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Abstract 
Thompson Sampling is a well-known effective algorithm of reinforcement learning in cases when the probability 
of reward depends on one categorical variable. Using a combination of unsupervised and supervised learning 
methods, we generalized the algorithm for the case when the reward depends on multiple categorical and 
numerical variables, tuned it with a simulation, and applied it to a fraud detection audit. 
The method demonstrated good cumulative gain: checking 50% of candidate cases selected by the algorithm we 
could detect 96% of fraud cases (96% true positive rate) having 99% of related monetary loss (maximum 
possible reward). 
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1. ​Business task 
 
The task of fraud detection is to predict either a customer is a fraudster or not. And specific of the application is                      
that labeling variable ​y∈{null – not tested, 0 – not fraud, 1 – fraud, NA - skip} is done by humans – auditors or                        
investigators – and is very time consuming and expensive in comparison to marketing tasks. 
The objective is ​ to test minimal number of subjects (ii, id, ​AN ​ -Account Number) , to find maximum number or 
dollar amount of fraud. 
 
 

1.1 Data 
The data are similar to other supervised learning applications: 
 

Table 1: ​Typical data (top of a table) 
 

 
We have an ​Id ​which is an account number (AN), a categorical variable “​class​”, two numerical variables ​x1 and                   
x2​, characterizing a customer, a dollar amount, e.g. balance of account receivable (​AR​), related to a lost if this                   
customer is a fraudster, and variable ​y – the label, a result of the investigation. At this stage of the audit we                      
investigated two customers with ​Id= 002 and ​001​, who happened to be a fraudster (​002​) and a not-fraudster                  
(​001​). 
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Based on the data we need to figure out which Id should be tested next. This is a typical task of reinforcement                      
learning. 

 
Figure 1:​ ​Scheme of reinforcement learning. 
 
In this situation ​Agent is our application, ​Environment is our investigator, ​state is what pool is available and                  
results of previous testings, ​action is which Id should be tested the next, and ​reward depends on results of                   
investigation – is it fraud or not. 
 
The simplest task of this type is a “multi armed bandit”. Let we have two slot machines, A (red) and B (blue) 
 

 
If we pull handle of machine A, we get reward with probability , and if we pull handle of machine          10rA = $    pA         
B, we get reward with probability . We don't know the probabilities, and need to estimate them as a    20rB = $    pB              
result of the testing, as well as which handle to pull next. The Tompson sampling is a popular algorithm for this                     
task. 
 
In any moment of game the state is characterized by number of times we pulled handle of each machine and                    
number of wins and losts with each machine. Our objective is to get maximum reward. In the beginning of   n1   n0               
game we have no information about the probabilities: 
 

 
Let after 7 trials, 3 times A and 4 times B, we came to the state  

 
Thompson sampling is a popular way to solve exploration vs exploitation trade-off. 
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Pure exploration means that we continue to pull equally handles of machines A and B. Pure exploitation means 
that we continue to pull only handle of more successful machine B. In Thompson sampling we pull two random 
numbers ​x​A​ , x​B​ ​from posterior  distribution of probabilities to win on machines A and B, that are Beta functions 
with parameters ​α = n​1 ​+ 1 , β = n​0​ + 1​, and choose the machine providing the larger reward: 
 

 
Dashed lines on these plots show unknown actual probabilities to win on machines A and B, solid lines indicate 
x​A​ , x​B​ ​. 
 

2. Generalization 
 
The simplest more general case is if we have a number ​n​A​ ​of identical machines A, and a number ​n​B​  of identical 
machines B 
 

 
In this case instead of the simple Thompson sampling we need to have two stages: we need 1) ​Draw 
a ​presample​ from classes​  -  take a random representative one machine of type A and one machine of type B, 
and after that 2) to repeat the standard Thompson sampling between the two representatives in the presample. 
Instead of the first step we can take a presample of two from all machines, taking each machine with probability 
~ ​1 / n​A​ , ​1 / n​B​   that would be asymptotically equivalent to taking one machine of each type. 
 
2.1  Numerical variables 
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In the case of numerical variables we can use clustering and split all observations to clusters. Suppose that the 
clusters are well defined, so probabilities of fraud ​ p ​ and rewards  ​r​  are almost the same inside the clusters and 
could be different between the clusters . In this case instead of numerical variables ​{x}​ we can use a categorical 
variable ​cluster_Id​ to describe the observations, then we get the previous case of a number of observations of 
each type, where instead of  ​n​A​ ​and ​n​B​  we will have a number of observations in each cluster. 

