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Abstract 
Bayesian Adaptive designs allow for key study design specifications to be modified as 
information is collected from observed data during a clinical trial. When carried out in the 
proper circumstances, adaptive designs can lead to more efficient allocation of resources 
and shorter study spans. Bayesian Adaptive Randomization, specifically, establishes a 
well-defined framework for updating allocation ratios based on dose performance, 
allowing to increase the probability of treatment allocation to more promising doses of a 
study drug, while also preserving the benefits of randomization. To study potential 
advantages of adaptive randomization and its statistical properties, we simulated data for a 
planned Phase II dose-ranging study of an experimental treatment for pain due to 
osteoarthritis. Bayesian interim analysis was conducted to implement adaptive 
randomization using the following three efficacy dose-response models for comparison: 
the Emax model, normal dynamic linear model (NDLM), and analysis of variance 
(ANOVA). Adaptive randomization was conducted based on predictive treatment efficacy 
and safety, and with the intention of avoiding exposure to unnecessary risk when high dose 
safety is uncertain. Through our simulation, we showed increased efficiency by our 
proposed approach to adaptive randomization that enables optimization of patient 
allocation balancing between efficacy and safety, as well as decreased enrollment of 
patients to unnecessary high doses. 
 
Key Words: Bayesian statistics, adaptive design, adaptive randomization, interim 
analysis, predictive probability, pain due to osteoarthritis 
 

1. Introduction 

Adaptive randomization in a clinical trial considers mid-course modification of 
randomization ratios for doses studied in the trial by rewarding higher randomization 
probabilities to doses that are more likely to be successful at the end of the trial. For efficacy 
it balances resource assignment toward doses more promising to be efficacious, thus 
enhancing efficiency for cost-effectiveness. For safety it avoids exposing patients to doses 
with higher dose related adverse reaction liabilities. Seeing the potential benefits of 
adaptive randomization, we proposed a Bayesian adaptive randomization design to a 
planned Phase 2 dose-ranging clinical trial of an experimental treatment for pain due to 
osteoarthritis. The Bayesian approach allows utilization of all cumulative data for interim 
randomization ratio adjustment, and it better facilitates utilization of prior information to 
inform the adjustment. We differentiate our proposed approach by considering penalty for 
doses that are predicted to provide limited additional efficacy but are liable to increased 
safety concerns. We studied the performance of the proposed approach by simulation under 
various scenarios, for which a more advanced clinical program of another drug candidate 
with a different mechanism for the same disease indication provided benchmark 
information. 
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We delineate the methods of our proposed Bayesian adaptive randomization approach in 
the next section. Results of our simulations for the study of the performance of the approach 
are summarized in Section 3. Section 4 presents impact of variations of design parameters 
on the design performance. Conclusions and discussion of our research are given in Section 
5.  

 

2. Methods 

2.1 Simulations 
Simulations were developed to incorporate both safety and efficacy information into the 
adaptive randomization design. Trials were replicated (N = 500) with 5 different cohorts 
of ‘patients’ entering the study with prespecified sample sizes in each cohort. Each cohort 
would have 80 patients, leaving a total of 400 patients in each trial. The primary efficacy 
outcome of interest was change from baseline in the Western Ontario and McMaster 
Universities Osteoarthritis Index (WOMAC), with which a higher reduction is expected as 
indicating a greater decrease in pain. Additionally, there was a dose limiting adverse event 
of particular concern. 
 
Efficacy data were simulated from an Emax design model (see Table 1), using information 
from a previous Phase II clinical trial for the same indication of pain due to osteoarthritis, 
with doses of 0 units (placebo), 1 unit, 3 units, 6 units, and 9 units. The Emax dose response 
curve was based on the following values: ED50 = 1, Emax = - 1.4, E0 = - 2.25 and σ = 2.4. 
Emax refers to the maximum effect a dose can have, and ED50 is the dose that achieves 50% 
of that maximum effect.  E0 is the zero dose, or placebo, effect. For efficacy, we define an 
active dose to be efficacious if the effect size (ES = (µ0 - µi) / σ) is greater than 0.4, where 
µ0 is the response for those receiving placebo and µi is the response for doses i = 1,2,3,4. 
Thus, we have the following utility measure for efficacy of a dose: 
 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑆𝑢𝑐𝑐𝑒𝑠𝑠	𝑓𝑜𝑟	𝐸𝑓𝑓𝑖𝑐𝑎𝑐𝑦 = Pr(𝐸𝑆 > 	0.4) 
 
