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Abstract 
Many methods have been developed to combine probability and nonprobability samples 
via quasi-randomization, superpopulation modeling, or doubly robust estimation (Valliant, 
2020). Yang, et al (2018) observed that when using statistical matching (a quasi-
randomization approach) there may be a proportion of probability sample units that do not 
match to nonprobability sample units. Given this observation, a reasonable conjecture is 
that this unmatched portion of the probability sample provides a means to assess the 
coverage bias of the nonprobability sample. Ma and Mulrow (2019) developed an approach 
that used statistical matching to produce estimates from combined probability and 
nonprobability samples, and observed its behavior via a case study. We explore this 
approach further using the simulation approach in Yang, et al (2019) to assess the bias 
reduction and confidence interval coverage of the matching approach compared to other 
methods. 
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1. Introduction 
 
Probability sampling is the gold standard for survey research; however, demand for 
methods that utilize nonprobability samples, alone or combined with a probability sample, 
has grown in order to lower survey costs. Nonprobability samples may provide a lower 
cost alternative to probability samples; yet, estimates based on nonprobability samples may 
be biased due to unknown coverage and selection biases.  
 
Since there is no known sample design, model-based approaches are required for inferences 
from nonprobability samples to reduce potential bias. Survey researchers have proposed 
three general approaches for estimation from nonprobability samples: quasi-
randomization, superpopulation modeling, and doubly robust (e.g., Elliott and Valliant, 
2017; Valliant, 2020). 
 
Through case studies and Monte Carlo simulations, the authors of this paper have evaluated 
methods for utilizing nonprobability samples in conjunction with a probability sample 
(Ganesh et al., 2017; Yang, et al. 2018, 2019). Our previous evaluations show that these 
methods produce comparable point estimates, but two of these methods, Propensity 
Weighting (quasi-randomization) and Small Area Modeling (doubly robust), exhibit 
superior properties in terms of bias reduction, mean squared error, and confidence interval 
coverage. A third quasi-randomization method that uses statistical matching (Matching) to 
match probability sample records to nonprobability sample records in order to assign 
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weights to the nonprobability sample records was considered in the Yang et al  2018 case 
study, but was not part of the subsequent simulation study. An observation from the case 
study was that a number of probability sample records did not match to any nonprobability 
sample records. Given this observation, a reasonable conjecture is that this unmatched 
portion of the probability sample provides a means to assess the coverage bias of the 
nonprobability sample. 
 
Ma and Mulrow (2019) developed an approach to combining probability and 
nonprobability samples that used matching along with propensity modeling to produce 
weights for the nonprobability sample, and observed properties of estimates via a case 
study. In this paper, we investigate properties of a matching approach using a simulation. 
While we take a naïve approach to imputing weights from the probability sample onto the 
nonprobability sample, the method performs well in terms of bias reduction and confidence 
interval coverage. 
 

2. The Idea 
 
Our approach is to determine appropriate weights for each record in a nonprobability 
sample by imputing weights from a companion probability sample. The circumstances are 
that the probability and nonprobability sample respondents are surveyed with the same 
instrument during a similar time period. The key difference is that the probability sample 
records each have a weight determined by the design of the sample, whereas the 
nonprobability sample was not designed and has missing weights. Using the probability 
sample records as donors, we match a probability sample record to each nonprobability 
record, and assign the nonprobability record the weight from the matching probability 
sample record. When a probability sample record is used as a donor more than once, the 
weights for all the nonprobability recipients are divided by the number of times the 
probability sample record was used as a donor. 
 
2.1 Statistical Matching of Probability Sample Records to Nonprobability Sample 
Records 
 
Statistical matching (Matching) is carried out using a nearest neighbor hot deck algorithm 
based on a distance measure. The matching process resembles imputation in the sense that 
a donor from the probability sample is matched to a recipient from the nonprobability 
sample based on a set of matching variables (Bethlehem, 2015). We used the R StatMatch 
package NND.hotdeck function (D’Orazio, 2017). Each nonprobability sample record is 
matched to one and only one probability sample record under the following conditions: 
 

• A match to a nonprobability sample record is done by finding the closest 
probability sample record according to the Gower distance function. When for a 
given nonprobability sample record there are several probability sample records at 
the minimum distance, one of them is picked at random. 

• Distances are measured using Gower’s dissimilarity measure, which can use both 
categorical and continuous variables in the dissimilarity calculation. 

