were corrected with the corresponding
monthly EQM transfer function. For example, a WRF simulated value of TMAX in
January would be corrected with the EQM transfer function for January. EQM was
implemented with the qmap package (Gudmundsson, 2016) in R. Finally, bias-corrected
WRF simulations at GHCND station locations were interpolated to the fine-scale grid
with the same method used to interpolate coarse-grid WRF simulations to GHCND
station locations.

Despite the simplicity of EQM_krig and EQM_IDW, much of the original WRF
data is not used, as ultimately only bias-corrected WRF simulations at GHCND station
locations are interpolated to the fine-scale grid. Another approach to transferring
information from stations to other locations for bias-correcting WRF data is to 1)
interpolate both GHCND station and WRF data to the fine-scale grid and 2) bias-
correct WRF interpolated data with interpolated station data on a grid-cell by grid-cell
basis using EQM. The method EQM_grid (Figure 2; for a detailed description see
Appendix, Figure 13) has potential advantages over EQM_krig and EQM_IDW, since
it preserves more spatial information from WRF data (i.e. the grid suffix indicates that
bias correction is applied at the fine-scale grid, rather than station level).

First, WRF simulations and GHCND station data were interpolated to the fine-scale
grid. WRF and GHCND data were interpolated with IDW and kriging, respectively.
Kriging, rather than IDW, was used for GHCND station data, as it is generally better
suited for interpolating sparsely distributed data (Varouchakis and Hristopulos, 2013).
Based on inspection of empirical variograms, the effective range, partial sill and nugget
for the kriging model were set to 150, 15, and 0.2, respectively for all kriging models.
When elevation was accounted for, interpolation of WRF simulations was done via
topographic downscaling. Interpolation of GHCND station data was done with universal
kriging, which included an elevational covariate. Finally, after WRF simulations and
GHCND station data were interpolated to the fine-scale grid, WRF interpolations were
bias-corrected with kriged GHCND station data grid-cell by grid-cell using EQM (1).

2.2.2 Linear transfer function-based methods: quantile mapping and
simple linear regression (LTQM_grid_C, LTQM_grid_V, LT_grid)

The linear transfer (LT) family of methods presents an alternative way to transfer
information needed to bias-correct WRF simulations at any location on the fine-scale
grid. In methods LT_grid, LTQM_grid_V, and LTQM_grid_C, bias-correction is done
by applying linear transfer functions derived from regression relationships between
GHCND station data and WRF simulations (Figure 2). In these methods, simple
regression parameters (slopes and intercepts) are estimated at GHCND station locations
and interpolated to locations on the fine-scale grid where bias-correction is to be
performed. Thus, LT methods provide a flexible alternative to the EQM methods
(EQM_grid, EQM_krig, and EQM_IDW), as estimated parameters, rather than either
bias-corrected data (EQM_krig, EQM_IDW) or GHCND station data (EQM_grid) are
interpolated to the fine-scale grid and subsequently used to bias-correct WRF data on
the fine-scale grid.

The main difference between methods LTQM_grid_C/LTQM_grid_V and LT_grid
is the ordering of the data used to construct the simple regressions, which ultimately
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impacts the type of correction applied to WRF simulations. Two types of data ordering
were considered: 1) temporally-ordered (calendar order) (LT_grid) and 2) rank-ordered
(sorted from least to greatest) (LTQM_grid_V and LTQM_grid_C). In both cases 1) and
2) GHCND station data was expressed as a linear function of WRF data, and regression
parameters (slope and intercept) were estimated via ordinary least squares (OLS). In
the context of this study, resulting regression equations are applied to raw WRF data to
complete the bias-correction. The intercept adjusts the mean, while the slope scales the
variance. Thus, since the regression equation is linear in form, the transfer function is
linear.

If OLS assumptions are met, then by definition, OLS estimates are BLUE (best
linear unbiased estimators) (Seber and Lee, 2012), and the regression line is the only
such line that minimizes the mean square error. It follows that for case 1), in which
WRF and GHCND station data are temporally ordered (LT_grid), the LT function
is guaranteed to improve daily discrepancies between WRF and GHCND station
data (RMSE). However, the approach is not guaranteed to improve distributional
discrepancies to the same degree. For case 2), in which data are rank-ordered (LTQM_-
grid_V and LTQM_grid_C), the LT function acts as a simple type of quantile mapping,
and will thus improve distributional similarity (and PSS) between WRF and GHCND
station data. However, RMSE is not guaranteed to improve. Since both LTQM_grid_C
and LTQM_grid_V bias-correct via a simple quantile-mapping technique, the “QM” in
LTQM_grid_V and LTQM_grid_C refers to “Quantile Mapping”. The subtle difference
between LTQM_grid_V and LTQM_grid_C will be discussed later.

Using rank-ordered data results in a simple form of quantile mapping, but, in
contrast to EQM, the quantile map between WRF and GHCND station data is modeled
with a linear regression line. EQM is more flexible, as first quantiles of observed and
station data are typically approximated using linear interpolation or local weighted
least squares regression, and then the resulting quantile map is approximated via
linear or spline interpolation (Gudmundsson, 2016). It is important to note that if
OLS assumptions (linearity, homoscedasticity of residual errors, and independence of
observations) are not met, the OLS estimates are no longer BLUE.

The first step for methods LT_grid, LTQM_grid_V, and LTQM_grid_C was iden-
tical: daily WRF simulations were interpolated to the fine-scale grid using IDW (or
topographic downscaling). Daily WRF simulations were also interpolated to GHCND
station locations, where LT functions were formulated (2).

For all three methods (LTQM_grid_C, LTQM_grid_V, LT_grid), LT functions were
constructed by regressing large-scale predictor variables (WRF data) on small-scale
predictands (GHCND station data) at each GHCND station location. Separate LT
functions were constructed for each month. The estimated regression parameters at
each GHCND station location (slope and intercept coefficients) were kriged to the
fine-scale grid, and interpolated WRF simulations on the fine-scale grid were bias-
corrected with the corresponding kriged regression parameters grid-cell by grid-cell.
Therefore, the term “grid” in all three methods refers to bias-correction taking place at
the fine-scale grid, rather than station level.

LT_grid The LT function for LT_grid was a simple linear regression in which WRF
interpolations at GHCND stations were predictor variables, and GHCND station data
were the predictands (2). Data were sorted in temporal order. Twelve LT functions (one
for each month) were constructed for at each GHCND station location (2).month

TMAXstation,i,m = β0,i,m + β1,i,m ×WRFIDW,i,m (2)

In (2), TMAXstation,i,m is daily TMAX for GHCND station location i in month
m, β0,i,m is the intercept for GHCND station location i in month m, β1,i,m is the
slope for GHCND station location i in month m, and WRFIDW,i,m represents daily
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interpolated WRF values at GHCND station location i in month m. Monthly parameter
estimates of slopes and intercepts at each GHCND station location were kriged to the
fine-scale grid with ordinary Bayesian kriging.

The exponential covariance function was used for all Bayesian kriging models.
Prior distributions for covariance function parameters were selected based on recom-
mendations in (Banerjee et al., 2004) and inspection of empirical variograms. Empirical
variograms of estimated monthly slopes and intercept showed some degree of spa-
tial autocorrelation, although the association was stronger in cold-season compared
to warm-season months. We used non-informative priors for the intercept (β0), the
effective range (φ), partial sill (σ2), and nugget (τ2):

β0 ∼ N(0, 100)

φ ∼ Unif( 3
Dmax

,
3
10)

σ2 ∼ IG(2, 2)
τ2 ∼ IG(2, 0.02).

Dmax was the maximum distance between any two GHCND station locations (full
details on Bayesian modeling are described in Supplementary Material, section 1).
Bayesian kriging is preferable to non-Bayesian kriging when data is sparse, and there is
a some degree of uncertainty surrounding estimates of covariance function parameters
(Pilz and Spöck, 2008). Finally, interpolated WRF simulations on the fine-scale grid
were bias-corrected on grid-cell by grid-cell, using the corresponding kriged slope and
intercept parameter estimates (3):

TMAX∗i,m = β̃0,i,m + β̃1,i,m ×WRF1km−interp,i,m. (3)

In (3), TMAX∗i,m is the bias-corrected, fine-scale WRF value for grid cell i in
month m, β̃0,i,m is the kriged prediction for the intercept of grid cell i in month m,
β̃1,i,m is the kriged slope parameter estimate at fine-scale grid cell i in month m, and
WRF1km−interp,i,m is the interpolated WRF value at the center of fine-scale grid cell
i in month m.

LTQM_grid_V and LTQM_grid_C For methods LTQM_grid_V and LTQM_-
grid_C, LT functions were constructed using rank-ordered WRF and GHCND station
data. In these LT functions, nearest WRF grid-cell values to GHCND station locations
were the predictor variables and GHCND station data were the predictands, similar to
the approach of (Berg et al., 2012), who applied rank-order regression to bias-correct
temperature and precipitation simulations. Berg et al. (2012) found that modeling
empirical quantiles of RCM and observed mean temperature data with a simple linear
regression worked well if the quantile map between simulated and observed data was
linear in form. Twelve LT functions were constructed at each GHCND station location
(4).

TMAXi,m = β0,i,m + β1,i,m ×WRFNNi,m . (4)

In (4), TMAXi,m is daily TMAX at GHCND station location i in month k, β0,i,m
is the intercept for GHCND station location i in month m , WRFNNi,m are the one-
nearest-neighbor grid cell WRF simulations relative to GHCND station location i in
month m, and β1,i,m is the coefficient for station location i in month m.

There was one subtle, but important difference between LTQM_grid_V and LTQM_-
grid_C. In method LTQM_grid_V, monthly estimates of intercepts and slopes were
kriged to the fine-scale grid with ordinary Bayesian kriging using the same priors as in
LT_grid. Then, the kriged slopes and intercepts were used to bias-correct interpolated
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WRF data on the fine-scale grid (3). In method LTQM_grid_C, however, the monthly
medians of kriged slopes and intercepts over the fine-scale grid were used to bias-correct
interpolated WRF data (3). In LTQM_grid_V, the kriged slopes and intercepts used to
bias-correct WRF interpolations varied over the fine-scale grid (V for vary). In contrast
to LTQM_grid_V, spatially constant (C for constant) slope and intercept values were
used for bias-correction. We implemented variations in which estimated slopes and
intercepts varied spatially (LTQM_grid_V) and in which they were spatially constant
(LTQM_grid_C), because monthly kriged surfaces of estimated slopes and intercepts
over the fine-scale grid were not always spatially smooth. A rougher parameter surface
could potentially result spatially incoherent corrections in some locations. Using
constant monthly medians of kriged slope and intercept estimates alleviates issues
related to a rough kriging surface but sacrifices flexibility in that any spatial dependence
among is no longer accounted for.

Examples of downscaled, bias-corrected data products over the study area for
selected methods are shown in Supplementary Material.

2.3 Measures of performance and validation

2.3.1 Validation

To gain insight into the downscaling ability of each of the six methods, we used
two calibration periods. Bias-correction was applied to 1980-2014 WRF simulations
using 1980-2014 GHCND station data. In addition, 1990-2014 WRF simulations were
bias-corrected with the 1980-1989 subset of GHCND station data. The former approach
helps evaluate performance of methods for processing historical simulations, while
the latter approach assesses potential performance of methods for processing future
projections. For clarity, we name these cases by referring to the subset of GHCND
station data that are used for bias-correction (e.g. "1980-2014" and "1980-1989").

Bias-corrected WRF data should exhibit day-to-day, as well as distributional, cor-
respondence to GHCND station data. Thus, we chose performance metrics that 1)
quantify daily discrepancies and 2) distributional similarity between WRF and GHCND
station data. The root-mean-square prediction error (RMSE) and Perkins skill score
(PSS) (Perkins et al., 2007) quantify daily errors and distributional similarity, respec-
tively. PSS ranges between 0 and 1, where 1 indicates a perfect distributional overlap
between simulated and observed data, and 0 indicates no distributional overlap (Perkins
et al., 2007). PSS is calculated by summing minimum densities of overlapping bins
of discrete histograms of simulated and observed data. PSS is not influenced much
by outliers, but it is sensitive to bin size (Perkins et al., 2007). However, large daily
discrepancies between simulated and observed data influence RMSE.

