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Abstract
The accurate and cost effective estimation of linkage errors remains a major challenge for the

automated production and use of linked data. However this exercise is worthwhile only if the linked
data are fit for use. A new model is proposed to estimate the errors without clerical reviews, training
data or conditional independence assumptions, under regularity conditions that guarantee the fitness
for use of the linked data. It is based on the number of records adjacent to a given record, when
linking files that have few duplicate records and a nearly complete coverage of the target population.
Additional benefits include the estimation of false negatives due to blocking criteria, as well as
record level measures of errors; two challenges for previous models.
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1. Introduction

Record linkage aims at identifying records from the same entity that may be a person,
household or business. However linkage errors occur when the linkage decisions are based
on non-unique quasi-identifiers that are recorded with errors or variations, e.g. names.
These linkage errors include false negatives and false positives, where a false negative is
not linking records from the same entity and a false positive is linking records from different
entities. These errors may generate some bias in the analysis of linked data.
The accurate estimation of linkage errors is required when using linked data in the pro-
duction of official statistics. However this is a challenge mainly because there is often no
certainty about which records come from the same entity. Previous solutions have relied
on training data, expert input or the assumption of conditional independence in the record
pairs. Under this assumption, different variables have comparison outcomes, which are
conditionally independent given that the records come from the same entity or not. It facil-
itates the estimation of linkage errors but rarely applies to actual data. As for training data
and expert input, they are costly and not free from errors.
This paper describes a new error model without these limitations, which extends previous
work by Blakely and Salmond (2002). The remaining sections are organized as follows.
Section 2 describes the notation. Section 3 proposes regularity conditions that relate to the
fitness for use of the linked data. Section 4 introduces the concept of neighbour that is
strongly connected to the linkage errors. Sections 5 and 6 describe the proposed model and
the related error estimators respectively. Section 7 describes the simulation study. Section
8 concludes with the future work.
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2. Notations

It is convenient to first address the error estimation problem in the simplest setting, when
linking two perfect registers of the same finite population, where perfect means without un-
dercoverage or duplicate records. To this end, consider a finite population withN entities
and two perfect registers of this population. In the first register, entityi is associated with
recordvi that takes its values from the setV. For simplicity the setV is assumed to be finite
even if it is possibly large. Letv′

j (also inV) denote thej-th record in the second regis-
ter. The records from the two registers correspond through a uniform random permutation
π(.), such that the recordv′

π(i) is from individuali. The permutationπ(.) is unknown and
assumed independent of the record values. The record values from the different individu-
als are assumed to be independent and identically distributed. This is also saying that the
sample

(

v1,v
′
π(1)

)

,...,
(

vN ,v′
π(N)

)

is independent and identically distributed.
The two registers are linked without resolving the conflicts. This means that the decision
to link two records only depends on these records. The linkage decisions are characterized
by the collection[B(v)]

v∈V of subsets ofV, such thatvi andv′
j are linked if and only if

v
′
j ∈ B (vi). The subsetB(vi) is calledneighbourhood of vi. The recordv′

j is aneighbour
of vi if it belongs to the neighbourhood, i.e. if the two records are linked. Then a false
negative occurs ifv′

π(i) /∈ B (vi) for somei. A false positive occurs ifv′
π(i′) ∈ B (vi)

for some distincti and i′. These errors are evaluated by different measures, including
the False Negative Rate (FNR), the False Positive Rate (FPR) and the Positive Predicted
Value (PPV). The false negative rate is the proportion of record pairs that are not linked,
among the pairs where the records come from the same entity. The false positive rate is the
proportion of record pairs that are linked, among the pairs where the records come from
different entities. As for the positive predicted value, it is the proportion of record pairs,
where the records come from same entity, among the linked pairs. In the current setting,
we have

FNR =
1

N

N∑

i=1

I
(

v
′
π(i) /∈ B (vi)

)

, (1)

FPR =
1

N(N − 1)

N∑

i=1

∑

i′ 6=i

I
(

v
′
π(i′) ∈ B (vi)

)

, (2)

PPV =
1− FNR

1− FNR+ (N − 1)FPR
. (3)

These three measures go by many different names in the literature. For example the positive
predicted value is also called precision.