• The nonprobability record assumes the weight of the matched probability record. 
However, when a probability record is matched to multiple nonprobability records, 
each matched nonprobability record’s weight is the probability record weight 
divided by the number of matches. 
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We use extreme gradient boosting to determine the set of matching variables for use in the 
Gower dissimilarity calculation. This is an ensemble learning algorithm that constructs and 
combines weak learners in iterative fashion and eventually results in a strong learner. At 
each iteration, the algorithm tailors a learner for the local bias not successfully accounted 
for by the former learners.  From a global perspective, each learner is weak (i.e., high bias) 
by itself, but the combined learner usually has low bias after a sufficient number of 
iterations (D’Orazio, Di, and Scanu, 2006). We use the R xgboost package to predict 
membership in the nonprobability sample using extreme gradient boosting, and select the 
top 20 influential features to form the set of matching variables. 
 
2.2 Use a Composite Estimator based on Matching Results 
 
We have found that it is almost always the case that there are unmatched records from the 
probability sample, which may be evidence of coverage bias of the nonprobability sample. 
If so, we should use this information in constructing an estimator that uses the combined 
set of probability and nonprobability sample records.  
 
Notation: 
 

• 𝑆 , the set of unmatched probability sample records 
• 𝑆 , the set of matched probability sample records 
• 𝑆 , the set of nonprobability sample records 
• 𝑤 , the weight of 𝑟  (record 𝑖) in the probability sample 
• 𝓌 , the imputed weight of  𝑟  in the nonprobability sample 
• 𝑋 , an indicator variable for the attribute of interest for respondent 𝑖 

 
We consider an estimator for the total number of units in the population with an attribute 
of interest. An estimator for the total number of people with the attribute based on the 
probability sample is 
 

𝑋 ∑ 𝑤 𝑋 ∑ 𝑤 𝑋∈ ∑ 𝑤 𝑋∈ 𝑋 𝑋 , 

 
and an estimator for the total number of people with the attribute based on the 
nonprobability sample is 
 

𝑋 𝓌 𝑋  

 
To develop an estimator for the combined probability and nonprobability samples, we 
propose a composite estimator that blends the matched probability sample with the 
nonprobability sample, and leaves the unmatched probability sample “as-is.” 
 

𝑋 𝑋 𝜆𝑋 1 𝜆 𝑋 , where  0 𝜆 1. 
 
Note that this implies that the weights for the combined sample are  
 

𝑤∗
𝑤                         𝑟  ∈ 𝑆
𝜆𝑤                    𝑟  ∈ 𝑆
1 𝜆 𝓌       𝑟  ∈ 𝑆
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A proportion (mean) estimate for an attribute of interest is  
 

�̂�
𝑋
∑ 𝑤∗  

 
In what follows, we investigate this estimator via a simulation, and compare it to 
estimators based on propensity weighting and small area modeling. The latter two were 
investigated via simulation in Yang et al 2019. 
 

3. Monte Carlo Simulation Setup 
 

We use the same simulation process as in Yang et al 2019, in which the type of coverage 
bias typically exhibited in online opt-in nonprobability samples is mimicked by creating 
two sampling frames. One frame is a subset of the other, and both frames consist of adult 
survey completes from a large-scale national study about food allergies. 
 

 Frame 1, the full population frame, consists of all 40,539 adult survey completes. 
Random samples selected from Frame 1 are considered probability samples. 

 Frame 2 is a subset of Frame 1, and consists of 36,917 adult survey completes. 
To impart coverage bias, we sorted Frame 1 by some key variables, and then 
selected cases for removal. We selected integers from a binomial distribution 
with n = 40,538 and p = 0.25, added 1 to each integer so that the potential range 
of the generated values was the same as the range of row numbers—1 to 
40,539—and removed records with row numbers matching the selected values. 
Due to multiple selection of the same integers, only 3,622 (9 percent) of Frame 1 
records were removed to create Frame 2. Random samples selected from Frame 2 
are considered nonprobability samples with respect to Frame 1.  

 
Both the probability and nonprobability frames/samples contain a large number of 
demographic and webographic variables. Demographic variables include: age, gender, 
race/ethnicity, education, employment, marital status, household income, household size 
(including children), home ownership, household telephone service, and more. 
Webographic variables include household internet access among others. The food allergy 
study survey responses used for the Frames also contain self-reported and doctor-
diagnosed food allergies, both current and outgrown, allergy reactions, experiences in 
allergy treatments, events coinciding with development or outgrowing a food allergy, and 
perceived risks associated with food allergies.  
 
The number of Monte Carlo iterations is 2,500. For each iteration: 
 

 A probability sample of size 400 is selected using SRSWOR from Frame 
1, and raking is used with gender, education, income, race, and age to 
derive a weights for each sample record; 

 A nonprobability sample of size 800 is selected using SRSWOR from 
Frame 2, and a pseudo weight is derived for each record using the 
statistical matching method described in Section 2.1; 

i. Pseudo weights were also developed for the propensity and small 
area modeling methods as described in the Appendix; 

 Combined sample estimates of the six response variables with the largest 
known bias are calculated for the combined sample using the method 
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described in Section 2.2. The value of 𝜆 is the proportion of the matched 
probability sample’s effective sample size relative to the total of the 
effective samples for each sample;  

i. Combined sample estimates were also developed for the 
propensity and small area modeling methods as described in 
Yang et al 2019; 

 Bias, mean squared error (MSE), and true confidence interval coverage 
associated with the composite estimates are derived for each of the six 
response variables. 