Because our goal was to create a continuous, 1km gridded dataset over the study
area, the ability of methods to bias-correct WRF simulations at locations where stations
are not present is important to assess. Therefore, we also implemented a five-fold spatial
cross-validation, where, in each fold, 1) bias-correction was based on approximately
70% of GHCND stations and 2) bias-correction was applied to WRF interpolations at
the remaining 30% of GHCND station locations.

2.3.2 Spatial cross-validation

Because all of the six methods had slightly different workflows, the five-fold spatial
cross-validation was adjusted for each method to ensure that results were comparable.

For EQM_krig and EQM_IDW methods, the cross-validation was performed as
follows for each of the i = 1...k, k = 5, folds: for fold i, bias-corrected WRF
interpolations at GHCND station locations in fold k 6= i were used as training data and
were interpolated (via kriging or IDW) to GHCND station locations in fold i.
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For EQM_grid, TMAX values at GHCND station locations in the k 6= i folds were
used as training data and were interpolated using ordinary kriging to station locations
in fold i. Then, interpolated WRF data at GHCND station locations in the ith were
bias-corrected using kriged GHCND station values. This was repeated for the i = 1...k,
k = 5 folds.

For LT_grid, LTQM_grid_V, and LTQM_grid_C methods, LT functions (2 and
4) were constructed at GHCND station locations in folds k 6= i; Bayesian kriging
was used to krig estimated LT parameters (slopes and intercepts) to GHCND station
locations in fold i. Interpolated WRF values at GHCND station locations in the ith fold
were bias-corrected with kriged estimated LT parameters. This was repeated for the
i = 1...k, k = 5 folds.

GHCND stations in each of the five folds were randomly selected prior to spatial
cross-validation; thus, for each method, the stations in folds k = 1 . . . 5 were the same
to ensure that results would be comparable. Spatially cross-validated, daily RMSE
values were calculated by method and month using the following formula:

Ek(Y ) =
√

1
nk

∑
i ∈ kth fold

(Y (sj − Ŷ (sj)2

RMSE = 1
K

K∑
k=1

Ek(Y ),

where Y (sj) is the TMAX value at GHCND station sj , Ŷ (sj)2 is the bias-corrected
WRF TMAX value at GHCND station location sj , nk is the number of observations in
fold k and K = 5.

To calculate PSS, discrete probability density functions (PDFs) were constructed
for bias-corrected WRF and GHCND station data using bin widths of 0.5◦C as rec-
ommended by (Perkins et al., 2007). Spatially cross-validated PSS was calculated by
method and month using the following formula:

Ek(PSS) =
bk∑
i

min(Zi, Z∗i )

PSSm = 1
K

K∑
k=1

Ek(PSS),

where Zi is the normalized density of the PDF of GHCND station data in bin i, Z∗i
is the normalized density of the PDF of bias-corrected WRF data in bin i, and bk is the
number of bins used to construct the PDFs of GHCND station and bias-corrected WRF
data in fold k, and K = 5.

2.4 Analysis of performance metrics
Performance metrics of the six methods were analyzed with two linear analysis of

variance (ANOVA) models (one for RMSE and one for PSS). Based on our own obser-
vations of WRF simulations and previous work (Huang et al., 2020), WRF simulations
of TMAX exhibit larger cold biases in winter and early spring than in summer and early
fall, so we controlled for monthly variation in performance metrics. We also controlled
for whether or not elevation was accounted for in downscaling to help disentangle the
effects of downscaling and bias-correction on performance metrics. We also controlled
for whether or not elevation was accounted for in downscaling via lapse rates to help dis-
entangle the effects of downscaling and bias-correction on performance metrics. Finally,

 
861



we controlled for type of GHCND station data (1980-1989 or 1980-2014) that was used
to bias-correct WRF simulations. We used ANOVA models to evaluate performance
among methods, as they are easy to interpret and provide information on how PSS and
RMSE differ among methods while controlling for variables. With the incorporation
of interaction effects, linear models can also help expand knowledge of more complex
relationships among performance metrics, the six methods, and controlling variables
(described below).

Prior to ANOVA model fitting, spatially cross-validated RMSE and PSS were
averaged over the six methods and months. Full models for PSS and RMSE were fit
with the following four fixed effects:

• Method: identifier for the downscaling and bias-correction method (EQM_krig,
EQM_IDW, EQM_grid, LT_grid, LTQM_grid_V, and LTQM_grid_C)

• Month: month of the year (1-12)
• Elevation: binary variable to denote whether the effect of elevation was included

with the use of elevational lapse rates (“YES”) or not (“NO”)
• Bias_correction_years: binary variable to denote if 1990-2014 WRF simulations

were bias corrected with 1980-1989 GHCND station data calibration set ("1980-
1989") or whether 1980-2014 WRF simulations were bias-corrected with the
1980-2014 GHCND time series ("1980-2014").

In addition, the initial full model fits included sensible two-way interactions: Month
× Method, Elevation×Method×Bias_correction_years, Elevation×Method, Eleva-
tion×Bias_correction_years, and Bias_correction_years × Method. After full ANOVA
models were fit, all variables with a p-value < 0.05 were eliminated, and both ANOVA
models were fit again with remaining variables. After fitting final ANOVA models, pair-
wise comparisons, as well as estimated marginal means (necessary for interaction plots)
were calculated with the R package emmeans (Lenth, 2020). Pairwise comparisons
were performed using the with the Bonferroni correction for multiple comparisons. We
also calculated η2 for all effects in the final models for PSS and RMSE. η2quantifies the
proportion of variance associated with main effects and interactions in a linear model
and is a useful indicator of effect size and strength of association in linear models
(Levine and Hullett, 2002; Muller and Peterson, 1984). Values for η2 range between
0 and 1, where higher values indicate greater variable importance. η2 is calculated as
the sum of squares of an independent variable (SSbetween) divided by the total sum of
squares (TSS) of the model:

η2 = SSbetween/TSS.

3 Results

3.1 Overall performance
Raw WRF interpolations at GHCND station locations exhibited a cold bias, and

the bias was most pronounced in months 12, 1, 2, 3, and 4 (Figure 3). Generally, mean
RMSE varied little among methods, ranging between 3.1 - 3.5 while mean PSS ranged
between 0.94 - 0.96). All methods performed better than uncorrected WRF: RMSE of
uncorrected WRF interpolations at GHCND station locations ranged between 3.6 and
3.9, while mean PSS ranged between 0.90 and 0.91.

Mean RMSE and PSS improved when bias-correction was based on the 1980-2014
GHCND dataset (and the correction was applied to 1980-2014 WRF data) compared to
when bias-correction was based on the 1980-1989 GHCND subset (and the correction
was applied to 1990-2014 WRF simulations) (Figures 4 (a) and (b), respectively).
Generally, when the effect of elevation was accounted for during the downscaling step,
mean RMSE decreased (Figure 4 (a)), but Elevation did not have an appreciable impact
on mean PSS (Figure 4 (b)). In addition, performance metrics for all methods exhibited
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considerable monthly variation: both mean monthly RMSE and PSS were worse in
months 11, 12, and 1-4 compared to months 5-10 (Figures 5 (a) and (b)), although
monthly variation was more pronounced for RMSE than PSS. There was no consistent
relationship between low RMSE and high PSS.

Overall, methods LT_grid and LTQM_grid_V performed best and worst, respec-
tively, in terms of mean RMSE (Figure 4 (a)), while methods EQM_grid and LTQM_-
grid_V performed best and worst, respectively in terms of mean PSS (Figure 4 (b)).

The final ANOVA model for RMSE included the main effects Month, Bias_cor-
rection_years, Elevation, and Method as well as the interactions Month×Method,
Method×Bias_correction_years, and Method×Elevation (Table 3; See Appendix, Ta-
ble 5 for the full ANOVA table). The final model for PSS included the main effects
Month, Method, and Bias_correction_years and the interaction terms Month×Method
and Method×Bias_correction_years (Table 4, see Appendix, Table 6 for the full model
ANOVA). In contrast to the model for RMSE, the effect of Elevation was not significant
in the full model for PSS.

3.2 Statistical analysis of error metrics
Due to the significance of interaction effects as well as main effects, main effects

will be discussed in the context of interactions. Results for pairwise contrasts for each
interaction term present in RMSE and PSS ANOVA models are shown in Supplementary
Material.

3.2.1 Month, Method, and Month ×Method

RMSE η2 for Month was 0.94, whereas η2 for Month ×Method and Method were
0.014 and 0.0092, respectively (Table 1). The large η2 for Month indicates that Month
was overwhelmingly the most important variable in the model (despite the statistical
significance of the interaction Month × Method) and means that RMSE varied substan-
tially by Month. Indeed, the monthly pattern of RMSE was consistent for all methods
(Figure 6). The interaction plot shows that marginal mean RMSE of all methods was
greater (3.2-4.2◦C) in months 1,2,3,4,11, and 12 compared to months 5-10 (2.5-3◦C)
(Figure 6). Overall, marginal mean RMSE of LT_grid was lower than those of all other
methods, and for months 2, 3, 4, 5, 6, 11, and 12, results for pairwise contrasts indicated
it was significantly lower than RMSE of all other methods.

PSS In contrast to RMSE results, the influence of Method (η2 = 0.43) was greater
than that of Month×Method (η2 = 0.28) and Month (η2 = 0.11) (Table 2) in the
model for PSS. This means that PSS varied more among the six methods, rather than
among months (Figure 7). Specifically, marginal mean PSS for EQM_IDW, EQM_krig,
and EQM_grid varied slightly between 0.92 and 0.95, regardless of month (Figure 7);
however, marginal mean PSS for LTQM_grid_C and LTQM_grid_V ranged between
0.88 and 0.90 in months 1-4 and then increased to between 0.94 and 0.96 in months
5-12 (7). Marginal mean PSS for LT_grid followed a similar pattern as LTQM_grid_V
and LTQM_grid_C in months 1-4, but in months 5-10, its marginal mean PSS was lower
than that of all other methods, ranging between 0.90 and 0.91. Month for month, results
for pairwise comparisons showed marginal mean PSS of LT_grid was signficantly lower
than that of all other methods (Figure 7).

3.2.2 Bias_correction_years and Bias_correction_years ×Method

RMSE η2 values for Bias_correction_years ×Method and Bias_correction_years
(η2 = 0.0018 and 0.0063, respectively) indicate that the main effect of Bias_correction_-
years was slightly more important than Bias_correction_years × Method. RMSE
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was overall lower when bias-correction was based on the 1980-2014 GHCND dataset
compared to the 1980-1989 GHCND subset, although there were slight differences
among methods. Marginal mean RMSE ranged between 3.18 and 3.57 when bias-
correction was based on the 1989-1989 GHCND subset but ranged between 3.15-
3.25 when bias-correction was based on the 1980-2014 (Figure 8). Marginal mean
RMSE of LT_grid and LTQM_grid_V were overall lowest and highest, respectively,
regardless of whether the 1980-2014 or 1989-1989 GHCND dataset was used for bias-
correction. However, marginal mean RMSE of LT_grid was significantly lower (3.18)
that of all other methods (3.3-3.56) when bias-correction was based on the 1980-1989
GHCND dataset (Figure 8). When bias-correction was applied using the 1980-2014
GHCND dataset marginal mean RMSE of LTQM_grid_V was significantly greater
(3.33) than marginal mean RMSE of all other methods (3.15-3.25) (Figure 8). Finally, it
is important to note that η2 values for Bias_correction_years and Bias_correction_years
×Method were much smaller compared to that of η2 of Month, which means that Month
was relatively more important than Bias_correction_years and Bias_correction_years
× Method.