3. Regularity conditions

Estimating the linkage errors is of interest mostly when the linked data are fit for use.
What this precisely means differ according to the applications of the linked data. Yet all
official statistics applications require a false negative that is bounded away from 1 and
a positive predicted value that is bounded away from 0, overall and for each domain of
interest. This latter requirement is notable because the ability to produce estimates over
small domains is an important driver for the linkage of administrative data and big data. In
the following paragraphs, the proposed regularity conditions ensure the fitness for use in
the above general sense. In order to describe these conditions, considerv ∈ V and let

pN (v) = P
(

v
′
π(i) ∈ B (vi)

∣
∣
∣vi = v

)

, (4)
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λN (v) = P
(

v
′
π(i′) ∈ B (vi)

∣
∣
∣vi = v

)

, i′ 6= i. (5)

Then the following regularity conditions are assumed to hold.

inf
v∈V

pN (v) ≥ δ, (6)

sup
v∈V

(N − 1)λN (v) ≤ Λ, (7)

(pN (vi), (N − 1)λN (vi)) ∼ F (., .), (8)

whereδ is positive, andδ, Λ andF (., .) do not depend onN . If FNR
p
→ E[FNR] =

E [pN (vi)] and(N − 1)FPR
p
→ E[(N − 1)FPR] = E [(N − 1)λN (vi)] (these laws of

large numbers follow from the regularity conditions), the above conditions imply that

FNR ≤ 1− δ, (9)

PPV ≥
δ

δ + Λ
, (10)

with high probability, whenN is large. A similar result applies for any reasonable domain
that is defined in terms ofvi. The above conditions characterize the fitness for use of
the linked data. The parametersδ andΛ may be chosen to cover the range of intended
applications. However, they are not required by the estimation procedure that is described
subsequently.

4. Neighbours and errors

The concept of neighbour is crucial when discussing linkage errors. Letni denote the num-
ber of neighbours ofvi. Table 1 shows the connection betweenni and the linkage errors
involving the corresponding record. Indeed, without looking at the records or the linkage
decisions, it is known that each record has at most one false negative and between 0 and
N − 1 false positives. However, when there are no neighbours, with certainty, it is known
that there is one false negative but no false positive. When there is a single neighbour, no
information is gained about the false negatives but much information is gained about the
false positives because they are known to be in the range{0, 1} instead of the much wider
range, which extends from0 toN−1. In general, when2 ≤ ni ≤ N−1, much information
is gained about the false positives, the number of which is known to beni − 1 or ni, even
if no additional information is obtained about the occurrence of a false negative. Finally,
when there areN neighbours, with certainty, it is known that there is no false negative but
N − 1 false positives. All these observations suggest that the error rates may be estimated
by modeling theni distribution.

Table 1: Error information from the neighbours

ni False negatives False positives Error information
0 1 0 full

1 ≤ ni ≤ N − 1 0 or 1 ni − 1 or ni partial
N 0 N − 1 full

5. Neighbour model

The proposed model arises from a convergence in distribution when the population gets
arbitrarily large, under the regularity conditions. Indeed, the number of neighboursni
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is the sum of two contributions, including the number of neighbours from the same en-
tity and that from different entities, where the two contributions are independent condi-
tional onvi, with parameters that are functions ofvi. The first contribution follows the
Bernoulli(pN(vi)) distribution conditional onvi. The second contribution follows the
Binomial(N − 1, λN (vi)) distribution, conditional onvi. WhenN becomes large andvi
is such thatpN (vi) = p and(N − 1)λN (vi) = λ, the second contribution converges in
distribution to the Poisson distribution with parameterλ (see Theorem 23.2 in Billingsley
(1995)). Thus

ni|{pN (vi) = p, (N − 1)λN (vi) = λ}
d
→ Bernoulli(p) ∗ Poisson(λ),

where∗ denotes the convolution operator. One obtains a finite mixture if the functions
p(.) andλ(.) are piecewise constant with latent (i.e. unobserved) level sets, where each
component is the sum of a Bernoulli variable with an independent Poisson variable, i.e.

ni ∼
G∑

g=1

αg (Bernoulli(pg) ∗ Poisson(λg)) , (11)

whereG is the number of classes (or latent level sets). This model is the limiting form
of the model by Blakely and Salmond whenN → ∞ and theni distribution is heteroge-
neous. The underlying parameters (αg, pg andλg for g = 1, . . . , G) may be estimated by
maximizing the composite likelihood of theni’s.

6. Estimators

The neighbour model provides the basis for estimating the error rates. Indeed, whenN →
∞ under the regularity conditions, we have the following laws of large numbers.

FNR
p
→ E[FNR] = 1−

G∑

g=1

αgpg, (12)

(N − 1)FPR
p
→ E[(N − 1)FPR] =

G∑

g=1

αgλg, (13)

PPV
p
→

(

1 +

∑G
g=1 αgλg

∑G
g=1 αgpg

)−1

. (14)

For the FNR, the above law of large numbers applies because it is an iid sum. For the FPR,
the result is based on the following observation.