Safety data were simulated under the assumption of a binomial model (see Table 1), using 
similar probabilities of experiencing the adverse event of interest observed from a prior 
Phase 2 study of another clinical program. That is, for doses of 0 units, 1 unit, 3 units, 6 
units and 9 units, we used p = 0.01, 0.025, 0.05, 0.075, and 0.125, respectively, to generate 
simulated data. The utility measure for safety of a dose is thus defined as:  
 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑆𝑢𝑐𝑐𝑒𝑠𝑠	𝑓𝑜𝑟	𝑆𝑎𝑓𝑒𝑡𝑦 = 1 − Pr(𝑎𝑑𝑣𝑒𝑟𝑠𝑒	𝑒𝑣𝑒𝑛𝑡) = 1 − 𝑝	 
 
The probability of success (POS) of a dose is defined below as a function of both the 
probability of success for efficacy and the probability of success for safety:  
 
𝑃𝑂𝑆 = 	 (𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑆𝑢𝑐𝑐𝑒𝑠𝑠	𝑓𝑜𝑟	𝐸𝑓𝑓𝑖𝑐𝑎𝑐𝑦) ∗ (𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑆𝑢𝑐𝑐𝑒𝑠𝑠	𝑓𝑜𝑟	𝑆𝑎𝑓𝑒𝑡𝑦)C 

Dose allocation ratios were then based on standardized POS’s across the doses.  
Probability of success for safety in the POS was initially raised to the first power, 
but we found it would not allow safety data to have enough impact on allocation 
ratios. After more simulations, we found raising it to the fourth power was ideal for 
our case in that it sufficiently decreased allocation to “unsafe” doses, while also not 
over-diminishing their standardized POS values. 
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Table 1. Design Models 

Efficacy Design 

Model  

Safety Design 

Model 
 

 

 
 
2.2 Analysis 
For efficacy, three Bayesian analysis models were constructed to analyze the simulated 
data in the context of an adaptive design. Our first analysis model is the Emax model, which 
is non-linear and commonly used in analysis of pharmacodynamic data. With four 
parameters in the model (see Table 2), the Emax model is ideal for situations with more 
than four comparative doses. One major benefit of the Emax model is that the parameters 
are easy to interpret and understand, but we must note an assumption of this model is that 
the dose-response relationship is monotonic.2 It will be the smoothest of our three models. 
The next model is the normal dynamic linear model (NLDM), which is more complex in 
specifications. NDLM assumes the change in mean from one dose to another follows a 
linear model, and the slope (ξ) is updated by a random walk. NDLM borrows information 
from neighboring doses to estimate mean responses, and the treatment response at one 
dosage level is related to the treatment response of the previous dose level.3 This model 
does not require monotonicity of the response curve and still allows for smoothing.4 NDLM 
is more flexible but is more difficult to interpret and less commonly used. The final model 
is analysis of variance (ANOVA), which does not require monotonicity of the dose-
response curve and is the simplest of our three models. ANOVA does not allow for 
smoothing of the dose-response curve. For safety, simulated data were analyzed by logistic 
regression using Bayesian analysis. Although the safety data were analyzed using only one 
model, cumulative sample sizes across doses differed for the three efficacy analysis models 
through adaptation, and thus different posterior distributions for the safety model parameter 
were generated depending on the choice of the efficacy analysis model. Efficacy and safety 
analysis models are outlined in Table 2. 
 
For each individual trial, data for 400 individuals were simulated. The first cohort of 80 
subjects used allocation to each dose with equal probability (n = 16 to each dose). Efficacy 
and safety responses for this cohort were analyzed using the three efficacy analysis models 
and the safety analysis model, for which Markov Chain Monte Carlo (MCMC) simulation 
using a Gibbs sampler generated posterior distributions for the efficacy effect sizes and 
adverse event rates of the doses. Due to convergence issues, the Emax analysis model was 
built using semi-informative prior distributions as well as non-informative priors for the 
model parameters. This often occurred in cases of lower ED50 in the design model (see 
“Adjustments on Design Model Parameters” on Page 8) likely due to lack of information 
below ED50. All remaining efficacy and the safety analysis models had non-informative 
prior distributions. POS for each dose was calculated using the resulting posterior 
distributions for the effect size and adverse event rate of the dose, and the probability of 
treatment allocation to the dose for the next cohort of 80 subjects is proportional to the POS 
of the dose as compared to those of other doses. For the third cohort, POS for each dose 
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was calculated using the responses from all 160 subjects cumulative in the trial, and the 
updated POS’s for all doses using both efficacy and safety data determined the third 
cohort’s allocation ratios. This process was repeated for the fourth and final cohort. 
 