PSS Mean PSS generally increased when the 1980-2014, as compared to the 1980-
1989 GHCND dataset, was used for bias-correction. However, the amount of increase
varied among methods. In particular, the interaction Bias_correction_years×Method
was evident for methods LTQM_grid_C and LTQM_grid_V; marginal mean PSS for
LTQM_grid_C and LTQM_grid_V were nearly identical and were significantly greater
than that of all other methods only when the 1980-1989 GHCND dataset was used for
bias correction (Figure 9). However, when 1980-2014 GHCND dataset was used for
bias-correction, marginal mean PSS of EQM_IDW, EQM_krig, and EQM_grid was
greater than that of LTQM_grid_C , LTQM_grid_V, and LT_grid (Figure 9). In contrast
to results for RMSE, LT_grid performed worst overall; marginal mean PSS LT_grid
was significantly lower than that of all other methods, regardless of which GHCND
dataset was used for bias-correction (Figure 9). Similar to the results for RMSE, the
main effect Bias_correction_years and interaction Bias_correction_years×Method
were comparatively less influential in the model. η2 values for Bias_correction_years
and interaction Bias_correction_years×Method (0.09 and 0.14, respectively) were
lower than both η2 values of Method and the interaction Month ×Method (η2 = 0.43
and 0.28, respectively) (Table 2).

3.2.3 Elevation

RMSE Generally, RMSE decreased when elevation was accounted for compared to
when it was not (Figure 10). η2 for Elevation was nearly 19 times larger than that of
Elevation × Method (η2 = 0.013 and 0.00069, respectively; Table 1), indicating that
the main effect of Elevation was more important in the RMSE ANOVA model than
the interaction term. Additionally, results for pairwise contrasts showed that marginal
mean RMSE of method LT_grid was significantly less than, and marginal mean RMSE
of method LTQM_grid_V was significantly greater than that of all other methods,
regardless of whether elevation was accounted for or not.

PSS The effect of Elevation was not significant in the full model for PSS (Table 6),
and Elevation did not have any appreciable effect on PSS (Figure 11).

4 Discussion
In this study, we developed six novel strategies for high-resolution downscaling and

bias-correction of daily historical TMAX simulations from a regional climate model,
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where bias-correction was based solely on station data. Although performances of all
methods appeared similar, there were statistically significant differences in performance
even after accounting for monthly variation, whether or not elevation was incorporated
during the downscaling step, and which GHCND dataset (1980-2014 or 190-1989) was
used for bias-correction. We found that most of the variation in performance among
methods was due to the bias-correction technique, rather than interpolation technique,
implemented in each of the six methods.

Generally, RMSE, and to a lesser degree, PSS, were better in warm-season months
and worse in cold-season months, which is likely due to the pronounced cold bias in raw
WRF data during winter and early spring months. EQM (EQM_grid, EQM_krig, and
EQM_IDW) outperformed rank-ordered regression (LTQM_grid_C and LTQM_grid_-
V) in improving PSS when the 1980-2014 GHCND dataset was used for bias-correction
(and the correction was applied to 1980-2014 WRF simulations). However, the converse
was true when the 1980-1989 GHCND dataset was used for bias-correction and the
correction was applied to 1990-2014 WRF simulations. The bias-variance tradeoff, a
well-known concept in statistical learning (Friedman et al., 2001), can help to explain
this result. Simple statistical methods, such as linear models, have high bias but low
variance, while highly flexible models have low bias but high variance (Friedman et al.,
2001). Highly flexible models result in low training errors but are less able to generalize
to new, unseen data, which is due to overfitting (Friedman et al., 2001). The EQM
transfer function will be nearly perfect if observational and simulated data of the same
time period are used. When that transfer function is subsequently used to bias-correct
simulated data from the same time period, the applied correction will, by definition,
adjust simulated quantiles to closely match those of observed quantiles. Since EQM is
a flexible bias-correction method, it is not altogether surprising that it performed very
well when bias-correction was based on the 1980-2014 GHCND station dataset, and
the correction was applied to the 1980-2014 WRF dataset. For the bias-correction of
historical simulations, bias-correction techniques such as EQM may improve PSS to a
greater degree than ranked-ordered regression. However, a simple technique, ranked-
order, regression may be better suited for correcting future projections, because the
transfer function is more generalizable than that of EQM.

Incorporating elevation during interpolation steps in all of the methods was associ-
ated with improved RMSE but had no significant effect on PSS. In our study, adjusting
temperature with lapse rates decreased the day-to-day discrepancies between simulated
and observed data (improving RMSE). However, it is likely that quantile-mapping
bias-correction techniques had a much greater influence on PSS than the adjustment
provided by lapse rates, explaining why elevation did not appreciably improve PSS.

In addition, we found that no one method could concomitantly minimize RMSE
and maximize PSS, which suggests that correcting overall distributional discrepancies
as well as daily discrepancies between simulated and observed data is a challenging
task. Maximizing PSS is achieved with quantile-mapping techniques, which works by
matching the quantiles of simulated and observed data. However, minimizing RMSE
is achieved by decreasing the discrepancy between daily modeled and observed data,
which is done most effectively via a linear regression between simulated and observed
data. Thus, bias-correction techniques such as EQM (EQM_grid, EQM_krig, and
EQM_IDW) and rank-ordered regression (LTQM_grid_V and LTQM_grid_C) improve
PSS but not necessarily RMSE, whereas temporally-ordered linear regression (LT_-
grid) improve RMSE but not necessarily PSS. While the objectives of minimizing
RMSE and maximizing PSS are not mutually exclusive, they may be difficult to attain
concomitantly in practice.
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5 Conclusion
The six high-resolution downscaling and bias-correction methods we presented

in this study are efficient, easy to implement, and depending on the method, result in
substantially improved RMSE and PSS compared to uncorrected WRF simulations.
In addition, we presented methods for constructing full-coverage climate products in
which station data are leveraged for bias-correction. Although we applied these methods
to historical (1980-2014) daily maximum temperature simulations, most methods are
suitable for future climate projections and any modeled temperature variable (minimum,
maximum, or average).
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Table 1: η2 for RMSE final model
Predictor η2

Month 0.94
Month×Method 0.014

Elevation 0.013
Method 0.0092

Bias_correction_years 0.0063
Bias_correction_years ×Method 0.0018

Elevation ×Method 0.00069

Table 2: η2 for PSS final model.
Predictor η2

Methode 0.43
Month×Method 0.28

Bias_correction_years 0.14
Month 0.11

Bias_correction_years ×Method 0.09

Table 3: ANOVA table for RMSE (final model)
Df Sum Sq Mean Sq F value Pr(>F)

Month 11 84.43 7.68 1485.08 0.0000
Bias_correction_years 1 0.57 0.57 109.68 0.0000
Elevation 1 1.14 1.14 219.73 0.0000
Method 5 0.82 0.16 31.74 0.0000
Month ×Method 55 1.28 0.02 4.51 0.0000
Method×Bias_correction_years 5 0.16 0.03 6.18 0.0000
Method×Elevation 5 0.06 0.01 2.40 0.0388
Residuals 204 1.05 0.01

Table 4: ANOVA table for PSS (final model)
Df Sum Sq Mean Sq F value Pr(>F)

Month 11 0.02 0.00 18.58 0.0000
Method 5 0.05 0.01 95.13 0.0000
Bias_correction_years 1 0.03 0.03 253.94 0.0000
Month×Method 55 0.06 0.00 9.48 0.0000
Method×Bias_correction_years 5 0.02 0.00 34.42 0.0000
Residuals 210 0.02 0.00
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Figure 1: GHCND stations (black points) within the study area (red).
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Figure 2: Workflows for the six bias-correction and downscaling methods described in this
study. In EQM_IDW, EQM_krig, and EQM_grid, bias-correction was done with EQM.
EQM_grid differs with respect to EQM_krig and EQM_IDW in that bias correction was done
at the grid rather than station level. In LTQM_grid_V and LTQM_grid_C, LT functions were
constructed using rank-ordered data, which results in a simple quantile-mapping transfer
function. In LTQM_grid_V, interpolated LT parameters were used for bias-correction at
the fine-scale grid level, so LT parameters were allowed to vary spatially (V = vary). In
LTQM_grid_C, the median values of interpolated LT parameters at the fine-scale grid level
were calculated and subsequently used for bias- correction, so LT parameters were constant
over the fine-scale grid (C = constant). Interpolated parameters were also allowed to vary
spatially over the fine-scale grid for method LT_grid, but LT functions were constructed
using temporally-ordered, rather than rank-ordered, data.
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Figure 3: Monthly average TMAX (◦C) of WRF interpolations at GHCND locations and
GHCND station data from 1980-2014
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Figure 4: Mean RMSE (a) and PSS (b) by downscaling method and Bias_correction_years,
where "1980-1989" and "1980-2014" are the GHCND station calibration datasets used to
bias-correct 1990-2014 and 1980-2014 WRF simulations, respectively. RMSE and PSS
values reflect mean performance metrics prior to linear model fits. Error bars represent
standard errors over five spatial cross-validation folds. “WRF_interp” denotes the raw WRF
simulations interpolated to station locations and are shown to indicate relative improvement
of all methods over raw WRF interpolated values.
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Figure 5: Mean RMSE (a) and PSS (b) by downscaling method, month and Bias_correction_-
years, where "1980-1989" and "1980-2014" are the GHCND station calibration datasets
used to bias-correct 1990-2014 and 1980-2014 WRF simulations, respectively. Error bars
represent standard errors over five spatial cross-validation folds. “WRF_interp” denotes the
raw WRF simulations interpolated to station locations and are shown to indicate relative
improvement of all methods over raw WRF interpolated values.
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Figure 6: Interaction plot showing marginal mean RMSE by Method and Month. Error bars
represent 95% confidence intervals.

Figure 7: Interaction plot showing marginal means of PSS by Method and Month. Error bars
represent 95% confidence intervals.
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Figure 8: Interaction plot showing predicted marginal mean RMSE by Method and Bias_-
correction_years ("1980-1989" and "1980-2014" are the GHCND station datasets used to
bias-correct 1990-2014 and 1980-2014 WRF simulations, respectively). Error bars represent
95% confidence intervals.

Figure 9: Interaction plot showing predicted marginal mean PSS by Method and Bias_-
correction_years ("1980-1989" and "1980-2014" are the GHCND station datasets used to
bias-correct 1990-2014 and 1980-2014 WRF simulations, respectively). Error bars represent
95% confidence intervals.
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Figure 10: Interaction plot showing predicted marginal mean RMSE by Method and Eleva-
tion. Error bars represent 95% confidence intervals.

Figure 11: Interaction plot showing marginal mean PSS by Method and Elevation (results
obtained from full model fit). Error bars represent 95% confidence intervals.

