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Abstract 

Bayesian lower prediction bounds for a future observation from a Weibull distribution at the design 

level of stress using Type II censored data from two levels of accelerated stress is considered. The scale 

parameter of the Weibull distribution is assumed to have an inverse power relationship with the levels 

of stress while the shape parameter is assumed to be a constant.  OpenBUGS is used to calculate 

Bayesian estimates of the parameters in a simulation study.  A previous simulation study (Jayawardhana 

and Samaranayake, 2003) provides comparable results using Maximum Likelihood Predictive Density 

Method.  Results of the current simulation study is compared with the results of the study by 

Jayawardhana and Samaranayake (2003). Proposed method will be illustrated through a well-known 

data set on breakdown times for insulating fluids (Nelson, 1972).          

Key words: Accelerated tests, Weibull distribution, Inverse power law, Bayesian methods  

 

I. Introduction 

Most modern products are made with high reliability. Manufacturers spend large amount of resources 

to increase quality of their products and to be competitive. Reliability studies involve characterizing life 

distributions of materials or components. Accelerated life testing is a common way to collect failure data 

from products otherwise will last for a long time without a failure under normal use conditions. Typical 

stress factors on products are humidity, mechanical load, pressure, temperature, voltage, and vibration. 

Subjecting products to higher than designed levels of stress, researchers expect to have failures of 

products in a short period of time. Information collected during the short period of time is used to 

extrapolate the life distribution at normal use conditions. One practical difficulty of accelerated life 

testing is to decide the acceleration range so that higher level of acceleration is within physically 

possible range of stress and lower level of acceleration is as low as possible to get a reasonable number 

of failures to provide enough information. One theoretical difficulty is to figure out the physical 

relationship or the mathematical relationship between the parameters of the product life and stress 

level. Commonly used such relationships are Eyring model, inverse power law model, and Arrhenius 

model. Engineers use results of accelerated life tests to predict product life at normal use conditions. 

Estimation of lower quantile points of the life distribution of a product at the normal use level for 

purposes such as warranty assurance, evaluation of early failures, making specification limits, making 

service plans, and cost analysis is a common objective of accelerated life tests. Parametric accelerated 

life testing models have two components: 1) a parametric distribution for the life of the unit; and 2) a 

physical relationship between the stress level and parameters of the distribution.      

Literature on Bayesian accelerated life testing is not as frequent as that based on frequentist 

methodology. Nelson (1990) and Meeker and Escobar (1998) are good references for accelerated life 
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testing.  With advances in simulation-based computational tools, research on Bayesian accelerated life 

testing is becoming more common than before.  Achcar and Louzado-Neto (1992) presents Bayesian 

theory for the Weibull life model with the Eyring model, inverse power law model, and Arrhenius model 

using the Laplace approximations. Barbosa and Louzada-Neto (1994), assuming Type II censoring, 

estimate the mean lifetime of units under normal working conditions.  Their model structure is 

expressed in terms of generalized linear models. Mattos and Migon (2001), present theory for a full 

Bayesian analysis and used Gibbs sampler to analyze a data set published by Nelson (1972). They use 

adaptive rejection sampling method to draw samples.  Leon et al. (2007), show how to use Bayesian 

methods to make inferences from accelerated life data with random effects. Jayawardhana and 

Samaranayake (2003) report results of a simulation study using Maximum Likelihood Predictive Density 

method.  In their method, they substitute for the scale parameter with the maximum likelihood 

estimate of it in the likelihood equation and reduce the number of parameters to be estimated by one. 

They estimate the shape parameter using maximum likelihood estimator and simple estimator and 

present simulation results for each case.        