Again,  i​nstead of the first step we can take a presample of ​n​C​  (number of clusters) ​ from all machines, taking 
each machine with probability ~ ​1 / n​i​   ~ ​1 / dens​i​ ​ ​ (​n​i ​ - number of observations in the corresponding cluster, 
dens​i​  - density of observations in the vicinity of observation ​ i​ )  that would be asymptotically equivalent to 
taking one machine of each type.  If instead of one observation per cluster we include in the preset more 
observations per cluster, we shift the exploration-exploitation balance in direction of more exploitation, if we 
take in the presample less than one observation per cluster,  we shift the exploration-exploitation balance in 
direction of more  exploration. 
 

3.  Implementation 

 
Our implementation of the algorithm has following ​features​:  

1. It supports multiple users (auditors) working simultaneously , 
2. It it has small latency (~ 0.2 sec)  and  
3. It is stochastic, so any Id has a chance to be investigated 

Initially all Id =  ​i​  = Account Number (AN) are in the pool, that they can be tested and results  ​y​ of the testing 
are reported. 
 

3.1. Steps of the Modified Thompson Sampling Algorithm 
 

Prepare Data 

1. Evaluate density of observations in the pool using kernal density estimation 
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Optimal value of radius   ​r​0​  ​should be about the average radius of the clusters. 
Smaller value  ​r​0​  ​would increase exploitation, larger value  ​r​0​ ​ would increase exploration. 

2. Evaluate densities   ​d​0​  ​and ​d​1​  ​ for found not-fraud and fraud: 

 
 

3. Create uniformly distributed random variable                          for each observation in the pool  and order 
observations in the ​pool ​   by   ​u​i ​/ ​d​i    ​. 

 
 
 
At test on the   ​nextAN​   tester’s request 

 
1. Take top  ​n​pre​  ​observations from the ​pool ​ into ​presample ​. Smaller value   ​n​pre​ ​ would increase 

exploration, larger value   ​n​pre​  ​would increase exploitation. 
2. Create variables  ​n​0​  and   ​n​1​   by normalizing densities   ​d​0​  ​and ​d​1​  ​ to total numbers of observed 

not-fraud and fraud:   
 
 
 

3. Sample AN from the ​presample ​ using modified Thompson sampler, using table ​report ​ – create 
stochastic “reward” variable ​rew​ from Beta distribution :   
 
and choose observation ​i ​with maximum reward   ​i ​= argmax(​rew​). 

4. Send this observation to the tester 

5. Exclude the observation from the pool.` 

 

At test on tester’s request   ​doneAN 

On the tester’s request ​doneBAN​ providing   
1. Repeat steps 1-3 from “Prepare Data” = reevaluate  densities   ​d , ​  ​d​0​  ​and ​d​1​  ​     with 

new ​report ​ and ​pool: 
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4. Retro Thompson on actual data 

This is the result of using the generalized Thompson algorithm on actual testing data. 660 
subjects were  tested. 

 

In the above plot the red lines show the number of found fraud using two variants of the algorithm in selecting 
the observations before we found the first fraud case, and blue lines – related dollar amount revenue/loss. We see 
that after testing of half of subjects we identify about 90% of all fraud cases and even higher percent of the 
related dollar amount. 
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This chart shows estimation of fraud rate of overall population. Again, we see that after testing half of 
subjects we are able provide a good estimate of the fraud rates for the population. 

 

The following plots show correspondence between steps on which observations were tested in the two 
modifications of the algorithm. 
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We used two variants of warming up: from larger clusters (thin lines) and from the last clusterized - 
outliers (thick lines, N2 and AR2). In both variants we found almost all fraud after testing half of 
subjects. 
 

Conclusion 

The method demonstrated good cumulative gain: checking 50% of candidate cases selected by the 
algorithm we could detect 96% of fraud cases (96% true positive rate) having 99% of related monetary 
loss (maximum possible reward). 

We see that the generalized Thompson Sampling after testing half of all observations selects for testing 
almost all fraud cases and has smaller absolute error of estimation of fraud in not-tested cases, but 
higher absolute error of the estimates. 
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