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Abstract 
A process control model is studied in which every hth item is selected and subjected to 
repeated classifications because there is the possibility of misclassification. A final 
judgment of conforming is based on clustering of conforming classifications. Markov 
chain methods are used to investigate long term and various short term properties of the 
process. 
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1. Introduction 
 
Various authors including Taguchi, Elsayed, and Hsiang(1989) and Taguchi, Chowdhury, 
and Wu (2004) have considered models of on-line process control by attributes in which 
every hth item produced is inspected. In these, the process is initially assumed to be in 
control and to have a fraction of items conforming to specifications denoted by p1. When 
the process goes out of control the fraction conforming  shifts to p2 (< p1). When an 
inspected item is judged nonconforming, the process is stopped and a search is made to 
find an assignable cause.   
 
Other authors have investigated modifications of this or models in a similar spirit. For 
example, in Nayebpour and Woodall (1993) the random time until the shift from p1 to p2 
is assumed to follow a geometric distribution. Items produced were modeled as 
independent and identically distributed trials with a constant probability of π for each item 
to be the first one produced with the shifted (i.e., smaller) fraction conforming. Because 
only every hth item is inspected, the first item produced under this shifted fraction 
conforming value might not be inspected and thus there might be items produced before 
there is a chance of this shift being detected. 
 
Borges, Ho, and Turnes (2001) have argued that the inspection process itself can be subject 
to diagnostic errors so that a classification can result in a conforming item being mistakenly 
classified as nonconforming. We use pCN to denote the probability of this misclassification. 
It is also possible that a nonconforming item can be classified as conforming and we use 
pNC  to represent the  probability of this misclassification. We will also define pCC (pNN) to 
be the probability of correct classification that a conforming (nonconforming) item is 
classified as conforming (nonconforming). This possibility of misclassification leads to the 
notion that repeated classifications of each inspected item should be made prior to making 
the final judgment of whether the item is conforming or nonconforming. When the item 
has been judged in this final determination to be nonconforming, the process is then judged 
out of control and is stopped and a search for an assignable cause is done. If the process is 
actually out of control, we assume that an assignable cause is found and corrected and that 
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the process is put back in control and the process model continues as before. Since there is 
also the possibility that an item is judged to be nonconforming and the process is judged 
out of control, even though it actually is not. In this case, it is still stopped for a search for 
an assignable cause, but finding none, the process is then restarted and it is assumed that 
the process has not somehow been put out of control by the stopping and searching for a 
cause. On the other hand, it is also possible that the process goes out of control, but this is 
not detected when an item is subjected to inspection through repeated classifications in 
which case it remains out of control until this is detected with a later item.  
 
In Trindade, Ho, and Quinino (2007), the final judgment of whether the inspected item is 
conforming, and thus whether the process is in control, was based on majority rule in a pre-
specified number of repeated classifications. In Quinino, Colin, and Ho (2010), an item 
was judged to be conforming and the process to be in control if and only if there were k 
classifications as conforming before f classifications as nonconforming, where k and f are 
some pre-specified positive integers. We will use the acronym TCTN because the decision 
is based on the total number of classifications as conforming and nonconforming. Griffith 
and Smith (2017, 2018) further studied this rule and another rule called CCTN in which 
the final judgment is conforming if there are k consecutive conforming classifications prior 
to a total of f nonconforming classifications.  
 
In this paper, we study a compromise between the TCTN and CCTN protocols called the 
ScanCTN rule.  Griffith and Smith (2016) considered some aspects of this and the present 
paper extends those results to a short term and long-term analysis using Markov chains. 
For the ScanCTN protocol the item is judged conforming if k conforming classifications 
are achieved within w consecutive classifications prior to observing f total 
nonconforming classifications among all classifications.  Likewise, the item is judged 
nonconforming if f total nonconforming classifications among all classifications occur 
prior to k conforming classifications within w consecutive classifications. This rule eases 
the restriction on consecutive classifications from the CCTN rule in the sense that the 
count for classifications does not necessarily return to zero when a nonconforming 
classification occurs.  This rule requires more consistency in the way conforming 
classifications are obtained than the TCTN rule.   