  

II. The Proposed Method 

We assume that the product life 𝑋 has a Weibull distribution with a scale parameter 𝜃 and a shape 
parameter 𝛽.  We also assume that the scale parameter 𝜃 is related to the stress 𝑉 by 𝜃 =
𝜂0 𝑉

−𝜂1(inverse power law model), where 𝜂0 and 𝜂1 are positive constants and the shape parameter 
𝛽 is a constant for each level of stress. We focus on Type II censoring at each level of accelerated stress. 
Let the design level of stress, lower level of accelerated stress, higher level of accelerated stress, number 
of items subject to lower level of accelerated stress, number of items subject to upper level of 
accelerated stress, Type II censored number of items at lower level of accelerated stress, and Type II 
censored number of items at higher level of accelerated stress respectively be 𝑉𝐷, 𝑉𝐿, 𝑉𝐻 , 𝑛𝐿 , 𝑛𝐻 , 𝑟𝐿 , and 
𝑟𝐻 . We assume lifetime samples 𝑥𝐿1, 𝑥𝐿2, … 𝑥𝐿𝑛𝐿

 𝑎𝑛𝑑 𝑥𝐻1, 𝑥𝐻2, … , 𝑥𝐻𝑛𝐻  from lower and upper level of 

acceleration are independent within the samples and between samples. Weibull cumulative distribution 

function is given by  𝐹(𝑥) = 1 − 𝑒𝑥𝑝 {− (
𝑥

𝜃
)

𝛽
} ; 𝑥 > 0, 𝛽 > 0, 𝜃 > 0 and the 𝑝𝑡ℎpercentile of the 

Weibull distribution at the design level of stress is given by 𝑋𝑝 = 𝜃𝐷 [𝑙𝑛 (
1

1−𝑝
)]

1

𝛽
 where 𝜃𝐷 = 𝜂0 𝑉𝐷

−𝜂1. 

We propose to estimate parameters 𝛽, 𝜂0 and 𝜂1using Gibbs sampling.    
 
 

III. Monte Carlo Simulation 
 

We parameterize the stress levels in such a way that 𝑉𝐷 is equal to 1.  In practice, this can be done by 

dividing all the stress levels by the design level of stress.  The advantage of this parameterization is that 

we do not have to estimate 𝜂1 unless we want to study the accuracy in a simulation study. We assume 

reasonable values for the parameters 𝛽, 𝜂0, 𝑎𝑛𝑑 𝜂1and sample sizes presented by Jayawardhana and 

Samaranayake (2003). Using R programming language, we generate 𝑛𝐿Weibull random numbers from 

the lower level of stress (with 𝜃𝐿 = 𝜂0 𝑉𝐿
−𝜂1) and 𝑛𝐻 from the upper level of stress (with 𝜃𝐻 = 𝜂0 𝑉𝐻

−𝜂1) 

respectively. For censoring, we order the two data sets in increasing order and select the first 𝑟𝐿and 𝑟𝐻 

from lower and upper level of stress respectively.  Using RtoOpenBUGS package, we pass the two data 

sets to OpenBUGS and estimate the parameters 𝜃 and 𝛽. Since the equation 𝜃 = 𝜂0 𝑉
−𝜂1 can be written 
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as 𝑙𝑛(𝜃) = 𝑙𝑛(𝜂0) − 𝜂1𝑙𝑛(𝑉),  we relabeled 𝑙𝑛(𝜂0) as 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡. Within the OpenBUGS program, we 

use Gamma priors for the parameters 𝛽 and 𝜂1 and a normal prior for the parameter 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡. R 

program and OpenBUGS program for this simulation study are provided in the appendices. Within 

OpenBUGS, we simulate 5000 iterations with 2500 iterations of burn-in. If there are convergence issues 

we use Uniform priors with positive values. Estimated values of 𝛽, 𝜂1, and 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 are then passed to 

the R program to calculate the 𝑝𝑡ℎpercentile point at the design level of stress which is equal to 𝑥𝑝 =

𝜃𝐷 [𝑙𝑛 (
1

1−𝑝
)]

1

�̂� where 𝜃𝐷 = 𝑒𝑥𝑝(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡). Then we calculate the coverage probability 𝑃(𝑥 > 𝑥𝑝) =

1 − 𝑒𝑥𝑝 {− (
𝑥𝑝

𝜃𝐷
)

𝛽
}. This process is repeated 1000 times and the mean and standard deviation of the 

coverage probabilities are calculated and reported as 𝐸[P (𝑥 > 𝑥𝑝)] and 𝑆𝐷[P (𝑥 > 𝑥𝑝)] respectively.  