(N − 1)FPR =
1

N

N∑

i=1

N − 1

N − 1

∑

i′ 6=i

P
(

v
′
π(i′) ∈ BN (vi)

∣
∣
∣vi

)

+

1

N

N∑

i=1

(N − 1)





∑

i′ 6=i

(

I
(

v
′
π(i′) ∈ BN (vi)

)

− P
(

v
′
π(i′) ∈ BN (vi)

∣
∣
∣vi

))

N − 1





︸ ︷︷ ︸

Op(N−2)

=
1

N

N∑

i=1

(N − 1)λN (vi) +Op

(

N−1
)

. (15)

The convergence of the PPV follows by continuity from the convergence of the FNR and
FPR. The above expressions also apply to the false negatives due to blocking when the
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linkage decision reduces to the blocking criteria. The neighbour model also provides a
basis for measures of accuracy at the record level such as the probability of a false positive
given that there is a single neighbour.

P




⋃

i′ 6=i

{

vπ(i′) ∈ B(vi)
}

∣
∣
∣
∣
∣
∣

ni = 1



 = 1−

∑G
g=1 αge

−λgpg
∑G

g=1 αge−λg (pg + (1− pg)λg)
(16)

The above expression shows that this is a positive probability.

7. Simulation study

The simulations are based on a population ofN = 2K + 1 = 129 entities withK = 7

dichotomous linkage variables. In the first register,vi =
(

v
(1)
i , . . . , v

(K)
i

)

, where the
distribution ofvi is of the form

P (vi) = 2−(K−1)
(

α1I
(

v
(1)
i = v

(2)
i

)

+ α2I
(

v
(1)
i 6= v

(2)
i

))

,

for someα1 ∈ (0, 1) andα2 = 1 − α1. In the second register,v′
j =

(

v
(1)′

j , . . . , v
(K)′

j

)

with v
′
π(i) generated by adding errors tovi based onν ≤ µ ≤ 1, ui ∼ Bernoulli(µ),

τ
(3)
i , . . . , τ

(K)
i iid according toBernoulli(ν/µ), e(1)i = e

(2)
i = 0, e(k)i = uiτ

(k)
i for k ≥ 3

and
v
(k)′

π(i) = v
(k)
i + e

(k)
i

(

1− 2v
(k)
i

)

.

Two records are linked if they agree on all the variables. Theni distribution follows the
neighbour model with two classes, i.e.G = 2. However whenα1 = α2 = 1/2, theni

distribution is homogeneous such that the neighbour with one class applies. Conditional
independence applies whenα1 = α2 = 1/2 andµ = 1.
Four simulation scenarios are considered, which are labeled from 1 to 4. In scenariot,
α1 = 1/8 + (2t − 1)(15/31 − 1/8)/7, ν = 1/50 andµ = ν + (2t − 1)(1 − ν)/7 for
t = 1, . . . , 4. The scenarios are such that the departure from conditional independence is
greater in scenariot than in scenariot+1. This ordering of the scenarios also applies with
respect to the homogeneity of the neighbour distribution, i.e. theni distribution is more
homogeneous in scenariot + 1 than in scenariot. For each scenario, the simulations are
based on 1,000 repetitions.
Table 2 shows the mean squared error for the different estimators. It can be seen that the
neighbour model tends to have a smaller mean squared error than the model by Blakely and
Salmond. It also tends to have a smaller mean squared error than the model by Fellegi and
Sunter, when there is more correlation.

8. Future work

For applications, extensions are required regarding undercoverage, duplicate records and
conflicts. Another challenge is how to perform valid statistical inferences because theni’s
are correlated.
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Table 2: Mean squared error for all the estimators.

Scenario
1 2 3 4

FNR Blakely and Salmond 7.02E-04 4.56E-03 4.64E-03 4.86E-03
Neighbour model withG = 2 8.34E-04 4.23E-03 3.09E-03 2.55E-03
Fellegi and Sunter 1.06E-02 3.96E-03 3.24E-03 3.76E-03

FPR Blakely and Salmond 1.56E-05 9.47E-06 5.45E-06 5.44E-06
Neighbour model withG = 2 2.02E-06 1.89E-06 1.44E-06 1.07E-06
Fellegi and Sunter 2.03E-05 5.98E-06 1.07E-06 8.67E-08

PPV Blakely and Salmond 1.10E-02 9.87E-03 6.91E-03 6.47E-03
Neighbour model withG = 2 8.44E-04 1.79E-03 1.78E-03 1.61E-03
Fellegi and Sunter 8.48E-03 4.22E-03 1.14E-03 4.22E-04
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