

Generalization of Thompson Sampling for Multiple Categorical
and Numerical Variables with Application for Fraud Detection

Alex Zolotovitski
Bellevue, WA 98005, ​www.linkedin.com/in/alexzolot

Abstract
Thompson Sampling is a well-known effective algorithm of reinforcement learning in cases when the probability
of reward depends on one categorical variable. Using a combination of unsupervised and supervised learning
methods, we generalized the algorithm for the case when the reward depends on multiple categorical and
numerical variables, tuned it with a simulation, and applied it to a fraud detection audit.
The method demonstrated good cumulative gain: checking 50% of candidate cases selected by the algorithm we
could detect 96% of fraud cases (96% true positive rate) having 99% of related monetary loss (maximum
possible reward).

Key​ ​Words:​ ​ reinforcement learning, Thompson Sampling, fraud detection

1. ​Business task

The task of fraud detection is to predict either a customer is a fraudster or not. And specific of the application is
that labeling variable ​y∈{null – not tested, 0 – not fraud, 1 – fraud, NA - skip} is done by humans – auditors or
investigators – and is very time consuming and expensive in comparison to marketing tasks.
The objective is ​ to test minimal number of subjects (ii, id, ​AN ​ -Account Number) , to find maximum number or
dollar amount of fraud.

1.1 Data
The data are similar to other supervised learning applications:

Table 1: ​Typical data (top of a table)

We have an ​Id ​which is an account number (AN), a categorical variable “​class​”, two numerical variables ​x1 and
x2​, characterizing a customer, a dollar amount, e.g. balance of account receivable (​AR​), related to a lost if this
customer is a fraudster, and variable ​y – the label, a result of the investigation. At this stage of the audit we
investigated two customers with ​Id= 002 and ​001​, who happened to be a fraudster (​002​) and a not-fraudster
(​001​).

700

http://www.linkedin.com/in/alexzolot

Based on the data we need to figure out which Id should be tested next. This is a typical task of reinforcement
learning.

Figure 1:​ ​Scheme of reinforcement learning.

In this situation ​Agent is our application, ​Environment is our investigator, ​state is what pool is available and
results of previous testings, ​action is which Id should be tested the next, and ​reward depends on results of
investigation – is it fraud or not.

The simplest task of this type is a “multi armed bandit”. Let we have two slot machines, A (red) and B (blue)

If we pull handle of machine A, we get reward with probability , and if we pull handle of machine 10rA = $ pA
B, we get reward with probability . We don't know the probabilities, and need to estimate them as a 20rB = $ pB
result of the testing, as well as which handle to pull next. The Tompson sampling is a popular algorithm for this
task.

In any moment of game the state is characterized by number of times we pulled handle of each machine and
number of wins and losts with each machine. Our objective is to get maximum reward. In the beginning of n1 n0
game we have no information about the probabilities:

Let after 7 trials, 3 times A and 4 times B, we came to the state

Thompson sampling is a popular way to solve exploration vs exploitation trade-off.

701

Pure exploration means that we continue to pull equally handles of machines A and B. Pure exploitation means
that we continue to pull only handle of more successful machine B. In Thompson sampling we pull two random
numbers ​x​A​ , x​B​ ​from posterior distribution of probabilities to win on machines A and B, that are Beta functions
with parameters ​α = n​1 ​+ 1 , β = n​0​ + 1​, and choose the machine providing the larger reward:

Dashed lines on these plots show unknown actual probabilities to win on machines A and B, solid lines indicate
x​A​ , x​B​ ​.

2. Generalization

The simplest more general case is if we have a number ​n​A​ ​of identical machines A, and a number ​n​B​ of identical
machines B

In this case instead of the simple Thompson sampling we need to have two stages: we need 1) ​Draw
a ​presample​ from classes​ - take a random representative one machine of type A and one machine of type B,
and after that 2) to repeat the standard Thompson sampling between the two representatives in the presample.
Instead of the first step we can take a presample of two from all machines, taking each machine with probability
~ ​1 / n​A​ , ​1 / n​B​ that would be asymptotically equivalent to taking one machine of each type.

2.1 Numerical variables

702

In the case of numerical variables we can use clustering and split all observations to clusters. Suppose that the
clusters are well defined, so probabilities of fraud ​ p ​ and rewards ​r​ are almost the same inside the clusters and
could be different between the clusters . In this case instead of numerical variables ​{x}​ we can use a categorical
variable ​cluster_Id​ to describe the observations, then we get the previous case of a number of observations of
each type, where instead of ​n​A​ ​and ​n​B​ we will have a number of observations in each cluster.