Table 2. Analysis Models 

Efficacy Analysis 

Models 

Emax Model 
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Safety Analysis Model Logistic Regression logit(pi ) = β 0 + β 1 * dosei 

 
 
2.3 Incorporating a High-Dose Penalty 
When safety information is difficult to collect or estimate, due to lack of historical data or 
long latent periods before adverse event onset, we may need to rely on other methods to 
reduce the risk of adverse events for patients. We propose incorporating a high-dose 
penalty to address this issue. For doses that have already reached a high threshold of 
efficacy, for example doses at or above ED75 (which corresponds to the dose that achieves 
75% of the maximum dose effect, i.e. 75% of Emax), we may decrease allocation to those 
that have similar efficacy and are unnecessarily high (to avoid regulatory and potential 
unknown safety concerns). As an example, in our simulation case doses of 3, 6 and 9 units 
are all above ED75, so we can decrease the probability of allocation to doses of 6 and 9 
through adaptation (see Figure 2). In Figure 1 showing the method steps, E75 is the efficacy 
response value that corresponds to ED75. y is a parameter that determines the impact of 
the high-dose penalty. A higher value of y will correspond to a greater reduction in 
allocation to doses affected by the high-dose penalty. In our simulation, we used y = 100.  
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Figure 1. Method Steps for High-Dose Penalty 

 
 
 
In Figure 2, rmin is the response value for the 3 units dose, and r2 and r3 correspond to 6 and 
9 units. Wi will penalize doses with response values closer to rmin much more heavily, i.e. 
the closer the dose response value is to rmin, the more penalty we apply for randomizing to 
the corresponding dose. 
  

Figure 2. High-Dose Penalty with Emax Model 

 
 

3. Simulation Results 

3.1 Results from Adaptation Considering Efficacy and Safety  
The density plots in Figure 3 show the posterior distributions of effect sizes for each dose 
at the end of one simulated trial through adaptive randomization. The vertical line 
corresponds to an effect size of 0.4, making the area under the curve to the right of the 
vertical line as the probability of success for efficacy for each dose. For example, we can 
see that by the Emax model and NDLM, a dose of 1 unit was estimated to have around 
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10% probability of success at the end of the trial, whereas by ANOVA, we see about 20% 
probability of success. Density curves for doses are more spread out by the Emax model, 
showing greater disparities in effect size between doses with this model than with NDLM 
and ANOVA. 
 

Figure 3. Posterior distributions for efficacy for one simulated trial 

 
 
In Figure 4, we can see the average effect sizes for each dose across 500 simulated trials, 
allowing us to compare the effect sizes calculated in each model to the “true” dose-response 
curve. Likely due to lack of information below the true ED50 by the Emax model and 
model smoothing by NDLM, there was underestimation of the dose response curve. 
Overall Emax model and ANOVA were less biased in terms of effect sizes. 
 
 

Figure 4. Average effect sizes across doses as compared to the “Truth” 

 
 
 
 
After calculating an average probability of success for each dose across 500 simulated 
trials, we can observe the cumulative subject totals after 5 cohorts of 80 subjects (see Figure 
5). The probability of subject allocation for placebo was fixed at 0.2, i.e., we always had 
16 subjects allocated to placebo for each cohort.  By the Emax model, after the initial 
randomization only a few subjects were allocated to the 1-unit dose in each subsequent 
cohort. The Emax model and NDLM resulted in similar randomization probabilities, and 
thus had similar cumulative subject totals in each dose. Adaptive randomization by the 
ANOVA model exhibited higher robustness against adaptation and tendency toward 
preserving equal randomization. 
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Figure 5. Average effect sizes across doses as compared to the “Truth” 

 
 
3.2 Results with Consideration of High-Dose Penalty 
As we can see from Figure 6, imposing a high-dose penalty can reduce the probability of 
allocation to higher doses, and in our scenario, it mimics the results of the design 
incorporating safety data. The penalty affects allocation probabilities for doses above 3 
units in a dose-increasing manner. Figure 7 demonstrates the effect of these allocation 
probabilities on the cumulative subject totals of a simulated trial. Adding a high-dose 
penalty resulted in about a 19% reduction in the number of subjects allocated to the highest 
dose, as compared with the design incorporating safety data having a 14% reduction in 
allocation to the highest dose (Figures 5 & 7). Note the proposed high-dose penalty is only 
applied to the Emax analysis model, since NDLM and ANOVA do not have Emax and 
ED50 as built-in parameters, and other forms of penalty might be proposed for the NDLM 
and ANOVA analysis models. 
 
