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Abstract

Unsupervised anomaly detection is performed on forms assumed to be sparse and normally

distributed. Maximum likelihood (ML) estimation is applied to estimate the parameter

from a large collection of sparse forms. An expectation maximization algorithm from the

literature that has been applied to sparse-matrix recommendation is used. Given the esti-

mated parameter, constrained ML is applied to estimate anomalies. The constraints here

are used to ensure that only anomalies in specific and predefined subspaces are detected.

This formulation borrows from the literature of one-sided multivariate testing. The overall

approach is tested and the results compared to a database of forms with known anoma-

lies. The approach improves on the authors’ previously developed unsupervised method for

anomaly detection.

Key Words: Sparse data, expectation maximization, unsupervised, one-sided

multivariate test

1. Introduction

An unsupervised anomaly detection approach that identifes field-level anomalies

from sparse form data was studied by Parker et al. [11]. Unsupervised approaches

are useful when labeled examples of anomalous and un-anomalous forms are difficult

to obtain. Approaches that can contend with sparse data are useful when not all

fields of the forms are populated. The Internal Revenue Service (IRS) is interested in

unsupervised approaches that can handle sparse data because a) accurate labeling

of anomalous form data fields requires a time-consuming, manual review process

using highly experienced examiners; and b) forms are generally sparse as not all

respondents complete all fields of a tax form.
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In [11] the sparse form data is assumed to be a Gaussian mixture model (GMM)

with diagonal covariance matrices. Given a large set of forms the GMM parameter is

estimated using an expectation maximization (EM) algorithm that does not require

imputation of missing form field values. Anomalous fields values are identified using

the probability of the observed field value, or a value more extreme, under the

estimated GMM.

In this paper we address a similar problem to [11] using a Gaussian model that

does not assume diagonal covariance matrices. Model training is accomplished using

a well-known EM algorithm from the literature, see [12] and references therein.

Anomalous form fields are identified by applying an approach by Kudo [4] and

Neusch [8] developed for multivariate one-sided testing. In this approach, anomalies

are represented using a field-level corrective term estimated using the maximum

likelihood (ML) criterion. This can be performed in a computationally expeditious

manner using quadratic programming. Numerical experiments were conducted on

a training data set of over 100 million tax forms and a testing dataset consisting of

109, 307 forms that had fields that had been manually labelled as either anomalous or

not. Using these data, the new approach showed improved performance as compared

to the approach in [11].

The remainder of this paper as organized as follows: In Section 2 we describe

the model and test statistic. In Section 3 we discuss the application of the model to

real data. Section 4 concludes with some comments.

2. Model

2.1 Model Specification

Let v denote a k-dimensional random vector representing the k field values of a

form. The distribution of v is Gaussian with k × 1 mean vector, µ, and k × k

covariance matrix, R. We write v ∼ N (µ,R). We seek anomalous forms, where

the anomalies we are interested in have a specific definition. Define an anomalous

form as a form where some of the k field values have been changed in a specific

direction which is known and fixed for each field. Let z denote a k-dimensional

random vector representing an anomalous form. Let θ denote a k-dimensional vector
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of deterministic variables representing the additive changes to v that results in an

anomalous form z. Let δ = [δ(1), . . . , δ(k)]′ with δ(m) = 1 or δ(m) = −1, m =

1, . . . , k. The model for anomalous forms is

z = v + θ (1)

subject to Dθ ≥ 0

where D = diag(δ) represents the diagonal matrix with diagonal elements equal

to the elements of δ, and 0 represents a conforming vector of zeros. Each of the

δ(m),m = 1, . . . k, sets the direction of interest for anomalies in the correspond-

ing form field. The directions are generally specified in real applications and so δ

is considered here to be a known constant vector. In the model (1) the random

vector z is Gaussian with mean µ + θ and covariance R. In anomaly detection ap-

plications z is generally observed, whereas v and θ are generally unobserved. The

field-level anomaly detection problem is to estimate θ having observed an anomalous

form z. Under the assumed Gaussian model, constrained maximum likelihood (ML)

estimation of θ is generally a quadratic programming problem [4] [9].

A complicating aspect in form applications is that forms are often sparse. Many

form fields are not applicable to some respondents and those respondents generally

leave such fields blank. Let kt denote the number of populated fields for the tth

respondent. Let Ht indicate a kt × k sub-matrix of the k × k identity matrix I

where the rows of I corresponding to the indices of the unpopulated fields from

the tth respondent have been deleted. Let yt and wt denote kt-dimensional vectors

representing the subset of populated elements of anomalous form values and true

form values, respectively. Thus yt ∼ N (µyt + θt, Ryt), where µyt = Htµ, Ryt =

HtRH
′
t, and θt is a kt-dimensional deterministic unknown vector. The model (1)

under sparse conditions is thus

yt = wt + θt (2)

subject to Dtθt ≥ 0

where Dt = diag(Htδ) represents the directions of interest for anomalies on the
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populated fields and vt represents the un-anomalous form corresponding to yt.