 
2.  State Space and Transition Probabilities 

 
In order to assist with the readability of this section we will define the following notation 
for the ScanCTN rule. 
 

 We assume that the production process of items is modeled by independent and 
identically distributed Bernoulli trials having a constant probability π for each 
item to be the first item produced after the shift of the fraction conforming. Every 
hth item is inspected. 

 Let 𝜃 =  1 − (1 − 𝜋)ℎ. So, 1 − 𝜃 =  (1 − 𝜋)ℎ is the probability that the process 
has remained in control while those h items have been produced. 

 f = total number nonconforming classifications for final judgment of 
nonconforming 

 w = number of classifications in the window or scan  
 k = number of conforming classifications within the window, w, for final 

judgment of conforming 
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 p = probability that the classification of an item is judged “conforming” 
 q = 1-p 
 {Xn} = Markov-Chain where Xn = (x1,x2,x3,x4,…,xw,s,h)  
 xi = classification result (1 = conforming, 0 = nonconforming) for i = 1 to w-1  
 xw  = the outcome of the wth classification within the window of w  
 s = total number of conforming classifications in the entries x1 to xw 

 h = total number of nonconforming classifications  
 

In the case of the ScanCTN, the item is judged conforming if k conforming classifications 
are achieved within w consecutive classifications prior to observing f total nonconforming 
classifications among all classifications.  Likewise, the item is judged nonconforming if f 
total nonconforming classifications among all classifications occur prior to k total 
conforming classifications within w consecutive classifications.  Consider the Markov 
Chain {Xn} where Xn = (x1,x2,x3,x4,…,xw,s,h) means that after the nth classification the first 
w-1 entries, x1 to xw-1, contain the classification results (1 = conforming classification, 0 = 
nonconforming classification) of the previous w-1 classifications, the wth entry, xw, is the 
classification result of the wth trial, s counts the total number of conforming classifications 
in the entries x1 to xw, and h is the total number of nonconforming classifications among all 
the classifications.  When n < w, the nth entry will contain the classification of the nth trial, 
we will let NA be a placeholder in the entries xn+1 to xw.  Obviously, the index s is not 
necessarily needed but it does aid in the computation.  The probability of conforming 
classification is given by p and probability of nonconforming classification is given by q = 
1- p.  
 
It is a rather difficult task to write out the state space in set notation and the transition 
probabilities and state space in a simple diagram even for small values of k, w, and f.  
Therefore, to aid in understanding the states involved in this Markov Chain, we have listed 
the absorbing and transient states in Table 1 for a ScanCTN rule where k = 3, w = 4 and f 
= 3.   
 
For n = 1: P(X1 = (1,NA,NA,…NA,1,0)| X0 = (NA,NA,NA,…NA,0,0)) = p 
  P(X1 = (0,NA,NA,…NA,0,1)| X0 = (NA,NA,NA,…NA,0,0)) = q 
      n = 2:         P(X2 = (1,1,NA,…NA,2,0)| X1 = (1,NA,NA,…NA,1,0)) = p 
  P(X2 = (1,0,NA,…NA,1,1)| X1 = (1,NA,NA,…NA,1,0)) = q 

P(X2 = (0,1,NA,…NA,1,1)| X1 = (0,NA,NA,…NA,0,1)) = p 
  P(X2 = (0,0,NA,…NA,0,2)| X1 = (0,NA,NA,…NA,0,1)) = q 
Etc. for n ≤ w 
For n > w,  P(Xn = (b,c,d,e,…,1,s+1,h)|Xn-1 = (a,b,c,d,…,g,s,h) = p    if a = 0 

P(Xn = (b,c,d,e,…,1,s,h)|Xn-1 = (a,b,c,d,…,g,s,h) = p         if a = 1 
P(Xn = (b,c,d,e,…,0,s,h+1)|Xn-1 = (a,b,c,d,…,g,s,h) = q    if a = 0 
P(Xn = (b,c,d,e,…,0,s-1,h+1)|Xn-1 = (a,b,c,d,…,g,s,h) = q   if a = 1 