 

IV. An Example 

Nelson (1972) provides a data set from an experiment consisting of times to breakdown (in minutes) of 

an insulating fluid subjected to various constant elevated voltages.  The data from the experiment is 

presented in Table 1.   

Table 1: Failure Times for Insulating Fluid at Various Voltages 

26 Kv 28 Kv 30 Kv 32 Kv 34 Kv 36 Kv 38 Kv 
5.79 68.85 7.74 0.27 0.19 0.35 0.09 

1579.52 108.29 17.05 0.40 0.78 0.59 0.39 
2323.70 110.29 20.46 0.69 0.96 0.96 0.47 

 426.07 21.02 0.79 1.31 0.99 0.73 
 1067.6 22.66 2.75 2.78 1.69 0.74 
  43.40 3.91 3.16 1.97 1.13 
  47.30 9.88 4.15 2.07 1.40 
  139.07 13.95 4.67 2.58 2.38 
  144.12 15.93 4.85 2.71  
  175.88 27.80 6.50 2.90  
  194.90 53.24 7.35 3.67  
   82.85 8.01 3.99  
   89.29 8.27 5.35  
   100.58 12.06 13.77  
   215.10 31.75 25.50  
    32.52   
    33.91   
    36.71   
    72.89   

 

Using graphical methods and data from all the levels of acceleration, Nelson estimates 𝛽 to be 0.81 and 𝜃 
to be 63,000 at the design level of stress (20 Kv). Using our equation for 𝑥𝑝 and Nelson’s parameter 
estimates, we would calculate 𝑥0.01 to be 
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𝑥0.01 = 63,000 [ln (
1

0.99
)]

1
0.81

≈ 215.23 minutes. 

Jayawardhana & Samaranayake also provide a solution to this problem using data from only two different 
levels of stress (𝑉𝐿 = 30 Kv and 𝑉𝐻 = 36 Kv), estimating 𝛽 to be 0.8566 and 𝜂1to be 15.53, and then 
using the equation for 𝑥𝑝 to calculate 𝑥0.01 = 180.17. They also propose an ad-hoc adjustment to the 
equation that replaces 𝑟𝐿 + 𝑟𝐻 with 𝑟𝐿 + 𝑟𝐻 + 4 in the equation for 𝑥𝑝. With this adjustment, they 
calculate 𝑥0.01to be 152.44.  

Using OpenBUGS to perform our Bayesian estimation of the parameters, we estimate the parameters 
using data from only two different levels of stress, 𝑉𝐿 = 30 Kv and 𝑉𝐻 = 36 Kv (levels of stress were 
scaled appropriately so that 𝑉𝐷 = 1.0). Our estimates are �̂� = 0.9475, �̂�0 = 26680.0, and �̂�1 = 14.54. 
Using these parameter estimates, we calculate 

 𝑥0.01 = 26680 [𝑙𝑛 (
1

0.99
)]

1

0.9475
= 207.81.  

Notice that, our estimate for 𝛽 is larger than both the estimate produced by Nelson and the estimate 
produced by Jayawardhana & Samaranayake (2003).  

 

 

Figure 1: Weibull Probability Plot of Nelson’s Data 
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Table 2: Comparison of Results from Three Studies 

Parameter 
Estimates 

Nelson Using 
All Levels 

Jayawardhana and Samaranayake 
Using 30 & 36 Kv 

Jayawardhana and Custer 
Using 30 & 36 Kv 

�̂� 0.81 0.86 0.95 
𝜂0̂ 63,000 39,954* 26,680 
𝜂1̂  15.53 14.54 
𝑥�̂� 215.23* 180.17 207.81 

*These numbers are not reported by the authors.   

Jayawardhana and Samaranayake do not report the value of �̂�0 but we calculate it to be 39,954.25 without 
their ad-hoc adjustment.  