 
Final summary statistics for each of the six response variable–weighting method 
combinations are computed by averaging over the 2,500 iterations. 
 

4. Comparisons of Combined Estimates  
 
For each response variable, known bias associated with the nonprobability frame (Frame 
2) under-coverage is calculated using the difference of population proportions between 
Frames 1 and 2. That is,  
 

𝐵 𝑃  𝑃   
 
where 𝑃   and 𝑃   is the population proportion computed from the probability 
and nonprobability frame for a response variable, respectively. The magnitude and 
direction of known bias differs by response variable. Figure 1 shows the size of known 
absolute bias associated with the six variables that have the largest absolute bias.1 The six 
variables are ordered by the size of the absolute bias in this and the other figures, with the 
first variable having the largest absolute bias and the last variable having the smallest 
absolute bias. Our subsequent evaluations will focus on these six variables only.  
 

                                                 
1 The six response variables with the largest bias are: (1) Asthma—Doctor diagnosed chronic 
conditions for Asthma, (2) None—No doctor diagnosed chronic conditions, (3) Seasonal 
Allergies—Doctor diagnosed chronic conditions for Hay fever/allergic rhinitis/seasonal allergies, 
(4) Had/has Allergy—Ever has doctor diagnosed allergies, (5) Medication Allergy—D Doctor 
diagnosed chronic conditions for Medication allergy, and (6) Eczema—Doctor diagnosed chronic 
conditions for Eczema. Note that the bias reported here was created for this simulation study only. 
The actual food allergy data do not exhibit these biases. 

 
822



 
Figure 1: Six Response Variables with Largest Absolute Bias  

 
The key concern with nonprobability samples is potential bias due to frame coverage bias 
and/or sample selection bias. We first compare the relative ability of each estimation 
method in reducing such bias. The estimated bias associated with a combined estimate for 
each iteration is defined as the difference between �̂� ,  and the true population 
proportion 𝑃  , 
 

𝑏 𝑃  �̂� ,  
 
For each response variable, the average bias across the 2,500 iterations associated with 
the combined estimate under each estimation method is computed as 
 

𝑏
1

2500
𝑏  

 
Finally, for each response variable, percent absolute bias reduction is computed as 
 

𝐵 𝑏

𝐵
100% 

 

Eczema

Medication allergy

Had/has allergy

Seasonal allergies

None

Asthma
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Percentage Points
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Figure 2 below compares the percent of bias reduction under each weighting approach for 
the six response variables with the largest known bias. The vertical orange line represents 
the median percent of bias reduction for each method over the six variables. All 
estimation methods achieve some level of bias reduction, with the medians ranging from 
approximately 55% to 90%. However, with a median of about 90 percent, the Matching 
method stands out as the method with the most bias reduction, while the Propensity 
method has the lowest, but consistent, bias reduction with a median of 55 percent. Even 
though the Small Area method has a reasonably good median absolute bias reduction of 
75%, the bias reduction across all six response variables is inconsistent. However, we 
note that method has close to 100% absolute bias reduction for two variables—one of 
which has the second highest known absolute bias—and when the method did not 
perform well, the known absolute bias is small (under 1.5 %). Small Area also has close 
to 90% bias reduction for asthma, which is the variable with the largest know bias. 
 

 
Figure 2: Percent Bias Reduction for the Response Variables under 
Each Method  

 
For each response variable, the mean squared error (MSE) of the combined estimate is 
defined as 
 

M
atching

S
m

all A
rea

P
ropensity

25 50 75 100

Eczema

Medication allergy

Had/has allergy

Seasonal allergies

None

Asthma

Eczema

Medication allergy

Had/has allergy

Seasonal allergies

None

Asthma

Eczema

Medication allergy

Had/has allergy

Seasonal allergies

None

Asthma

Percent

Larger is Better

Bias Reduction Relative to Known Bias

Vertical Line Marks the Median

 
824



𝑀𝑆𝐸
1

2500
�̂� , 𝑃   

 
To evaluate confidence interval coverage, we construct a 95 percent confidence interval 
around each combined estimate �̂� ,  using as standard error the square root of 

𝑀𝑆𝐸 . Next, we calculate the percentage of the 2,500 intervals that contain the 
population true value. The results are reported in Figure 3. 
 