 

 
For the Markov chain there are absorbing (recurrent) states, which correspond to the 
termination of the rule.  Let A denote the set of absorbing states and a denote the number 
of absorbing states.  In fact, the singleton sets consisting of each of these absorbing states 
are recurrent classes.  The remaining states are transient which we will denote by T and 
likewise the number of transient states by t.  Written in canonical form, the one-step 
transition probability matrix P for the Markov chain is  QR

01P , where P1 is the a × a identity 
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matrix for the absorbing states, R is a t × a matrix containing the one-step probabilities of 
the transient states to the recurrent (absorbing) states, Q is a t × t matrix containing the 
one-step probabilities among the transient states, and 0 is the a × t zero matrix.  The one-
step probabilities of R and Q are determined by the transition probabilities given for each 
test.  The first row of Q contains the one step transition probabilities from state 
(NA,NA,NA,…NA,0,0). 
 
To compute the moments of the rule length, we will define the following notation.  Since 
elements of T appear as subscripts, we will use i and j as typical elements of T.  However, 
it should be noted that when we do so, each of i and j refer to an ordered (w + 2) tuple.  Let, 
 It × t = identity matrix of dimension t × t 
 Mt × t = (It × t -Qt × t)-1- the fundamental matrix of dimension t × t 
 em = column vector of length t where the mth element is one and the remaining elements 

are zero.  
 em′ is defined to be the transpose of em  
 u{NS} = column vector where all the elements corresponding to the final judgment of 

nonconforming states are one, and the remainder of the elements are zero. 
 1z = column vector of ones of length z 
 Nij = random variable that represents the number of times the process visits state j 

before it eventually enters a recurrent state, having initially started from state i (i,j  
T). 

 ij = E(Nij) for i,j  T.   

 Mρ= 








Tj

ij  = M 1t = column vector such that the mth element is the sum of the mth 

row of M 

 






























 



2

2

Tj
ij


M = diag (Mρ) Mρ   - column vector such that the mth element is the 

square of the sum of the mth row of M.  Note:  diag (Mρ) is a diagonal matrix whose 
entries are the corresponding entries of Mρ. 

 

Using the notation of the preceding section, the geometric distribution as a waiting time 
distribution, and basic probability results such as the law of total probability, we can obtain 
a number of results. These results are based on formulas in Bhat18. Propositions 1,2, and 3 
are from Griffith and Smith (2016) and are repeated here without proof for completeness. 
 
Proposition 1:  If the item being inspected is conforming (nonconforming), the probability 
that it is judged to be conforming is    
    
𝑃(𝑗𝑢𝑑𝑔𝑒𝑑 𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔| 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔) = 
𝑆𝑐𝑎𝑛𝐶𝑇𝑁(𝑝𝐶𝐶) =  1 −  𝒆1′𝑴𝑹 𝒖{𝑁𝑆} where p = pCC. 
 
𝑃(𝑗𝑢𝑑𝑔𝑒𝑑 𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔| 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑛𝑜𝑛𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑖𝑛𝑔) =
𝑆𝑐𝑎𝑛𝐶𝑇𝑁(𝑝𝑁𝐶) =  1 −  𝒆1′𝑴𝑹 𝒖{𝑁𝑆} where p = pNC 
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Proposition 2:  If the process is in control, the probability that it is judged to be in control 
is 
 𝑃𝐼𝐼 = 𝑃(𝑗𝑢𝑑𝑔𝑒𝑑 𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙| 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) =  𝑝1𝑆𝑐𝑎𝑛𝐶𝑇𝑁(𝑝𝐶𝐶) +
           (1 − 𝑝1)𝑆𝑐𝑎𝑛𝐶𝑇𝑁(𝑝𝑁𝐶) 

 
 

Proposition 3:  If the process is out of control, the probability that is judged to be in control 
is 
𝑃𝑂𝐼 = 𝑃(𝑗𝑢𝑑𝑔𝑒𝑑 𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙| 𝑜𝑢𝑡 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) = 𝑝2𝑆𝑐𝑎𝑛𝐶𝑇𝑁(𝑝𝐶𝐶)

+  (1 − 𝑝2)𝑆𝑐𝑎𝑛𝐶𝑇𝑁(𝑝𝑁𝐶) 
 
 

Proposition 4:  When the process is out of control, the average run length is 1

1−𝑃𝑂𝐼
. 