V. Conclusion 

We propose an easy method to calculate a percentile point of a Weibull life distribution of a product using 
data from two levels of acceleration of stress. A comparison with Jayawardhana and Samaranayake 
(2003) simulation results reveals that the percentile points calculated using Bayesian methods and 
Maximum Likelihood Predictive Density Method are both slightly over estimated consistently. 
Jayawardhana and Samaranayake use unbiasing constants in their simulation study and propose an easy to 
use ad-hoc adjustment to lower the percentile points but we do not have such a suggestion or way to 
correct for biased parameters. Other simulation studies we conducted show that Bayesian estimation of 
Weibull parameters even without acceleration of stress tend to be biased depending on the choice of the 
prior distributions and sample size.           
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Table 3: Estimated Coverage Probabilities using Bayesian Estimates of 𝛽 

 𝑝 = 0.10 𝑝 = 0.05 
 𝐸[P (𝑥 > �̂�0.10)] 𝑆𝐷[P (𝑥 > �̂�0.10)] 𝐸[P (𝑥 > �̂�0.05)] 𝑆𝐷[P (𝑥 > �̂�0.05)] 

𝑉𝐿 = 1.5, 𝑉𝐻 = 3.5     
20 20 10 20 0.876 0.036 0.931 0.027 
40 40 10 40 0.900 0.022 0.949 0.015 
40 40 40 40 0.897 0.019 0.948 0.013 

𝑉𝐿 = 1.5, 𝑉𝐻 = 5.5     
20 20 10 20 0.877 0.036 0.932 0.027 
40 40 10 40 0.891 0.024 0.945 0.016 
40 40 40 40 0.897 0.019 0.947 0.014 

𝑉𝐿 = 2.0, 𝑉𝐻 = 4.0     
20 20 10 20 0.877 0.036 0.931 0.027 
40 40 10 40 0.917 0.019 0.960 0.012 
40 40 40 40 0.901 0.018 0.950 0.013 

𝑉𝐿 = 2.0, 𝑉𝐻 = 6.0     
20 20 10 20 0.875 0.038 0.931 0.028 
40 40 10 40 0.909 0.020 0.955 0.014 
40 40 40 40 0.898 0.019 0.948 0.014 

𝑉𝐿 = 2.5, 𝑉𝐻 = 4.5     
20 20 10 20 0.878 0.038 0.932 0.028 
40 40 10 40 0.926 0.017 0.966 0.011 
40 40 40 40 0.914 0.152 0.959 0.010 

𝑉𝐿 = 2.5, 𝑉𝐻 = 6.5     
20 20 10 20 0.875 0.037 0.930 0.027 
40 40 10 40 0.917 0.019 0.961 0.012 
40 40 40 40 0.901 0.018 0.950 0.012 
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Table 4: Estimated (Unmodified) Coverage Probabilities Using MLEs and Simple Estimates of 𝛽  

(Reproduced from Jayawardhana and Samaranayake, 2003) 