 
Figure 3: True 95 Percent Confidence Interval Coverage  

 
Matching is the clear winner in this comparison as it is the only method that consistently 
has 95% confidence interval coverage. The Propensity method sometimes achieves 
coverage above 90%, but performs poorly for the two variables with the highest known 
bias. The Small Area method has the lowest median confidence interval coverage, but its 
minimum across the six response variables is higher than the minimum for the Propensity 
method. 
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5. Summary 
 
We have taken a very simple, and perhaps naïve, approach to deriving weights for 
nonprobability sample records using statistical matching. Our simulations show that the 
Matching method consistently outperforms the other methods in terms of bias reduction 
and confidence interval coverage. It is somewhat surprising that the method of imputing 
weights from a companion probability sample performs well compared to other more 
sophisticated methods.  
 
There is more to the method than weight derivation. The matching process identifies 
records in the probability sample that do not share similar characteristics with any of the 
nonprobability records, and this may be an indicator of nonprobability sample’s coverage 
bias. So, in addition to determining weights for nonprobability sample records, the 
combined estimator attempts to correct for coverage bias by leaving the weights of the 
unmatched probability sample record alone. 
 
In this paper, we have provided some basic measures to evaluate the Matching method, 
and compare it to two other methods. While Matching performs well based on the metrics 
we have used in our evaluation, there are additional metrics could be used. For example, 
we suspect that the design effect (DEFF) under matching may be higher compared to other 
methods because the weight variation under matching is much higher that other methods. 
We have begun to investigate this, and plan to report on it in the future. For now, we believe 
that Matching is a method for combining probability and nonprobability samples that 
should be included in one’s toolbox. Careful analysis of a nonprobability sample should be 
conducted before any combining methods is applied. 
 

Appendix: Background on the Propensity and Small Area Methods 
 
Here we provide some details on how we implemented the Propensity and Small Area 
methods for determining nonprobability weights when there is a companion probability 
sample. These descriptions are taken from Yang et al, 2017. 
 
A.1 Propensity Weighting 
 
This is the propensity weighting or quasi-randomization approach as discussed in Elliot 
and Valliant (2017). It requires the presence of a probability sample, called a reference 
sample, selected from the target population. Under this approach, one fits a logistic 
regression model to estimate the inclusion probability of the nonprobability units, and then 
use the predicted probabilities to derive the nonprobability sample weights or pseudo 
weights. Here are the steps for developing the propensity weights: 
 

 Concatenate the probability sample and the nonprobability sample; 
 Create a dichotomous variable, R, which is coded 1 for nonprobability sample units 

and 0 for probability sample units; 
 Fit a logistic regression model with R as the response variable; 
 Use the predicted propensities as the estimated inclusion probabilities for the 

nonprobability sample units; 
 Compute the nonprobability sample weights as the inverse of the predicted 

inclusion probabilities. 
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Predictor variables in the logistic regression model include demographic (e.g., age, gender, 
race and ethnicity, marital status), socioeconomic (e.g., education, income, employment), 
webographic, and some response variables collected from the survey. The final model is 
validated through cross validation and by examining model diagnostic statistics. As we will 
see later, the ability to include response variables from the survey turns out to be a major 
advantage of this approach.  
 
A.2 Small Area Modeling 
 
Small area estimation methods are used to jointly model domain-level estimates for one or 
more key survey variables from the probability and the nonprobability sample (Ganesh et 
al., 2017). The model includes a set of covariates (X), fixed and random bias terms, and 
domain-level random effects. The nonprobability sample weights are developed via the 
following steps: 
 

 A Bivariate Fay-Herriot model (Rao, 2003; Fay and Herriot, 1979) is used to 
jointly model the domain-level point estimates from the probability sample (y )  
and the nonprobability sample (y ): 

y 𝐱 𝛃 ν ε  
y b α 𝐱 𝛃 ν ε  

 
o d is a demographic group (e.g. 18-34 year old, male, Hispanic); 
o 𝐱  is a vector of covariates; 
o v ’s are domain level random effects; 
o b is a fixed effect bias term associated with the nonprobability sample 

estimate; 
o α ’s are random effect bias terms associated with the nonprobability 

sample estimate; 
o ε , ε are the sampling errors associated with y , y . 

 
 Predicted small area estimates for each domain are obtained using an Empirical 

Best Linear Unbiased Predictor (EBLUP). 
 Nonprobability sample weights are derived such that combined sample estimates 

(using the weights) match the small area estimates for each domain for one or more 
key survey variables. 

 
The small domains are defined by cross-classifying a set of demographic variables that are 
of interest: 
 

 Age (18-34 years, 35-49 years, 50-64 years, 65+ years), 
 Education (Some college or less, college graduate or higher), 
 Race/Hispanic ethnicity (Hispanic, non-Hispanic Black, non-Hispanic All Other), 

and 
 Gender (male, female) 

 
The choice of domains was motivated by “sufficient” sample size for the probability and 
non-probability samples for each domain, and also to capture the variation in the 
substantive estimates across domains.  
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