Proof:  This is geometric distribution with parameter 1 − 𝑃𝑂𝐼. 
 

Proposition 5: When the process is in control, the average run length is 1

1−𝑃𝐼𝐼
. 

Proof:  This is geometric distribution with parameter 1 − 𝑃𝐼𝐼. 
 

 
3. Short Term Analysis Using Markov Chains 

 
We now turn our attention to the short term analysis of this online process control with the 
ScanCTN protocol and will how to use Markov Chains to investigate the probability of 
judging the process to be out of control when it is in control as well as judging it to be out 
of control when it is out of control. Also we will explain a Markov chain approach to  
studying the distribution of the time until the process is declared out of control using first 
passage probabilities. For this purpose, we create a Markov Chain whose state space 
consists of four ordered-pairs whose elements are one or zeros. We use a 1 to stand for in 
control and a 0 to stand for out of control. The first coordinate is the actual state of the 
process and second coordinate is the judgment. As an example, (1,1) means that at a 
decision point the process is in control and judged to be in control. Whereas, (0,1) means 
that the process is actually out of control but judged to be in control. If we let 𝜃 =  1 −
(1 − 𝜋)ℎ  then 1 − 𝜃 =  (1 − 𝜋)ℎ is the probability that the process has remained in 
control while those h items have been produced. The one-step probability matrix for the 
transitions of this Markov chain is given in the following transition matrix. 
 

   

(1,1) (0,1) (1,0) (0,0)
(1,1) 1 1
(0,1) 0 0 1
(1,0) 0 0 1 0
(0,0) 0 0 0 1

II OI IO OO

OI OI

P P P P
P P

    

  

 
We can use first-passage probabilities to find the probability distribution of the time until 
the process is declared out of control by finding the probability of first reaching each 
absorbing state in n steps and then adding these probabilities to obtain the probability that 
it takes n steps (cycles of item inspections) to declare the process out of control. One can 
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also use first-step analysis to find the probability of absorption into (1,0) and into (0,0). 
Note: 𝑃𝐼𝑂 = 1 - 𝑃𝐼𝐼 and 𝑃𝑂𝑂 = 1 - 𝑃𝑂𝐼. 
 
 

4. Long Term Analysis Using Markov Chains 
 
Markov chains can also be used to study the long-term behavior of this process control. 
The process is judged out of control whenever we reach either state (1,0) or state (0,0). 
When the cause is found and corrected or when it is determined that the process is actually 
in control and there is no cause, the process is then put back online and the one step 
transition probabilities are like those from state (1,1). Hence, to analyze the long term 
behavior of the process, we can use a one-step transition probability matrix in which the 
rows in the matrix that correspond to transitions out of (1,0) and (0,0) are identical to those 
out of state (1,1). The one-step transition probability matrix useful for long term analysis 
is given below.  
 

   

   
   

(1,1) (0,1) (1,0) (0,0)
(1,1) 1 1
(0,1) 0 0 1
(1,0) 1 1
(0,0) 1 1

II OI IO OO

OI OI

II OI IO OO

II OI IO OO

P P P P
P P

P P P P
P P P P

   

   

   

 



 

 

 

 
Note that this one-step transition probability matrix is that of an irreducible, aperiodic, 
positive recurrent Markov chain and therefore the limiting probabilities exist and are 
independent of the starting state. These limiting probabilities also have the interpretation 
of being the long-term proportion of time spent in each state. These can be found by solving 
a system of linear equations.  
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