 
879



6 Appendix

Table 5: ANOVA table for full RMSE model
Df Sum Sq Mean Sq F value Pr(>F)

Month 11 84.43 7.68 1526.98 0.0000
Method 5 0.82 0.16 32.64 0.0000
Bias_correction_years 1 0.57 0.57 112.77 0.0000
Elevation 1 1.14 1.14 225.93 0.0000
Month×Method 55 1.28 0.02 4.63 0.0000
Method ×Bias_correction_years 5 0.16 0.03 6.35 0.0000
Method×Elevation 5 0.06 0.01 2.46 0.0343
Bias_correction_years×Elevation 1 0.02 0.02 3.71 0.0555
Method×Bias_correction_years:Elevation 5 0.04 0.01 1.61 0.1593
Residuals 198 1.00 0.01

Table 6: ANOVA table for full PSS model
Df Sum Sq Mean Sq F value Pr(>F)

Month 11 0.02 0.00 17.88 0.0000
Method 5 0.05 0.01 91.55 0.0000
Bias_correction_years 1 0.03 0.03 244.40 0.0000
Elevation 1 0.00 0.00 0.03 0.8579
Month×Method 55 0.06 0.00 9.13 0.0000
Method×Bias_correction_years 5 0.02 0.00 33.13 0.0000
Method × Elevation 5 0.00 0.00 0.74 0.5910
Bias_correction_years × Elevation 1 0.00 0.00 0.24 0.6266
Method×Bias_correction_years×Elevation 5 0.00 0.00 0.02 0.9997
Residuals 198 0.02 0.00
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7 Supplementary Material
1. Table 8. Pairwise contrasts for RMSE ANOVA model: Month × Method
2. Table 9. Pairwise contrasts for PSS ANOVA model: Month × Method
3. Table 10. Pairwise contrasts for RMSE ANOVA model: bias_correction_years
× Method