Again, i​nstead of the first step we can take a presample of ​n​C​ (number of clusters) ​ from all machines, taking
each machine with probability ~ ​1 / n​i​ ~ ​1 / dens​i​ ​ ​ (​n​i ​ - number of observations in the corresponding cluster,
dens​i​ - density of observations in the vicinity of observation ​ i​) that would be asymptotically equivalent to
taking one machine of each type. If instead of one observation per cluster we include in the preset more
observations per cluster, we shift the exploration-exploitation balance in direction of more exploitation, if we
take in the presample less than one observation per cluster, we shift the exploration-exploitation balance in
direction of more exploration.

3. Implementation

Our implementation of the algorithm has following ​features​:

1. It supports multiple users (auditors) working simultaneously ,
2. It it has small latency (~ 0.2 sec) and
3. It is stochastic, so any Id has a chance to be investigated

Initially all Id = ​i​ = Account Number (AN) are in the pool, that they can be tested and results ​y​ of the testing
are reported.

3.1. Steps of the Modified Thompson Sampling Algorithm

Prepare Data

1. Evaluate density of observations in the pool using kernal density estimation

703

Optimal value of radius ​r​0​ ​should be about the average radius of the clusters.
Smaller value ​r​0​ ​would increase exploitation, larger value ​r​0​ ​ would increase exploration.

2. Evaluate densities ​d​0​ ​and ​d​1​ ​ for found not-fraud and fraud:

3. Create uniformly distributed random variable for each observation in the pool and order
observations in the ​pool ​ by ​u​i ​/ ​d​i ​.

At test on the ​nextAN​ tester’s request

1. Take top ​n​pre​ ​observations from the ​pool ​ into ​presample ​. Smaller value ​n​pre​ ​ would increase

exploration, larger value ​n​pre​ ​would increase exploitation.
2. Create variables ​n​0​ and ​n​1​ by normalizing densities ​d​0​ ​and ​d​1​ ​ to total numbers of observed

not-fraud and fraud:

3. Sample AN from the ​presample ​ using modified Thompson sampler, using table ​report ​ – create
stochastic “reward” variable ​rew​ from Beta distribution :

and choose observation ​i ​with maximum reward ​i ​= argmax(​rew​).

4. Send this observation to the tester

5. Exclude the observation from the pool.`

At test on tester’s request ​doneAN

On the tester’s request ​doneBAN​ providing
1. Repeat steps 1-3 from “Prepare Data” = reevaluate densities ​d , ​ ​d​0​ ​and ​d​1​ ​ with

new ​report ​ and ​pool:

704

4. Retro Thompson on actual data

This is the result of using the generalized Thompson algorithm on actual testing data. 660
subjects were tested.

In the above plot the red lines show the number of found fraud using two variants of the algorithm in selecting
the observations before we found the first fraud case, and blue lines – related dollar amount revenue/loss. We see
that after testing of half of subjects we identify about 90% of all fraud cases and even higher percent of the
related dollar amount.

705

This chart shows estimation of fraud rate of overall population. Again, we see that after testing half of
subjects we are able provide a good estimate of the fraud rates for the population.

The following plots show correspondence between steps on which observations were tested in the two
modifications of the algorithm.

706

We used two variants of warming up: from larger clusters (thin lines) and from the last clusterized -
outliers (thick lines, N2 and AR2). In both variants we found almost all fraud after testing half of
subjects.

Conclusion

The method demonstrated good cumulative gain: checking 50% of candidate cases selected by the
algorithm we could detect 96% of fraud cases (96% true positive rate) having 99% of related monetary
loss (maximum possible reward).

We see that the generalized Thompson Sampling after testing half of all observations selects for testing
almost all fraud cases and has smaller absolute error of estimation of fraud in not-tested cases, but
higher absolute error of the estimates.

References

1. 1. Multi-Armed Bandit With Thompson Sampling. ​George Pipis​,
https://predictivehacks.com/multi-armed-bandit-with-thompson-sampling

2. RFCDE: Random Forests for Conditional Density Estimation, Taylor Pospisil and Ann B. Lee,
arXiv:1804.05753v2 /stat.ML/May 2018​, ​https://github.com/tpospisi/RFCDE/tree/master/r/vignettes

3. Decision Forests for Classification, Regression, Density Estimation, Manifold Learning and
Semi-Supervised Learning, A. Criminisi1 , J. Shotton2 and E. Konukoglu3, Microsoft Research technical
report TR-2011-114

4. Bayesian Control Rule, Pedro A. Ortega​ http://www.adaptiveagents.org/_media/bayesiancontrolrule.pdf

707

https://predictivehacks.com/author/george/
https://predictivehacks.com/multi-armed-bandit-with-thompson-sampling
https://arxiv.org/pdf/1804.05753.pdf
https://arxiv.org/pdf/1804.05753.pdf
https://github.com/tpospisi/RFCDE/tree/master/r/vignettes
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/decisionForests_MSR_TR_2011_114.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/decisionForests_MSR_TR_2011_114.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/decisionForests_MSR_TR_2011_114.pdf
http://www.adaptiveagents.org/_media/bayesiancontrolrule.pdf