 

Figure 6. Average allocation probabilities for different adaptive designs across doses 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Allocation Probabilities for Different Adaptive Designs  

Dose 
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Figure 7. Cumulative subject totals of a simulated trial with and without a high-dose 
penalty 

 
 
 
 

 

 

 

 

 
 
 

4. Adjustments in Design Model Parameters 
In addition to comparing results by the three analysis models in the context of our Phase II 
osteoarthritis mimicked data, we wanted to see how slight variations in the design model 
parameters would affect our results. The plot in Figure 8 shows the assumed “truth” for 
each design model with varying ED50 (which greatly affects the slope and shape of the 
dose-response curve).  
 

Figure 8. Effect sizes of the true Emax curve for varying ED50 values 

 

 

 

 

 

 
 
 
 
 
 
 
In looking at average effect sizes across all 500 trials (see Figure 9), when ED50 in our 
“true” model was reduced to 0.4, the ANOVA analysis model became our least biased 
model in terms of average effect sizes across doses. When ED50 in the design model was 
increased to 2, the Emax model had the least biased average effect sizes. Across all the 
models, ED50 = 0.4 leads to the highest unstandardized overall probability of success. In 
looking at cumulative subject totals in the three design model scenarios, we discovered that 
higher ED50 in the design model would lead to increases in allocation to higher doses and 
a much more drastic effect on allocation probabilities (when compared to traditional equal 
randomization designs). For example, by the Emax model with ED50 of 0.4, we have a 
resulting 52 subjects allocated to the 1-unit dose. When the design model was constructed 

Adaptive Design Based on Efficacy 
Adaptive Design Based on Efficacy  
w/ High-Dose Penalty  

Dose Dose 
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with ED50 of 2, there were only 29 subjects allocated to the 1-unit dose. ANOVA and 
NDLM were less sensitive to adjustments in ED50 of the design model, telling us the 
slope/shape of the “true” dose-response curve will have a lesser impact on these models. 
 

Figure 9. Average of mean effect sizes across doses for varying ED50 values 

 
 

5. Conclusions and Discussion 

Our simulation study demonstrated that by using adaptive randomization in clinical trials, 
we can increase the number of patients allocated to more efficacious doses, as well as 
decrease the number of patients exposed to doses with potential safety concerns. In the 
presented scenario and other scenarios we studied, Bayesian analysis by the Emax analysis 
model resulted in the most drastic effect in adaptive dose allocation ratios, yet Emax and 
NDLM analysis models had similar dose allocation. ANOVA more closely resembled a 
traditional, equal randomization design. The Emax analysis model was more sensitive to 
changes in prior distributions and adjustments in design model specifications. Non-
informative prior distributions for the Emax analysis model in many cases may lead to non-
convergence of the MCMC simulations. For this reason, the Emax analysis model should 
be more carefully examined when it is used for adaptive randomization. NDLM and 
ANOVA were relatively robust to changes in prior distributions in terms of MCMC 
convergence, and ANOVA was less sensitive to changes in the slope of the design model.  

Adaptive methods have the potential to improve the efficiency and flexibility of clinical 
trials and increase the success rate of new treatments.5 As FDA Commissioner Scott 
Gottlieb, MD. stated, “by enriching the enrollment in the trial for patients with 
characteristics that are likely to predict clinical success, it has the potential to make the 
development process more efficient.” It should be noted that these benefits of adaptation 
are only realized in certain circumstances. Adaptive randomization is not ideal in situations 
where there are extended latent periods between when a patient is given a drug and the 
response in terms of efficacy and safety. Adaptive designs often require a considerable 
amount of preparation to account for logistical concerns and the avoidance of operational 
biases. For reference, “Practical Considerations and Strategies for Executing Adaptive 
Clinical Trials” provides an in-depth account of some of these logistical concerns.6 Overall, 
adaptive randomization can provide a very useful framework for increasing clinical trial 
efficiency and improving multi-arm comparisons of treatment effects, but implementation 
should be carefully considered in terms of design and analysis before use. 
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