4. Table 11. Pairwise contrasts for PSS ANOVA model: bias_correction_years ×
Method

5. Table 12. Pairwise contrasts for RMSE ANOVA model: Elevation × Method

Table 8: Contrasts for RMSE ANOVA model for interaction Month × Method
contrast estimate SE df t.ratio p.value
Month = 1
EQM_krig - EQM_IDW -0.0358 0.0508 204 -0.705 1.0000
EQM_grid - EQM_IDW -0.0386 0.0508 204 -0.760 1.0000
EQM_grid - EQM_krig -0.0028 0.0508 204 -0.055 1.0000
LT_grid - EQM_IDW -0.1421 0.0508 204 -2.795 0.0854
LT_grid - EQM_krig -0.1062 0.0508 204 -2.090 0.5682
LT_grid - EQM_grid -0.1034 0.0508 204 -2.035 0.6472
LTQM_grid_C - EQM_IDW -0.0414 0.0508 204 -0.815 1.0000
LTQM_grid_C - EQM_krig -0.0056 0.0508 204 -0.110 1.0000
LTQM_grid_C - EQM_grid -0.0028 0.0508 204 -0.055 1.0000
LTQM_grid_C - LT_grid 0.1006 0.0508 204 1.980 0.7361
LTQM_grid_V - EQM_IDW -0.0307 0.0508 204 -0.604 1.0000
LTQM_grid_V - EQM_krig 0.0051 0.0508 204 0.100 1.0000
LTQM_grid_V - EQM_grid 0.0079 0.0508 204 0.155 1.0000
LTQM_grid_V - LT_grid 0.1113 0.0508 204 2.190 0.4447
LTQM_grid_V - LTQM_grid_C 0.0107 0.0508 204 0.210 1.0000
Month = 2
EQM_krig - EQM_IDW -0.0007 0.0508 204 -0.014 1.0000
EQM_grid - EQM_IDW -0.0231 0.0508 204 -0.454 1.0000
EQM_grid - EQM_krig -0.0223 0.0508 204 -0.440 1.0000
LT_grid - EQM_IDW -0.1898 0.0508 204 -3.733 0.0037
LT_grid - EQM_krig -0.1891 0.0508 204 -3.719 0.0039
LT_grid - EQM_grid -0.1667 0.0508 204 -3.279 0.0184
LTQM_grid_C - EQM_IDW -0.0468 0.0508 204 -0.920 1.0000
LTQM_grid_C - EQM_krig -0.0460 0.0508 204 -0.906 1.0000
LTQM_grid_C - EQM_grid -0.0237 0.0508 204 -0.466 1.0000
LTQM_grid_C - LT_grid 0.1430 0.0508 204 2.813 0.0808
LTQM_grid_V - EQM_IDW -0.0487 0.0508 204 -0.957 1.0000
LTQM_grid_V - EQM_krig -0.0479 0.0508 204 -0.943 1.0000
LTQM_grid_V - EQM_grid -0.0256 0.0508 204 -0.503 1.0000
LTQM_grid_V - LT_grid 0.1411 0.0508 204 2.776 0.0903
LTQM_grid_V - LTQM_grid_C -0.0019 0.0508 204 -0.037 1.0000
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Month = 3
EQM_krig - EQM_IDW 0.0087 0.0508 204 0.171 1.0000
EQM_grid - EQM_IDW -0.0360 0.0508 204 -0.707 1.0000
EQM_grid - EQM_krig -0.0446 0.0508 204 -0.878 1.0000
LT_grid - EQM_IDW -0.2269 0.0508 204 -4.463 0.0002
LT_grid - EQM_krig -0.2356 0.0508 204 -4.634 0.0001
LT_grid - EQM_grid -0.1909 0.0508 204 -3.756 0.0034
LTQM_grid_C - EQM_IDW -0.0521 0.0508 204 -1.025 1.0000
LTQM_grid_C - EQM_krig -0.0608 0.0508 204 -1.196 1.0000
LTQM_grid_C - EQM_grid -0.0162 0.0508 204 -0.318 1.0000
LTQM_grid_C - LT_grid 0.1748 0.0508 204 3.438 0.0107
LTQM_grid_V - EQM_IDW -0.0580 0.0508 204 -1.141 1.0000
LTQM_grid_V - EQM_krig -0.0667 0.0508 204 -1.312 1.0000
LTQM_grid_V - EQM_grid -0.0221 0.0508 204 -0.434 1.0000
LTQM_grid_V - LT_grid 0.1689 0.0508 204 3.322 0.0159
LTQM_grid_V - LTQM_grid_C -0.0059 0.0508 204 -0.116 1.0000
Month = 4
EQM_krig - EQM_IDW 0.0126 0.0508 204 0.248 1.0000
EQM_grid - EQM_IDW -0.0205 0.0508 204 -0.404 1.0000
EQM_grid - EQM_krig -0.0331 0.0508 204 -0.652 1.0000
LT_grid - EQM_IDW -0.1101 0.0508 204 -2.165 0.4728
LT_grid - EQM_krig -0.1227 0.0508 204 -2.413 0.2505
LT_grid - EQM_grid -0.0895 0.0508 204 -1.762 1.0000
LTQM_grid_C - EQM_IDW 0.1601 0.0508 204 3.150 0.0282
LTQM_grid_C - EQM_krig 0.1475 0.0508 204 2.902 0.0618
LTQM_grid_C - EQM_grid 0.1806 0.0508 204 3.553 0.0071
LTQM_grid_C - LT_grid 0.2702 0.0508 204 5.315 <.0001
LTQM_grid_V - EQM_IDW 0.1469 0.0508 204 2.890 0.0640
LTQM_grid_V - EQM_krig 0.1343 0.0508 204 2.642 0.1331
LTQM_grid_V - EQM_grid 0.1674 0.0508 204 3.294 0.0175
LTQM_grid_V - LT_grid 0.2570 0.0508 204 5.055 <.0001
LTQM_grid_V - LTQM_grid_C -0.0132 0.0508 204 -0.260 1.0000
Month = 5
EQM_krig - EQM_IDW 0.0234 0.0508 204 0.460 1.0000
EQM_grid - EQM_IDW -0.0093 0.0508 204 -0.183 1.0000
EQM_grid - EQM_krig -0.0327 0.0508 204 -0.644 1.0000
LT_grid - EQM_IDW -0.0178 0.0508 204 -0.351 1.0000
LT_grid - EQM_krig -0.0412 0.0508 204 -0.811 1.0000
LT_grid - EQM_grid -0.0085 0.0508 204 -0.168 1.0000
LTQM_grid_C - EQM_IDW 0.1026 0.0508 204 2.018 0.6740
LTQM_grid_C - EQM_krig 0.0792 0.0508 204 1.557 1.0000
LTQM_grid_C - EQM_grid 0.1119 0.0508 204 2.201 0.4330
LTQM_grid_C - LT_grid 0.1204 0.0508 204 2.369 0.2818
LTQM_grid_V - EQM_IDW 0.2000 0.0508 204 3.934 0.0017
LTQM_grid_V - EQM_krig 0.1766 0.0508 204 3.474 0.0094
LTQM_grid_V - EQM_grid 0.2093 0.0508 204 4.118 0.0008
LTQM_grid_V - LT_grid 0.2178 0.0508 204 4.285 0.0004
LTQM_grid_V - LTQM_grid_C 0.0974 0.0508 204 1.917 0.8499
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Month = 6
EQM_krig - EQM_IDW -0.0152 0.0508 204 -0.300 1.0000
EQM_grid - EQM_IDW -0.0260 0.0508 204 -0.512 1.0000
EQM_grid - EQM_krig -0.0108 0.0508 204 -0.212 1.0000
LT_grid - EQM_IDW -0.0445 0.0508 204 -0.875 1.0000
LT_grid - EQM_krig -0.0293 0.0508 204 -0.576 1.0000
LT_grid - EQM_grid -0.0185 0.0508 204 -0.364 1.0000
LTQM_grid_C - EQM_IDW 0.0233 0.0508 204 0.458 1.0000
LTQM_grid_C - EQM_krig 0.0385 0.0508 204 0.758 1.0000
LTQM_grid_C - EQM_grid 0.0493 0.0508 204 0.970 1.0000
LTQM_grid_C - LT_grid 0.0678 0.0508 204 1.334 1.0000
LTQM_grid_V - EQM_IDW 0.1182 0.0508 204 2.325 0.3160
LTQM_grid_V - EQM_krig 0.1334 0.0508 204 2.624 0.1401
LTQM_grid_V - EQM_grid 0.1442 0.0508 204 2.837 0.0753
LTQM_grid_V - LT_grid 0.1627 0.0508 204 3.200 0.0239
LTQM_grid_V - LTQM_grid_C 0.0949 0.0508 204 1.866 0.9512
Month = 7
EQM_krig - EQM_IDW 0.0057 0.0508 204 0.113 1.0000
EQM_grid - EQM_IDW -0.0355 0.0508 204 -0.698 1.0000
EQM_grid - EQM_krig -0.0412 0.0508 204 -0.810 1.0000
LT_grid - EQM_IDW -0.0054 0.0508 204 -0.106 1.0000
LT_grid - EQM_krig -0.0111 0.0508 204 -0.218 1.0000
LT_grid - EQM_grid 0.0301 0.0508 204 0.592 1.0000
LTQM_grid_C - EQM_IDW -0.0442 0.0508 204 -0.869 1.0000
LTQM_grid_C - EQM_krig -0.0499 0.0508 204 -0.982 1.0000
LTQM_grid_C - EQM_grid -0.0087 0.0508 204 -0.171 1.0000
LTQM_grid_C - LT_grid -0.0388 0.0508 204 -0.763 1.0000
LTQM_grid_V - EQM_IDW 0.1112 0.0508 204 2.188 0.4468
LTQM_grid_V - EQM_krig 0.1055 0.0508 204 2.076 0.5877
LTQM_grid_V - EQM_grid 0.1467 0.0508 204 2.886 0.0648
LTQM_grid_V - LT_grid 0.1166 0.0508 204 2.294 0.3423
LTQM_grid_V - LTQM_grid_C 0.1554 0.0508 204 3.057 0.0380
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Month = 8
EQM_krig - EQM_IDW -0.0058 0.0508 204 -0.113 1.0000
EQM_grid - EQM_IDW -0.0466 0.0508 204 -0.917 1.0000
EQM_grid - EQM_krig -0.0409 0.0508 204 -0.804 1.0000
LT_grid - EQM_IDW -0.0105 0.0508 204 -0.207 1.0000
LT_grid - EQM_krig -0.0047 0.0508 204 -0.093 1.0000
LT_grid - EQM_grid 0.0361 0.0508 204 0.710 1.0000
LTQM_grid_C - EQM_IDW 0.0321 0.0508 204 0.631 1.0000
LTQM_grid_C - EQM_krig 0.0378 0.0508 204 0.744 1.0000
LTQM_grid_C - EQM_grid 0.0787 0.0508 204 1.547 1.0000
LTQM_grid_C - LT_grid 0.0426 0.0508 204 0.837 1.0000
LTQM_grid_V - EQM_IDW 0.3961 0.0508 204 7.792 <.0001
LTQM_grid_V - EQM_krig 0.4019 0.0508 204 7.905 <.0001
LTQM_grid_V - EQM_grid 0.4427 0.0508 204 8.709 <.0001
LTQM_grid_V - LT_grid 0.4066 0.0508 204 7.998 <.0001
LTQM_grid_V - LTQM_grid_C 0.3640 0.0508 204 7.161 <.0001
Month = 9
EQM_krig - EQM_IDW 0.0063 0.0508 204 0.124 1.0000
EQM_grid - EQM_IDW -0.0206 0.0508 204 -0.405 1.0000
EQM_grid - EQM_krig -0.0269 0.0508 204 -0.529 1.0000
LT_grid - EQM_IDW 0.0030 0.0508 204 0.060 1.0000
LT_grid - EQM_krig -0.0032 0.0508 204 -0.064 1.0000
LT_grid - EQM_grid 0.0236 0.0508 204 0.465 1.0000
LTQM_grid_C - EQM_IDW -0.0615 0.0508 204 -1.209 1.0000
LTQM_grid_C - EQM_krig -0.0677 0.0508 204 -1.332 1.0000
LTQM_grid_C - EQM_grid -0.0409 0.0508 204 -0.804 1.0000
LTQM_grid_C - LT_grid -0.0645 0.0508 204 -1.269 1.0000
LTQM_grid_V - EQM_IDW 0.1249 0.0508 204 2.458 0.2223
LTQM_grid_V - EQM_krig 0.1187 0.0508 204 2.334 0.3084
LTQM_grid_V - EQM_grid 0.1455 0.0508 204 2.863 0.0696
LTQM_grid_V - LT_grid 0.1219 0.0508 204 2.398 0.2608
LTQM_grid_V - LTQM_grid_C 0.1864 0.0508 204 3.667 0.0047
Month = 10
EQM_krig - EQM_IDW 0.0061 0.0508 204 0.120 1.0000
EQM_grid - EQM_IDW -0.0041 0.0508 204 -0.081 1.0000
EQM_grid - EQM_krig -0.0102 0.0508 204 -0.201 1.0000
LT_grid - EQM_IDW -0.0792 0.0508 204 -1.558 1.0000
LT_grid - EQM_krig -0.0853 0.0508 204 -1.679 1.0000
LT_grid - EQM_grid -0.0751 0.0508 204 -1.477 1.0000
LTQM_grid_C - EQM_IDW 0.0097 0.0508 204 0.192 1.0000
LTQM_grid_C - EQM_krig 0.0036 0.0508 204 0.071 1.0000
LTQM_grid_C - EQM_grid 0.0139 0.0508 204 0.273 1.0000
LTQM_grid_C - LT_grid 0.0889 0.0508 204 1.750 1.0000
LTQM_grid_V - EQM_IDW 0.0578 0.0508 204 1.137 1.0000
LTQM_grid_V - EQM_krig 0.0517 0.0508 204 1.017 1.0000
LTQM_grid_V - EQM_grid 0.0619 0.0508 204 1.218 1.0000
LTQM_grid_V - LT_grid 0.1370 0.0508 204 2.695 0.1143
LTQM_grid_V - LTQM_grid_C 0.0481 0.0508 204 0.945 1.0000
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Month = 11
EQM_krig - EQM_IDW 0.0261 0.0508 204 0.513 1.0000
EQM_grid - EQM_IDW -0.0258 0.0508 204 -0.508 1.0000
EQM_grid - EQM_krig -0.0519 0.0508 204 -1.021 1.0000
LT_grid - EQM_IDW -0.1856 0.0508 204 -3.651 0.0050
LT_grid - EQM_krig -0.2117 0.0508 204 -4.164 0.0007
LT_grid - EQM_grid -0.1598 0.0508 204 -3.143 0.0288
LTQM_grid_C - EQM_IDW -0.0608 0.0508 204 -1.195 1.0000
LTQM_grid_C - EQM_krig -0.0868 0.0508 204 -1.708 1.0000
LTQM_grid_C - EQM_grid -0.0349 0.0508 204 -0.687 1.0000
LTQM_grid_C - LT_grid 0.1249 0.0508 204 2.456 0.2232
LTQM_grid_V - EQM_IDW -0.0257 0.0508 204 -0.506 1.0000
LTQM_grid_V - EQM_krig -0.0518 0.0508 204 -1.019 1.0000
LTQM_grid_V - EQM_grid 0.0001 0.0508 204 0.002 1.0000
LTQM_grid_V - LT_grid 0.1599 0.0508 204 3.145 0.0286
LTQM_grid_V - LTQM_grid_C 0.0350 0.0508 204 0.689 1.0000
Month = 12
EQM_krig - EQM_IDW -0.0073 0.0508 204 -0.144 1.0000
EQM_grid - EQM_IDW -0.0614 0.0508 204 -1.208 1.0000
EQM_grid - EQM_krig -0.0541 0.0508 204 -1.064 1.0000
LT_grid - EQM_IDW -0.3990 0.0508 204 -7.849 <.0001
LT_grid - EQM_krig -0.3916 0.0508 204 -7.704 <.0001
LT_grid - EQM_grid -0.3376 0.0508 204 -6.641 <.0001
LTQM_grid_C - EQM_IDW -0.2600 0.0508 204 -5.114 <.0001
LTQM_grid_C - EQM_krig -0.2526 0.0508 204 -4.969 <.0001
LTQM_grid_C - EQM_grid -0.1985 0.0508 204 -3.906 0.0019
LTQM_grid_C - LT_grid 0.1390 0.0508 204 2.735 0.1018
LTQM_grid_V - EQM_IDW -0.2493 0.0508 204 -4.904 <.0001
LTQM_grid_V - EQM_krig -0.2420 0.0508 204 -4.760 0.0001
LTQM_grid_V - EQM_grid -0.1879 0.0508 204 -3.696 0.0042
LTQM_grid_V - LT_grid 0.1497 0.0508 204 2.944 0.0542
LTQM_grid_V - LTQM_grid_C 0.0107 0.0508 204 0.210 1.0000
Results are averaged over the levels of: Bias_correction_years, Elevation
P value adjustment: bonferroni method for 15 tests
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Table 9: Contrasts for PSS ANOVA model for interaction: Month ×Method
contrast estimate SE df t.ratio p.value
Month = 1
EQM_IDW - EQM_grid -0.0026 0.0074 210 -0.357 1.0000
EQM_krig - EQM_grid -0.0004 0.0074 210 -0.058 1.0000
EQM_krig - EQM_IDW 0.0022 0.0074 210 0.299 1.0000
LT_grid - EQM_grid -0.0525 0.0074 210 -7.139 <.0001
LT_grid - EQM_IDW -0.0499 0.0074 210 -6.782 <.0001
LT_grid - EQM_krig -0.0521 0.0074 210 -7.081 <.0001
LTQM_grid_C - EQM_grid -0.0173 0.0074 210 -2.355 0.2918
LTQM_grid_C - EQM_IDW -0.0147 0.0074 210 -1.997 0.7061
LTQM_grid_C - EQM_krig -0.0169 0.0074 210 -2.296 0.3396
LTQM_grid_C - LT_grid 0.0352 0.0074 210 4.784 <.0001
LTQM_grid_V - EQM_grid -0.0152 0.0074 210 -2.070 0.5952
LTQM_grid_V - EQM_IDW -0.0126 0.0074 210 -1.713 1.0000
LTQM_grid_V - EQM_krig -0.0148 0.0074 210 -2.011 0.6833
LTQM_grid_V - LT_grid 0.0373 0.0074 210 5.069 <.0001
LTQM_grid_V - LTQM_grid_C 0.0021 0.0074 210 0.285 1.0000
Month = 2
EQM_IDW - EQM_grid 0.0046 0.0074 210 0.629 1.0000
EQM_krig - EQM_grid 0.0068 0.0074 210 0.927 1.0000
EQM_krig - EQM_IDW 0.0022 0.0074 210 0.299 1.0000
LT_grid - EQM_grid -0.0516 0.0074 210 -7.015 <.0001
LT_grid - EQM_IDW -0.0562 0.0074 210 -7.644 <.0001
LT_grid - EQM_krig -0.0584 0.0074 210 -7.942 <.0001
LTQM_grid_C - EQM_grid -0.0469 0.0074 210 -6.371 <.0001
LTQM_grid_C - EQM_IDW -0.0515 0.0074 210 -7.000 <.0001
LTQM_grid_C - EQM_krig -0.0537 0.0074 210 -7.298 <.0001
LTQM_grid_C - LT_grid 0.0047 0.0074 210 0.644 1.0000
LTQM_grid_V - EQM_grid -0.0467 0.0074 210 -6.344 <.0001
LTQM_grid_V - EQM_IDW -0.0513 0.0074 210 -6.972 <.0001
LTQM_grid_V - EQM_krig -0.0535 0.0074 210 -7.271 <.0001
LTQM_grid_V - LT_grid 0.0049 0.0074 210 0.671 1.0000
LTQM_grid_V - LTQM_grid_C 0.0002 0.0074 210 0.027 1.0000
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Month = 3
EQM_IDW - EQM_grid -0.0029 0.0074 210 -0.400 1.0000
EQM_krig - EQM_grid -0.0008 0.0074 210 -0.112 1.0000
EQM_krig - EQM_IDW 0.0021 0.0074 210 0.289 1.0000
LT_grid - EQM_grid -0.0925 0.0074 210 -12.577 <.0001
LT_grid - EQM_IDW -0.0896 0.0074 210 -12.177 <.0001
LT_grid - EQM_krig -0.0917 0.0074 210 -12.466 <.0001
LTQM_grid_C - EQM_grid -0.0700 0.0074 210 -9.509 <.0001
LTQM_grid_C - EQM_IDW -0.0670 0.0074 210 -9.108 <.0001
LTQM_grid_C - EQM_krig -0.0691 0.0074 210 -9.397 <.0001
LTQM_grid_C - LT_grid 0.0226 0.0074 210 3.068 0.0365
LTQM_grid_V - EQM_grid -0.0730 0.0074 210 -9.921 <.0001
LTQM_grid_V - EQM_IDW -0.0701 0.0074 210 -9.520 <.0001
LTQM_grid_V - EQM_krig -0.0722 0.0074 210 -9.809 <.0001
LTQM_grid_V - LT_grid 0.0195 0.0074 210 2.656 0.1275
LTQM_grid_V - LTQM_grid_C -0.0030 0.0074 210 -0.412 1.0000
Month = 4
EQM_IDW - EQM_grid 0.0010 0.0074 210 0.131 1.0000
EQM_krig - EQM_grid -0.0043 0.0074 210 -0.584 1.0000
EQM_krig - EQM_IDW -0.0053 0.0074 210 -0.715 1.0000
LT_grid - EQM_grid -0.0407 0.0074 210 -5.530 <.0001
LT_grid - EQM_IDW -0.0417 0.0074 210 -5.661 <.0001
LT_grid - EQM_krig -0.0364 0.0074 210 -4.946 <.0001
LTQM_grid_C - EQM_grid -0.0186 0.0074 210 -2.523 0.1857
LTQM_grid_C - EQM_IDW -0.0195 0.0074 210 -2.654 0.1285
LTQM_grid_C - EQM_krig -0.0143 0.0074 210 -1.939 0.8078
LTQM_grid_C - LT_grid 0.0221 0.0074 210 3.007 0.0444
LTQM_grid_V - EQM_grid -0.0114 0.0074 210 -1.553 1.0000
LTQM_grid_V - EQM_IDW -0.0124 0.0074 210 -1.684 1.0000
LTQM_grid_V - EQM_krig -0.0071 0.0074 210 -0.969 1.0000
LTQM_grid_V - LT_grid 0.0293 0.0074 210 3.977 0.0014
LTQM_grid_V - LTQM_grid_C 0.0071 0.0074 210 0.970 1.0000
Month = 5
EQM_IDW - EQM_grid 0.0048 0.0074 210 0.648 1.0000
EQM_krig - EQM_grid 0.0016 0.0074 210 0.224 1.0000
EQM_krig - EQM_IDW -0.0031 0.0074 210 -0.425 1.0000
LT_grid - EQM_grid -0.0476 0.0074 210 -6.464 <.0001
LT_grid - EQM_IDW -0.0523 0.0074 210 -7.113 <.0001
LT_grid - EQM_krig -0.0492 0.0074 210 -6.688 <.0001
LTQM_grid_C - EQM_grid 0.0077 0.0074 210 1.041 1.0000
LTQM_grid_C - EQM_IDW 0.0029 0.0074 210 0.392 1.0000
LTQM_grid_C - EQM_krig 0.0060 0.0074 210 0.817 1.0000
LTQM_grid_C - LT_grid 0.0552 0.0074 210 7.505 <.0001
LTQM_grid_V - EQM_grid 0.0093 0.0074 210 1.270 1.0000
LTQM_grid_V - EQM_IDW 0.0046 0.0074 210 0.621 1.0000
LTQM_grid_V - EQM_krig 0.0077 0.0074 210 1.046 1.0000
LTQM_grid_V - LT_grid 0.0569 0.0074 210 7.734 <.0001
LTQM_grid_V - LTQM_grid_C 0.0017 0.0074 210 0.229 1.0000
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Month = 6
EQM_IDW - EQM_grid 0.0026 0.0074 210 0.356 1.0000
EQM_krig - EQM_grid 0.0097 0.0074 210 1.315 1.0000
EQM_krig - EQM_IDW 0.0071 0.0074 210 0.960 1.0000
LT_grid - EQM_grid -0.0175 0.0074 210 -2.375 0.2770
LT_grid - EQM_IDW -0.0201 0.0074 210 -2.730 0.1030
LT_grid - EQM_krig -0.0272 0.0074 210 -3.690 0.0043
LTQM_grid_C - EQM_grid 0.0310 0.0074 210 4.219 0.0005
LTQM_grid_C - EQM_IDW 0.0284 0.0074 210 3.863 0.0022
LTQM_grid_C - EQM_krig 0.0214 0.0074 210 2.904 0.0613
LTQM_grid_C - LT_grid 0.0485 0.0074 210 6.593 <.0001
LTQM_grid_V - EQM_grid 0.0247 0.0074 210 3.355 0.0141
LTQM_grid_V - EQM_IDW 0.0221 0.0074 210 3.000 0.0454
LTQM_grid_V - EQM_krig 0.0150 0.0074 210 2.040 0.6389
LTQM_grid_V - LT_grid 0.0422 0.0074 210 5.730 <.0001
LTQM_grid_V - LTQM_grid_C -0.0064 0.0074 210 -0.863 1.0000
Month = 7
EQM_IDW - EQM_grid 0.0051 0.0074 210 0.698 1.0000
EQM_krig - EQM_grid -0.0073 0.0074 210 -0.998 1.0000
EQM_krig - EQM_IDW -0.0125 0.0074 210 -1.696 1.0000
LT_grid - EQM_grid -0.0231 0.0074 210 -3.137 0.0293
LT_grid - EQM_IDW -0.0282 0.0074 210 -3.835 0.0025
LT_grid - EQM_krig -0.0157 0.0074 210 -2.139 0.5041
LTQM_grid_C - EQM_grid 0.0217 0.0074 210 2.955 0.0522
LTQM_grid_C - EQM_IDW 0.0166 0.0074 210 2.258 0.3751
LTQM_grid_C - EQM_krig 0.0291 0.0074 210 3.954 0.0016
LTQM_grid_C - LT_grid 0.0448 0.0074 210 6.092 <.0001
LTQM_grid_V - EQM_grid 0.0140 0.0074 210 1.899 0.8844
LTQM_grid_V - EQM_IDW 0.0088 0.0074 210 1.201 1.0000
LTQM_grid_V - EQM_krig 0.0213 0.0074 210 2.897 0.0625
LTQM_grid_V - LT_grid 0.0371 0.0074 210 5.036 <.0001
LTQM_grid_V - LTQM_grid_C -0.0078 0.0074 210 -1.056 1.0000
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Month = 8
EQM_IDW - EQM_grid -0.0001 0.0074 210 -0.017 1.0000
EQM_krig - EQM_grid 0.0039 0.0074 210 0.529 1.0000
EQM_krig - EQM_IDW 0.0040 0.0074 210 0.545 1.0000
LT_grid - EQM_grid -0.0396 0.0074 210 -5.375 <.0001
LT_grid - EQM_IDW -0.0394 0.0074 210 -5.358 <.0001
LT_grid - EQM_krig -0.0434 0.0074 210 -5.904 <.0001
LTQM_grid_C - EQM_grid 0.0013 0.0074 210 0.174 1.0000
LTQM_grid_C - EQM_IDW 0.0014 0.0074 210 0.191 1.0000
LTQM_grid_C - EQM_krig -0.0026 0.0074 210 -0.355 1.0000
LTQM_grid_C - LT_grid 0.0408 0.0074 210 5.549 <.0001
LTQM_grid_V - EQM_grid -0.0068 0.0074 210 -0.924 1.0000
LTQM_grid_V - EQM_IDW -0.0067 0.0074 210 -0.907 1.0000
LTQM_grid_V - EQM_krig -0.0107 0.0074 210 -1.453 1.0000
LTQM_grid_V - LT_grid 0.0328 0.0074 210 4.451 0.0002
LTQM_grid_V - LTQM_grid_C -0.0081 0.0074 210 -1.098 1.0000
Month = 9
EQM_IDW - EQM_grid 0.0039 0.0074 210 0.528 1.0000
EQM_krig - EQM_grid 0.0048 0.0074 210 0.647 1.0000
EQM_krig - EQM_IDW 0.0009 0.0074 210 0.119 1.0000
LT_grid - EQM_grid -0.0090 0.0074 210 -1.225 1.0000
LT_grid - EQM_IDW -0.0129 0.0074 210 -1.753 1.0000
LT_grid - EQM_krig -0.0138 0.0074 210 -1.872 0.9384
LTQM_grid_C - EQM_grid 0.0271 0.0074 210 3.679 0.0045
LTQM_grid_C - EQM_IDW 0.0232 0.0074 210 3.151 0.0279
LTQM_grid_C - EQM_krig 0.0223 0.0074 210 3.032 0.0410
LTQM_grid_C - LT_grid 0.0361 0.0074 210 4.904 <.0001
LTQM_grid_V - EQM_grid 0.0308 0.0074 210 4.192 0.0006
LTQM_grid_V - EQM_IDW 0.0270 0.0074 210 3.663 0.0047
LTQM_grid_V - EQM_krig 0.0261 0.0074 210 3.544 0.0073
LTQM_grid_V - LT_grid 0.0399 0.0074 210 5.417 <.0001
LTQM_grid_V - LTQM_grid_C 0.0038 0.0074 210 0.512 1.0000
Month = 10
EQM_IDW - EQM_grid 0.0057 0.0074 210 0.781 1.0000
EQM_krig - EQM_grid 0.0102 0.0074 210 1.379 1.0000
EQM_krig - EQM_IDW 0.0044 0.0074 210 0.599 1.0000
LT_grid - EQM_grid -0.0211 0.0074 210 -2.869 0.0681
LT_grid - EQM_IDW -0.0269 0.0074 210 -3.649 0.0050
LT_grid - EQM_krig -0.0313 0.0074 210 -4.248 0.0005
LTQM_grid_C - EQM_grid 0.0260 0.0074 210 3.536 0.0075
LTQM_grid_C - EQM_IDW 0.0203 0.0074 210 2.755 0.0957
LTQM_grid_C - EQM_krig 0.0159 0.0074 210 2.157 0.4826
LTQM_grid_C - LT_grid 0.0471 0.0074 210 6.405 <.0001
LTQM_grid_V - EQM_grid 0.0254 0.0074 210 3.457 0.0099
LTQM_grid_V - EQM_IDW 0.0197 0.0074 210 2.676 0.1206
LTQM_grid_V - EQM_krig 0.0153 0.0074 210 2.077 0.5851
LTQM_grid_V - LT_grid 0.0465 0.0074 210 6.325 <.0001
LTQM_grid_V - LTQM_grid_C -0.0006 0.0074 210 -0.080 1.0000
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Month = 11
EQM_IDW - EQM_grid 0.0013 0.0074 210 0.181 1.0000
EQM_krig - EQM_grid 0.0066 0.0074 210 0.903 1.0000
EQM_krig - EQM_IDW 0.0053 0.0074 210 0.722 1.0000
LT_grid - EQM_grid -0.0177 0.0074 210 -2.410 0.2519
LT_grid - EQM_IDW -0.0191 0.0074 210 -2.591 0.1534
LT_grid - EQM_krig -0.0244 0.0074 210 -3.314 0.0163
LTQM_grid_C - EQM_grid 0.0159 0.0074 210 2.162 0.4763
LTQM_grid_C - EQM_IDW 0.0146 0.0074 210 1.981 0.7336
LTQM_grid_C - EQM_krig 0.0093 0.0074 210 1.259 1.0000
LTQM_grid_C - LT_grid 0.0336 0.0074 210 4.572 0.0001
LTQM_grid_V - EQM_grid 0.0167 0.0074 210 2.271 0.3620
LTQM_grid_V - EQM_IDW 0.0154 0.0074 210 2.090 0.5667
LTQM_grid_V - EQM_krig 0.0101 0.0074 210 1.368 1.0000
LTQM_grid_V - LT_grid 0.0345 0.0074 210 4.682 0.0001
LTQM_grid_V - LTQM_grid_C 0.0008 0.0074 210 0.110 1.0000
Month = 12
EQM_IDW - EQM_grid -0.0024 0.0074 210 -0.332 1.0000
EQM_krig - EQM_grid -0.0036 0.0074 210 -0.488 1.0000
EQM_krig - EQM_IDW -0.0012 0.0074 210 -0.157 1.0000
LT_grid - EQM_grid -0.0136 0.0074 210 -1.844 0.9984
LT_grid - EQM_IDW -0.0111 0.0074 210 -1.513 1.0000
LT_grid - EQM_krig -0.0100 0.0074 210 -1.356 1.0000
LTQM_grid_C - EQM_grid 0.0049 0.0074 210 0.662 1.0000
LTQM_grid_C - EQM_IDW 0.0073 0.0074 210 0.993 1.0000
LTQM_grid_C - EQM_krig 0.0085 0.0074 210 1.150 1.0000
LTQM_grid_C - LT_grid 0.0184 0.0074 210 2.506 0.1947
LTQM_grid_V - EQM_grid 0.0073 0.0074 210 0.989 1.0000
LTQM_grid_V - EQM_IDW 0.0097 0.0074 210 1.320 1.0000
LTQM_grid_V - EQM_krig 0.0109 0.0074 210 1.477 1.0000
LTQM_grid_V - LT_grid 0.0208 0.0074 210 2.833 0.0759
LTQM_grid_V - LTQM_grid_C 0.0024 0.0074 210 0.327 1.0000
Results are averaged over the levels of: Bias_correction_years
P value adjustment: bonferroni method for 15 tests
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Table 10: Contrasts for RMSE ANOVA model for interaction Bias_correction_years ×
Method