2.2 Anomaly Detection at Field Level

The field-level anomaly detection problem under sparse conditions is the estimation

of θ in model (2) having observed an anomalous form yt. The probability density

function (pdf) of yt in this model is denoted by p(yt;µyt + θt, Ryt) and we have

p(yt;µyt + θt, Ryt) =
1√

(2π)kt |Ryt |
exp

(
−1

2
(yt − µyt − θt)

′Ryt
−1 (yt − µyt − θt)

)
(3)

We apply maximum likelihood (ML) estimation and thus the field-level anomaly

detection problem is to find θ̂ such that

θ̂t =
argmax

Dtθt ≥ 0
p (yt;µyt + θt, Ryt) (4)

Similar constrained ML estimation problems arise in hypothesis testing of restricted

means and have been extensively studied by Bartholomew [2], Kudo [4] and Nuesch

[8], [9]. Substituting (3) into (4), taking the log and simplifying yields

θ̂t =
argmax

Dtθt ≥ 0
− θ′tRyt−1θt + 2 (yt − µyt)

′Ryt
−1θ (5)

Equation (5) involves the maximization of a quadratic objective function subject to

linear inequality constraints. Such problems are generally referred to as quadratic

programming problems. Estimation of θ̂t is explicit under certain conditions on the

constraints and on the covariance R. If there were no constraints then θ̂t = yt−µyt .

If the inequality constraint were instead an equality then an explicit optimum is

known, see e.g. [3, Example 5.1]. If R is a diagonal positive definite matrix then

θ̂ = max(yt−µyt , 0). More generally, we can apply the Karush-Kuhn-Tucker (KKT)

conditions which are necessary (and in our particular case also sufficient) set of

conditions for the optimum θ̂. These conditions, with their generally-applied labels,
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are given by

R−1yt θ̂ + (yt − µyt)−Dtλt = 0: Stationarity (6)

Dtθt ≥ 0: Feasibility (7)

λt ≥ 0: Nonnegativity (8)

λ′tDθ̂t = 0: Complementary Slackness (9)

where λt is the kt-dimensional vector of Lagrange multipliers [3]. These equations

cannot be solved explicitly for θ̂ under general conditions. Algorithmic approaches

are discussed in [4], [8], [9] and [14] which are derived from geometric representations

of the problem. General purpose numerical quadratic programming routines are

also readily available. These routines are particularly efficient and robust when R

is positive definite, which is generally the case in the application considered here.

2.3 One-Sided Multivariate Testing

Building upon work by Bartholomew [2], Kudo [4] and Nuesch [9] developed a one-

side multivariate hypothesis test that employs a maximization similar to that de-

scribed above. In Kudo’s [4] and Nuesch’s [9] test, the distribution under the null

hypothesis is zero-mean Gaussian against an alternative hypothesis having positive

mean. We consider a hypothesis test where, under the null hypothesis, yt has a non-

zero mean that can be moved in any known and fixed direction under the alternative

hypothesis, i.e.,

H0 : yt ∼ N(µyt , Ryt),

H1 : yt ∼ N(µyt + θt, Ryt) where Dtθt ≥ 0 (10)

The corresponding likelihood ratio test is given by

p(yt;µyt , Ryt)
max

Dtθt≥0 p(yt;µyt + θt, Ryt)

H0

≷
H1

η (11)
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where 0 < η ≤ 1 is a scalar test threshold. Substituting in the specific forms of the

pdf’s and simplifying yields the equivalent test

−2(yt − µyt)′R−1yt θ̂t + θ̂′tRyt
−1θ̂t

H0

≷
H1

log η (12)

where θ̂t is maximizer for the denominator. The test statistic can be simplified using

the KKT conditions. Specifically, solving for λ in the stationarity condition (6) and

then substituting the result into the complementary slackness condition (9) yields

θ̂′tR
−1
yt θ̂t − (yt − µyt)θ̂t = 0 (13)

Using (13) to simplify (12) yields

θ̂tR
−1
yt θ̂t

H1

≷
H0

− log η (14)

Nuesch [8] and Kudo [4] derive the distribution of the corresponding test statistic

under a null hypothesis with zero mean. The distribution of the test statistic for

the non-zero-mean case developed here is not currently known.

2.4 Parameter Estimation

The model parameter is estimated from training data consisting of n sparse forms.

We assume that the training data is comprised of un-anomalous forms, however we

believe that an estimation approach could be developed to estimate from anomalous

forms too.

We seek to identify maximum likelihood estimates for µ and R that maximize

p(wn;µ,R) where wn = {w1, . . . , wn}. There is no method to find explicit maximum

likelihood estimates for both µ and R ; therefore we resort to use of the expectation-

maximization algorithm and closed-form mean estimate from [6] and [7]. We provide

the details for implementation here; the full derivations can be found in [12] and [7].