 𝑝 = 0.10 𝑝 = 0.05 
 MLE Simple Estimator MLE Simple Estimator 

𝑉𝐿 = 1.5, 𝑉𝐻 = 3.5     
20 20 10 20 0.895 0.898 0.946 0.948 

40 40 10 40 0.897 0.896 0.948 0.948 

40 40 40 40 0.896 0.897 0.947 0.948 

𝑉𝐿 = 1.5, 𝑉𝐻 = 5.5     
20 20 10 20 0.896 0.899 0.946 0.949 

40 40 10 40 0.899 0.898 0.949 0.949 

40 40 40 40 0.897 0.899 0.948 0.949 

𝑉𝐿 = 2.0, 𝑉𝐻 = 4.0     
20 20 10 20 0.889 0.890 0.943 0.944 

40 40 10 40 0.890 0.889 0.945 0.944 

40 40 40 40 0.893 0.895 0.945 0.947 

𝑉𝐿 = 2.0, 𝑉𝐻 = 6.0     
20 20 10 20 0.892 0.896 0.944 0.947 

40 40 10 40 0.896 0.895 0.948 0.947 

40 40 40 40 0.896 0.897 0.947 0.947 

𝑉𝐿 = 2.5, 𝑉𝐻 = 4.5     
20 20 10 20 0.873 0.877 0.934 0.937 

40 40 10 40 0.878 0.873 0.938 0.936 

40 40 40 40 0.889 0.891 0.943 0.944 

𝑉𝐿 = 2.5, 𝑉𝐻 = 6.5     
20 20 10 20 0.889 0.892 0.943 0.945 

40 40 10 40 0.891 0.890 0.945 0.945 

40 40 40 40 0.894 0.894 0.946 0.946 
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APPENDIX A 

 
R Function to Simulate Type II Censored Weibull Data and Calculate Coverage Probabilities 

 
cen<-function(N,VL,VH,rL,rH,p){ 
model.file.weibull<-#Location of OpenBUGS model on computer# 
I<-1000 
M<-2 
V<-c(VL,VH) 
Y<-matrix(NA,nrow=M,ncol=N,byrow=TRUE) 
beta<-2 
intercept<-0 
eta0<-exp(intercept) 
eta1<-2 
theta<-eta0/(V^eta1) 
r<-c(rL,rH) 
L<-NULL 
weib<-matrix(NA,nrow=I,ncol=3) 
betahat<-NULL 
intercepthat<-NULL 
eta1hat<-NULL 
eta0hat<-NULL 
zp<-NULL 
coverage<-NULL 
for(i in 1:I){ 
for(m in 1:M){ 
Y[m,]<-c(sort(rweibull(N,beta,theta[m]))[1:r[m]],rep(NA,N-r[m])) 
}data<-rbind(Y[1,],Y[2,]) 
L<-list(data=data,V=V,N=N,M=M) 
parameters<-c("beta","eta1","intercept") 
inits<-list(beta=1,eta1=1,intercept=1) 
weibull.sim<-
bugs(data=L,parameters,inits=inits,model.file=model.file.weibull,n.iter=5000,n.burnin=2500,debug=FAL
SE) 
weib[i,]<-weibull.sim$summary[c(1,2,3),1] 
betahat[i]<-weib[i,1] 
intercepthat[i]<-weib[i,2] 
eta1hat[i]<-weib[i,3] 
eta0hat[i]<-exp(intercepthat[i]) 
zp[i]<-eta0hat[i]*((log(1/(1-p)))^(1/betahat[i])) 
coverage[i]<-exp(-(zp[i]/eta0)^beta) 
print(i) 
}print(mean(coverage)) 
print(sd(coverage)) 
} 
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APPENDIX B 

 
OpenBUGS Program for R Program in Appendix A 

 
model{ 
for (i in 1:M){ 
theta[i]<-exp(intercept-eta1*log(V[i])) 
lambda[i]<-pow(theta[i],-beta) 
for (j in 1:N){  
data[i,j]~dweib(beta,lambda[i]) 
} 
} 
eta1~dgamma(1,1) 
intercept~dnorm(0,0.001) 
beta~dgamma(1,0.3) 
} 
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APPENDIX C 
 

OpenBUGS Program for Example from Nelson (1972) 

 
 

model{ 

for (i in 1:N){ 

   theta[i]<-pow(V[i],eta1)/eta0 

    for (j in 1:r[i]) 

      { 

          Y[i,j]~dweib(beta,theta[i]) 

} 

} 

eta0~dunif(0,50000) 

eta1~dunif(0,100) 

beta~dunif(0,10) 

} 

#data 

list(N=2, r=c(11,15), V=c(1.5,1.8), 

Y=structure(.Data=c(7.74,17.05,20.46,21.02,22.66,43.40,47.30,139.07,144.12,175.88,194.90,NA,NA,NA
,NA, 

0.35,0.59,0.96,0.99,1.69,1.97,2.07,2.58,2.71,2.90,3.67,3.99,5.35,13.77,25.50),.Dim=c(2,15) 

) 

) 
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