contrast estimate SE df t.ratio p.value
Bias_correction_years = 1980-1989
EQM_krig - EQM_IDW -0.0062 0.0208 204 -0.300 1.0000
EQM_grid - EQM_IDW -0.0219 0.0208 204 -1.053 1.0000
EQM_grid - EQM_krig -0.0156 0.0208 204 -0.753 1.0000
LT_grid - EQM_IDW -0.1697 0.0208 204 -8.179 <.0001
LT_grid - EQM_krig -0.1635 0.0208 204 -7.879 <.0001
LT_grid - EQM_grid -0.1479 0.0208 204 -7.126 <.0001
LTQM_grid_C - EQM_IDW -0.0557 0.0208 204 -2.685 0.1177
LTQM_grid_C - EQM_krig -0.0495 0.0208 204 -2.385 0.2696
LTQM_grid_C - EQM_grid -0.0339 0.0208 204 -1.632 1.0000
LTQM_grid_C - LT_grid 0.1140 0.0208 204 5.494 <.0001
LTQM_grid_V - EQM_IDW 0.0135 0.0208 204 0.652 1.0000
LTQM_grid_V - EQM_krig 0.0197 0.0208 204 0.951 1.0000
LTQM_grid_V - EQM_grid 0.0354 0.0208 204 1.705 1.0000
LTQM_grid_V - LT_grid 0.1833 0.0208 204 8.830 <.0001
LTQM_grid_V - LTQM_grid_C 0.0692 0.0208 204 3.337 0.0151
Bias_correction_years = 1980-2014
EQM_krig - EQM_IDW 0.0102 0.0208 204 0.492 1.0000
EQM_grid - EQM_IDW -0.0361 0.0208 204 -1.738 1.0000
EQM_grid - EQM_krig -0.0463 0.0208 204 -2.230 0.4023
LT_grid - EQM_IDW -0.0649 0.0208 204 -3.127 0.0304
LT_grid - EQM_krig -0.0751 0.0208 204 -3.619 0.0056
LT_grid - EQM_grid -0.0288 0.0208 204 -1.389 1.0000
LTQM_grid_C - EQM_IDW 0.0159 0.0208 204 0.767 1.0000
LTQM_grid_C - EQM_krig 0.0057 0.0208 204 0.274 1.0000
LTQM_grid_C - EQM_grid 0.0520 0.0208 204 2.505 0.1957
LTQM_grid_C - LT_grid 0.0808 0.0208 204 3.894 0.0020
LTQM_grid_V - EQM_IDW 0.1103 0.0208 204 5.313 <.0001
LTQM_grid_V - EQM_krig 0.1000 0.0208 204 4.821 <.0001
LTQM_grid_V - EQM_grid 0.1463 0.0208 204 7.051 <.0001
LTQM_grid_V - LT_grid 0.1752 0.0208 204 8.440 <.0001
LTQM_grid_V - LTQM_grid_C 0.0944 0.0208 204 4.547 0.0001
Results are averaged over the levels of: Month, Elevation