To initialize the model, we use the best-performing estimates from [12]. For µ,

µ̂0 = N−1
∑n

t=1H
′
twt, where N is a vector of length k, with each element indicating

the number of times the corresponding field is populated.
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To initialize the covariance R, we first define S as

S =
n∑
t=1

H ′t
(
wt −Htµ̂

0
) (
wt −Htµ̂

0
)′
Ht (15)

Then we use R̂0 = N−1/2SN−1/2 as a initial covariance estimate; see [12].

Next, we turn to the EM update formulas. We now require a mathematical

representation of the missing data. Let Jt be a (k − kt) × k sub-matrix of the

k×k identity matrix I where the rows corresponding to the indices of the populated

fields for the tth form have been deleted. Thus, Rxt = JtRJ
′
t, Rxtyt = JtRH

′
t, and

µxt = Jtµ.

Given Ri, the resulting EM iteration to get Ri+1 is

R̂i+1 =
1

n

n∑
t=1

(v̂t − µ) (v̂t − µ)′ + (16)

Jt

(
R̂ixt − R̂

i
xtyt

(
R̂iyt

)−1 (
R̂ixtyt

)′)
J ′t (17)

where v̂t and x̂t are defined as follows:

v̂t = H ′twt + J ′tx̂t (18)

x̂t = RxtytR
−1
yt (wt − µyt) + µxt (19)

Once the covariance estimate has been updated, we next update the estimate

for the mean. The estimate for µi has a closed form maximum-likelihood solution

for a given Ri:

µ̂i =

(
n∑
t=1

H ′tR
−1
yt Ht

)−1 n∑
t=1

H ′tR
−1
yt wt (20)

3. Model Results

3.1 Numerical Experiments

This model and anomaly detection methodology were applied to similar testing data

as described in [11]: an anonymized form database consisting of n = 148, 334, 102

entities who had each populated some, or all of, k = 209 real-valued form fields
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on an individual 1040 US tax return. This data is populated on a yearly basis by

taxpayers to calculate their tax liability, and contains information about a wide

variety of earnings, assets, expenses and business ownership. On average the data

set was under 7% populated.

To initialize the EM, the estimates discussed in Section 2.4 were used. Likeli-

hood increased with each iteration. Iterations ceased once the convergence criterion

log p(yn; φ̂j+1) − log p(yn; φ̂j) < nδ, with δ = .001, was satisfied. The number of

iterations required for convergence was 101. The final log-likelihood normalized by

n was −37.5228.

Estimation of field-level anomalies was done using the quadratic programming

routine from the cvxopt library in Python 3.7. Maximum number of iterations was

set to 100.

3.2 Results

Field-level quality validation was performed using the θ discussed in Section 2.2,

accounting for the directionality of the anomalies of interest as discussed. To measure

the anomaly detection performance we used a similar setup to that used in [11],

which, for completeness we describe again here. We tested on a collection of 109, 307

forms that had undergone two types of manual validation to identify anomalies.

The first was routine, where field values appearing anomalous were identified using

a comparatively quick review of the form and associated information. The second

manual val idation was detailed and performed over an extended time, with many

supporting documents and other types of relevant information. We considered the

detailed result to represent the ground truth against which the performance of the

model (and the routine review) was assessed. We considered two relevant error

meters: a false alarm, i.e., an anomaly detected by the model (or routine review)

that did not arise in the detailed review, and a detection, i.e., an anomaly detected

by the model (or routine review) that did arise in the detailed review. The ROC

curve across all field values appears in Fig. 1.

Also represented in this ROC curve is the Gaussian Mixture Model anomaly

detection approach discussed in [11], as well as the fixed point representing the false
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alarms and detections obtained by the routine review. This plot shows that the

model obtains similar performance as the manual routine review, and improves over

the previous approach. Further, the performance advantage of this approach over

the Gaussian Mixture Model approach widens when examining smaller, harder-to-

detect anomalies that are still of interest to the Service.
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Figure 1: ROC curve showing performance of anomaly detection approach as com-
pared with Gaussian Mixture Model approach and fixed point showing performance
of routine review

4. Conclusion

We have derived a test for directional anomalies using a multivariate Gaussian model,

with unstructured covariance, trained on sparse data. A constrained maximum

likelihood estimate to identify anomalous values is developed. The model was applied

to form quality validation. This test does not require known anomalous forms; known

anomalous forms were used for performance measurement. We showed performance

of the approach was comparable to a routine review of the model in detecting field

anomalies and improves upon the approach in [11]. In operation, the results of the

routine review are available to reviewers and would be expected to influence the

detailed review. This suggests that direct performance projections of our results

here would be conservative if our model were to replace the routine review.
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