P value adjustment: bonferroni method for 15 tests
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Table 11: Contrasts for PSS model for interaction: Bias_correction_years × Method
contrast estimate SE df t.ratio p.value
Bias_correction_years = 1980-1989
EQM_krig - EQM_IDW -0.0005 0.0030 210 -0.182 1.0000
EQM_grid - EQM_IDW -0.0015 0.0030 210 -0.490 1.0000
EQM_grid - EQM_krig -0.0009 0.0030 210 -0.308 1.0000
LT_grid - EQM_IDW -0.0182 0.0030 210 -6.044 <.0001
LT_grid - EQM_krig -0.0176 0.0030 210 -5.862 <.0001
LT_grid - EQM_grid -0.0167 0.0030 210 -5.554 <.0001
LTQM_grid_C - EQM_IDW 0.0101 0.0030 210 3.375 0.0132
LTQM_grid_C - EQM_krig 0.0107 0.0030 210 3.557 0.0070
LTQM_grid_C - EQM_grid 0.0116 0.0030 210 3.864 0.0022
LTQM_grid_C - LT_grid 0.0283 0.0030 210 9.418 <.0001
LTQM_grid_V - EQM_IDW 0.0098 0.0030 210 3.263 0.0193
LTQM_grid_V - EQM_krig 0.0103 0.0030 210 3.445 0.0104
LTQM_grid_V - EQM_grid 0.0113 0.0030 210 3.753 0.0034
LTQM_grid_V - LT_grid 0.0280 0.0030 210 9.306 <.0001
LTQM_grid_V - LTQM_grid_C -0.0003 0.0030 210 -0.112 1.0000
Bias_correction_years = 1980-2014
EQM_krig - EQM_IDW 0.0016 0.0030 210 0.524 1.0000
EQM_grid - EQM_IDW -0.0020 0.0030 210 -0.672 1.0000
EQM_grid - EQM_krig -0.0036 0.0030 210 -1.196 1.0000
LT_grid - EQM_IDW -0.0564 0.0030 210 -18.781 <.0001
LT_grid - EQM_krig -0.0580 0.0030 210 -19.305 <.0001
LT_grid - EQM_grid -0.0544 0.0030 210 -18.109 <.0001
LTQM_grid_C - EQM_IDW -0.0165 0.0030 210 -5.487 <.0001
LTQM_grid_C - EQM_krig -0.0181 0.0030 210 -6.012 <.0001
LTQM_grid_C - EQM_grid -0.0145 0.0030 210 -4.816 <.0001
LTQM_grid_C - LT_grid 0.0399 0.0030 210 13.293 <.0001
LTQM_grid_V - EQM_IDW -0.0174 0.0030 210 -5.804 <.0001
LTQM_grid_V - EQM_krig -0.0190 0.0030 210 -6.328 <.0001
LTQM_grid_V - EQM_grid -0.0154 0.0030 210 -5.132 <.0001
LTQM_grid_V - LT_grid 0.0390 0.0030 210 12.977 <.0001
LTQM_grid_V - LTQM_grid_C -0.0010 0.0030 210 -0.317 1.0000
Results are averaged over the levels of: Month

P value adjustment: bonferroni method for 15 tests
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Table 12: Contrasts for RMSE model for interaction: Elevation × Method
contrast estimate SE df t.ratio p.value
Elevation = NO
EQM_krig - EQM_IDW -0.0016 0.0208 204 -0.079 1.0000
EQM_grid - EQM_IDW -0.0220 0.0208 204 -1.061 1.0000
EQM_grid - EQM_krig -0.0204 0.0208 204 -0.982 1.0000
LT_grid - EQM_IDW -0.1352 0.0208 204 -6.515 <.0001
LT_grid - EQM_krig -0.1336 0.0208 204 -6.436 <.0001
LT_grid - EQM_grid -0.1132 0.0208 204 -5.454 <.0001
LTQM_grid_C - EQM_IDW -0.0570 0.0208 204 -2.747 0.0982
LTQM_grid_C - EQM_krig -0.0554 0.0208 204 -2.668 0.1237
LTQM_grid_C - EQM_grid -0.0350 0.0208 204 -1.686 1.0000
LTQM_grid_C - LT_grid 0.0782 0.0208 204 3.768 0.0032
LTQM_grid_V - EQM_IDW 0.0604 0.0208 204 2.913 0.0597
LTQM_grid_V - EQM_krig 0.0621 0.0208 204 2.992 0.0467
LTQM_grid_V - EQM_grid 0.0825 0.0208 204 3.974 0.0015
LTQM_grid_V - LT_grid 0.1957 0.0208 204 9.428 <.0001
LTQM_grid_V - LTQM_grid_C 0.1175 0.0208 204 5.660 <.0001
Elevation = YES
EQM_krig - EQM_IDW 0.0056 0.0208 204 0.272 1.0000
EQM_grid - EQM_IDW -0.0359 0.0208 204 -1.730 1.0000
EQM_grid - EQM_krig -0.0416 0.0208 204 -2.002 0.6990
LT_grid - EQM_IDW -0.0994 0.0208 204 -4.791 <.0001
LT_grid - EQM_krig -0.1051 0.0208 204 -5.063 <.0001
LT_grid - EQM_grid -0.0635 0.0208 204 -3.061 0.0376
LTQM_grid_C - EQM_IDW 0.0172 0.0208 204 0.829 1.0000
LTQM_grid_C - EQM_krig 0.0116 0.0208 204 0.557 1.0000
LTQM_grid_C - EQM_grid 0.0531 0.0208 204 2.559 0.1685
LTQM_grid_C - LT_grid 0.1166 0.0208 204 5.619 <.0001
LTQM_grid_V - EQM_IDW 0.0633 0.0208 204 3.052 0.0386
LTQM_grid_V - EQM_krig 0.0577 0.0208 204 2.780 0.0891
LTQM_grid_V - EQM_grid 0.0992 0.0208 204 4.782 <.0001
LTQM_grid_V - LT_grid 0.1628 0.0208 204 7.843 <.0001
LTQM_grid_V - LTQM_grid_C 0.0461 0.0208 204 2.223 0.4092
Results are averaged over the levels of: Month, Bias_correction_years

P value adjustment: bonferroni method for 15 tests

7.1 Modeling details: Bayesian kriging
For LT_grid, LTQM_grid_C, and LTQM_grid_V, estimated slope and intercept

parameters from transfer functions were kriged to the fine-scale grid using Bayesian
kriging. One assumption of Bayesian spatial hierarchical models is that random spatial
variates can be modeled by unique Gaussian spatial processes, Y (s), with mean µ(s) =
E(Y (s)), and where the measurement locations {s1...sn} are, in this study, WRF
center grid points. In Gaussian spatial processes, observations Y = {s1...sn} are
assumed to follow a multivariate normal distribution (Banerjee et al., 2004):

Y |µ, θ ∼ Nn(µ1, σ(θ)),
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where Nn connotes the N dimensional normal distribution, µ is the constant mean,
σ(θ)ii′ gives the covariance between Y (si) and Y (si′), and θ = (τ2, σ2, φ)T is a vector
of spatial parameters upon which the covariance matrix depends. For methods LT_grid,
LTQM_grid_C, and LTQM_grid_V, the response variables were either monthly slope
or intercept parameters. For each month, estimated slopes and intercepts were kriged
from station locations to the fine-scale grid. We used a Bayesian spatial hierarchical
model of the form:

Y (s) = µ(s) + w(s) + ε(s), (5)

where Y (s) is the response at location s having a mean structure µ(s) = xT (s)β.
The implementation of a full Bayesian spatial model is computationally intensive, due
to the inversion of large (n×n) covariance matrices (Banerjee et al., 2004). To decrease
computation time, we instead used a nearest-neighbor Gaussian process model (NNGP),
which is computationally more efficient that the full Gaussian process model in (5). In
NNGP models, the spatial process is estimated by a realization of the spatial process
with its n nearest neighbors (Finley, 2017). The spNNGP function from the spNNGP
package in R constructs an NNGP model (Finley, 2017). In this function, Markov
chain Monte Carlo (MCMC) sampling approximates the posterior distribution of the
parameter vector θ by fitting the marginalized model f(y|θ)p(θ), which integrates
over the spatial effects vector W and regression coefficients. The spNNGP function
allows σ2 and the ratio τ2/σ2 to vary, making it a flexible model (Banerjee et al.,
2004). Predictions were made by passing the resulting model fit from spNNGP to the
spPredict function (Finley, 2017), which carries out Bayesian kriging.

Based on exploratory variogram analysis, we used the exponential covariance
function for fitting all models.

C(t) =
{

τ2 + σ2 if d = 0
σ2exp(−φd) if d > 0

}
, (6)

In (6), ||h|| = d, and φ, τ2, and σ2 are the effective range, nugget effect, and partial
sill, respectively (the exponential covariance function reaches 0 asymptotically, so the
effective range, rather than the range, must be used. The effective range d0, can be
obtained by setting exp(−φd = 0.05), which yields d0 = 3

φ .
Prior distributions were selected by following recommendations in (Banerjee et al.,

2004). We inspected residual variograms to determine appropriate prior values for the
effective range, φ. For Bayesian kriging in EQM_grid, priors for the intercept (β0), the
effective range (φ), partial sill (σ2), and nugget (τ2) were as follows:

β0 ∼ N(0, 100)

φ ∼ Unif( 3
Dmax

,
3
10)

σ2 ∼ IG(2, 2)
τ2 ∼ IG(2, 0.1),

where Dmax was the maximum distance between any two GHCND station locations.
The priors for all Bayesian kriging implemented in the LT_grid, LTQM_grid_V, and
LTQM_grid_V methods were the same as those for EQM_krig, except we used an
IG(2, 0.02) prior for τ2. All daily models used 5000 MCMC samples with a burn-in
of 1250 iterations. Bayesian kriging was implemented as a nearest neighbor Gaussian
process (NNGP), which is much more efficient than kriging and more accurate than
predictive process models (Finley et al., 2019). All daily NNGP models were fit with
the spNNGP package in R (Finley, 2017).
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7.2 Modeling details: kriging
In methods EQM_grid and EQM_krig daily GHCND station values and bias-

corrected WRF values at station locations were kriged to the 1km grid with non-
Bayesian kriging. Non-Bayesian kriging can also be understood in the context of
Gaussian processes. Suppose that, as in (5), spatial variates Y = s1...sn are assumed
to follow a multivariate normal distribution (Schabenberger and Gotway, 2017). A
general expression for the spatial model is

Y = Xβ + ε, where ε ∼ N(0,Σ), (7)

where the covariance matrix, assuming a nugget effect τ2 is Σ = σ2H(φ) + τ2I ,
and H(φ)ij = ρ(φ; dij) for a valid correlation function ρ. The function h(y) that
minimizes the mean square error (8) is known as the kriging predictor.

E
[
(Y (s0)− h(y))2|y

]
(8)

It can be shown (e.g. Schabenberger and Gotway, 2017) that the kriging predictor at a
new location, Y ∗(s0), takes the form:

Y ∗(s0) =
N∑
i=1

λiY (si),

where s0 is a new location at which is prediction is to be made, and λi are weights
chosen such that they satisfy the conditions of unbiasedness and minimize the kriging
variance (Schabenberger and Gotway, 2017). Unlike Bayesian kriging, the variogram
parameters must be estimated from the data.

Based on exploratory variogram analysis, we used the exponential covariance
function (6) for all model fits (effective range = 150, partial sill = 15, and nugget= 0.2).

7.3 Inverse distance weighting
Inverse distance weighting is a deterministic interpolation technique in which

interpolated values are based on a weighted average of n nearest-neighbor observations.
In IDW, observed values close to prediction locations are assumed to be more influential
in the prediction compared to observed values far from prediction locations. As the
power, p and the number of nearest neighbors n increases, the smoothness of the
interpolated surface increases. IDW is an exact interpolator, which means that if a
prediction location, s0 corresponds to an observed location si, the predicted value at
s0 will be identical to the value at location si. The general equations for IDW are as
follows:

Y (s0) =
n∑
i=1

wi(s0)Y (si),

wi(s0) = w̃i(s0)∑n
i=1

,

T ildewi(s0) = 1
d(si, s0) .

The IDW interpolated value at location s0 is Y (s0), d(si, s0) is the distance between
observed location si and prediction location s0, n is the number of nearest-neighbor
observed locations that contribute to the interpolated value Y (s0), and p is the power
parameter.

 
899



7.4 Topographic downscaling
Topographic downscaling is a variation on IDW that is often used for high resolution

downscaling (Winter et al., 2016). In contrast to kriging, IDW is deterministic; that
is, the size of prediction errors cannot be quantified (Wikle et al., 2019). Topographic
downscaling consists of three main steps:

1. Construct historical, empirical relationship between TMAX and elevation using
regression;

2. Adjust WRF data to reference elevation (200m) using the estimated elevational
lapse rate parameters and use IDW to interpolate to desired locations;

3. Back-transform interpolations using estimated elevational lapse rate parameters.
We used a weight of 2 and 9 nearest neighbors for all IDW interpolation, as

suggested in (Winter et al., 2016).
Following methods by (Winter et al., 2016) and (Liston and Elder, 2006), we utilized

historical (1970-1999) GHCND station records to calculate historical, elevational lapse
rates for TMAX, using stations with at least 70% complete records. We estimated the
elevational lapse rates for TMAX with a linear regression of the form (9):

Tsta = T0 − βφsta − γzsta, (9)

where Tsta is the long-term average station TMAX, T0 is the intercept, β is the coeffi-
cient for GHNCD station latitude (φsta), and γ is the coefficient for station elevation
(zsta).

Our estimates for β and γ were -1.43 and -0.0059, respectively (Figure 15). The
estimate of the elevation coefficient, β, refers to an elevational lapse rate of 5.9◦Ckm−1,
which corresponds closely to that found by (Winter et al., 2016), as well as the standard
elevational lapse rate (6.0◦Ckm−1) (Barry, 1992).

WRF projections for TMAX and were translated to reference elevation with (10)

TWRF, ref = TWRF − γ(zref − zWRF ), (10)

where Tmodel,ref is the value of TMAX (◦ C) at reference elevation, TWRF is the WRF
TMAX value (◦C), γ is the estimated lapse rate (◦Cm−1) from 9, zref is the reference
elevation (m), and zWRF is WRF geopotential height (m).

Next, the transformed WRF data were interpolated to GHNCD station locations
using IDW. Interpolated WRF data were back-transformed to reflect the effect of
elevation (11)

Tsta, interp = Tref, interp − γ(zsta − zref ). (11)

In (11) Tsta,interp is the elevation-adjusted value for TMAX, Tref,interp is the
interpolated value at a station location at reference elevation and zsta and zref are
the GHCND station and reference elevations, respectively. After back- transforming
interpolated values at GHCND station locations, we applied empirical quantile mapping
(EQM) at each station location.

Xcorr,t = ecdf−1
obs,m(ecdfraw,m(Xraw,t)), (12)

In (12), Xcorr,t is the corrected daily value for TMAX on day t, ecdf−1
obs,m is the

inverse ecdf of GHCND station data for month m, and ecdfraw,m is the ecdf of the
WRF data for month m, and Xraw,t is the uncorrected WRF TMAX value on day t.
Next, bias-corrected WRF data at GHCND station locations were translated to reference
elevation with (13)

TEQM, ref = TEQM − γ(zref − zsta), (13)
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where TEQM, ref is the bias corrected, interpolated value for TMAX (◦ C) at reference
elevation, TEQM is the bias corrected, WRF interpolation at a GHCND station location
(◦C), and γ, zref and zsta are as defined in (11). Finally, the reference-adjusted, bias-
corrected WRF interpolations at GHCND station locations were again interpolated to a
1km grid using IDW,

Y (s0) =
n∑
i=1

wi(s0)Y (si),

wi(s0) = Tildewi(s0)∑n
i=1

,

T ildewi(s0) = 1
d(si, s0) ,

where in this context, Y (s0) is the IDW interpolated TMAX value at fine-scale
grid cell s0, Y (si) is the value at station location si, d(s0, si) is the distance between
GHCND station location si and the center of fine-scale grid cell s0, and n and p were
set to 9 and 2, respectively. Finally, the high-resolution values were translated to actual
elevation with (14)

Tfine, interp = Tref, interp − γ(zfine − zref ). (14)

In (14), Tfine, interp is the final downscaled value on the fine-scale grid, Tref, interp
is the interpolated temperature value at reference elevation, zfine is the elevation at the
fine-scale grid, and γ and zref are as defined in (11).

Figure 15: Elevational lapse rate adjustment for TMAX. Note: the elevational lapse rate did
not change appreciably with omission of the two high elevation stations.

7.5 Results for sorted RMSE
An alternative metric for PSS is the sorted RMSE. Since PSS is more widely used

than sorted RMSE, we reported results for PSS in the main manuscript. Sorted RMSE
(SRMSE) was calculated in the same way as RMSE, except that both bias-corrected
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and observed daily TMAX values were sorted prior to the calculation. The full linear
model included the same variables as the models for RMSE and PSS (Table 14). The
final model included the main effects Month, Bias_correction_years, and Method as
well as the interaction terms Month ×Method and Bias_correction_years ×Method
(Table 13).

The results for sorted RMSE were very similar to those of PSS. Generally, SRMSE
values were lower when bias correction was based on the 1980-2014 GHCND dataset.
LT_grid performed worst overall regardless of whether the 1980-1989 or 1980-2014
GHCND dataset was used for bias-correction (Figures 16 and 17). In contrast to RMSE
but similar to PSS, SRMSE exhibited less monthly variation. There was a positive
association (0.60) between SRMSE and PSS when bias correction was conducted with
the 1980-1989 GHCND dataset, but the correlation was strongly negative (-0.97) when
bias correction was done with the 1980-2014 GHCND dataset (Figure 18).

The interaction of Month ×Method was significant, and the interaction was most
apparent for LT_grid. In contrast to other methods, mean SRMSE of LT_grid was
significantly greater than that of all other methods in months 1-5 (Figure 19). The
interaction plot for Method × Bias_correction_years shows that while EQM_IDW,
EQM_krig, and EQM_grid performed better when bias corrected was done with the
1980-2014 GHCND dataset, LTQM_grid_C and LTQM_grid_V performed better when
the 1980-1989 GHCND dataset was used for bias-correction (Figure 20). LT_grid
performed worst overall, regardless of whether the complete 1980-2014 or 1980-1989
GHCND dataset was used for bias-correction (Figure 20).

Table 13: ANOVA table for final SRMSE model.
Df Sum Sq Mean Sq F value Pr(>F)

Month 11 2.56 0.23 10.01 0.0000
Bias_correction_years 1 6.09 6.09 261.56 0.0000
Method 5 8.30 1.66 71.37 0.0000
Month:Method 55 5.07 0.09 3.96 0.0000
Method:Bias_correction_years 5 3.82 0.76 32.79 0.0000
Residuals 210 4.89 0.02
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Figure 16: Mean SRMSE by Method and Bias_correction_years, where "1980-1989"
and "1980-2014" denote the GHCND station datasets used to bias-correct 1990-2014 and
1980-2014 WRF simulations, respectively. Error bars represent 95% confidence intervals.
“WRF_interp” denotes raw WRF simulations (not bias-corrected) interpolated to station
locations and are shown to indicate relative improvement of all methods over raw WRF
interpolated values.

Figure 17: Mean SRMSE by Method, Month, and Bias_correction_years, where "1980-
1989" and "1980-2014" denote the GHCND station datasets used to bias-correct 1990-2014
and 1980-2014 WRF simulations, respectively. Error bars represent 95% confidence intervals.
“WRF_interp” denotes raw WRF simulations (not bias-corrected) interpolated to station
locations and are shown to indicate relative improvement of all methods over raw WRF
interpolated values.
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Figure 18: Scatterplot of mean SRMSE and PSS by Bias_correction_years, where "1980-
1989" and "1980-2014" denote the GHCND station datasets used to bias-correct 1990-2014
and 1980-2014 WRF simulations, respectively. Error bars represent 95% confidence intervals.
“WRF_interp” denotes raw WRF simulations (not bias-corrected) interpolated to station
locations and are shown to indicate relative improvement of all methods over raw WRF
interpolated values.

Figure 19: Interaction plot showing estimated mean marginal SRMSE by Method and Month.
Error bars represent 95% confidence intervals.
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Figure 20: Interaction plot showing estimated mean marginal SRMSE by Method and Bias_-
correction_years, where "1980-1989" and "1980-2014" denote the GHCND station datasets
used to bias-correct 1990-2014 and 1980-2014 WRF simulations, respectively. Error bars
represent 95% confidence intervals. “WRF_interp” denotes raw WRF simulations (not bias-
corrected) interpolated to station locations and are shown to indicate relative improvement
of all methods over raw WRF interpolated values.

Table 14: ANOVA table for full SRMSE model.
Df Sum Sq Mean Sq F value Pr(>F)

Month 11 2.56 0.23 9.65 0.0000
Method 5 8.30 1.66 68.81 0.0000
Bias_correction_years 1 6.09 6.09 252.18 0.0000
Elevation 1 0.03 0.03 1.19 0.2769
Month:Method 55 5.07 0.09 3.82 0.0000
Method:Bias_correction_years 5 3.82 0.76 31.62 0.0000
Method:Elevation 5 0.06 0.01 0.49 0.7867
Bias_correction_years:Elevation 1 0.01 0.01 0.58 0.4490
Method:Bias_correction_years:Elevation 5 0.01 0.00 0.06 0.9980
Residuals 198 4.78 0.02

7.6 Downscaling example plots
Figures 21 and 22 show original WRF TMAX simulations and downscaled WRF

TMAX (◦C) data for August 5, 1982 for methods EQM_IDW and LT_grid, respectively.
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Figure 21: Original WRF simulations for TMAX (◦C) and downscaled WRF TMAX (◦C)
using method EQM_IDW for August 5, 1982.

Figure 22: Original WRF simulations for TMAX (◦C) and downscaled WRF TMAX (◦C)
using method LT_grid for August 5, 1982.
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