
Evaluation Error Requirements For Generating

Random Variates Using Dominated Rejection Algorithms

Timothy Hall*

Abstract

This paper provides an implementing analyst with an error analysis framework by which the like-

lihood and extent of improper, missed, proper, and spurious variate candidates may be generated

by a dominated rejection algorithm. If the actual distribution from which the variate values (on a

bounded real interval) are being produced significantly differs from the intended distribution (as

given by a density function), then whatever statistical inference is attempted for the resulting dis-

tribution is invalid. The analytical methods found in this paper provide for objectively quantifying

the extent to which spurious and missed variate candidates may either be eliminated, minimized, or

tolerated.

Key Words: Dominated Rejection Algorithms, Numerical Error Estimation, Random Variates

1. Introduction

When a dominated rejection algorithm is used to generate random variates of a continuous

distribution (with a density function) on a (closed) bounded region of real values, the extent

to which the calculated continuous uniform variates, and the calculated density function

evaluation at one of those continuous uniform variates, introduce evaluation error into the

acceptance or rejection of the candidate variate values, could possibly interfere with any

statistical inference based on the objectivity of those accepted variate values. If the actual

distribution from which the variate values are being produced significantly differs from the

intended distribution (as given by the density function), then whatever statistical inference

is attempted for the resulting distribution is invalid. The analytical methods found in this

paper provide for objectively quantifying the extent to which spurious (invalid variates due

to calculation error) and missed (valid variates left out due to calculation error) variate

candidates may either be eliminated, minimized, or tolerated.

This paper provides an implementing analyst with an error analysis framework by

which only proper (valid variates rightfully accepted) and improper (invalid variates right-

fully rejected) variate candidates occur in a particular Bounded Accuracy Dominated Re-

jection Algorithm (BADRA) implementation.

2. The BADRA Algorithm

The following steps generate a set of n-many bounded accuracy random variates {x1, x2, . . . , xn}
that follow the continuous probability density function f (x) with least upper bound M >
0.

Algorithm 1 (Bounded Accuracy Dominated Rejection Algorithm [BADRA]) Given pre-

cision tol > 0, and the bounded (one-dimensional real) closed set [a, b > a] completely

within the domain of a continuous probability density function f with least upper bound

M > 0, the following steps generate random variates {x1, x2, . . . , xn≥1} on [a, b] to within

tolerance tol that follow the distribution given by f .

*PQI Consulting, P. O. Box 425616, Cambridge, MA, USA, 02142-0012

661

1. Set i = 0.

2. Generate a continuous uniform random variate x on [a, b] to within tolerance tol; this

is called the Candidate Value.

3. Generate a continuous uniform random variate u on [0, 1] to within tolerance tol
independently from Step 2.

4. If uM < f (x), then assign xi+1 = x and increment i by 1 (this is called “accepting

x”); otherwise continue (this is called “rejecting x”).

5. If i = n, then skip to Step 6; otherwise skip to Step 2.

6. Report {x1, x2, . . . , xn} as the Acceptance Set of bounded accuracy random variates

within tolerance tol that follow the distribution given by f .

The most efficient choice of M (the choice that produces the minimum expected num-

ber of rejected candidates) is sup
x∈[a,b]

f (x) (see Appendix 1).

3. Error Analysis Analytical Environment

Let fx be the errorless value of f at x, and let f∗ be the calculated value of fx with error

εx 6= 0 (which could be positive or negative), so that

fx = f∗ (x) + εx

Generally the value of |εx| is relatively small compared to fx and absolutely smaller

than some invariant value; in fact, it is usually the case that substantial effort is made to-

wards minimizing this value. However, it will be convenient in the analytical development

of the error analysis for there to be a specific, if not generous, upper bound for |εx|, namely

|εx| <
1

2
sup

x∈[a,b]
f (x)

Since εx may be positive or negative, then f∗ (x) may be greater than fx (when εx < 0)

or less than fx (when εx > 0), so that it is possible for f∗ (x) > sup
x∈[a,b]

f (x) and f∗ (x) < 0,

respectively; in fact, we have

f∗ (x) ∈

[

−εx, sup
x∈[a,b]

f (x)− εx

]

, when εx is known1

[

− |εx| , sup
x∈[a,b]

f (x) + |εx|
]

, when εx is unknown

3.1 Calculation Errors

For the purposes of this paper a BADRA implementation will be assumed to be imple-

mented in such a manner that cases where f∗ (x) < 0 and f∗ (x) > sup
x∈[a,b]

f (x) shall be de-

tected and eliminated from further consideration, i.e., any candidate x found in Step 1 with a

calculated value of f∗ (x) found in Step 4 to be in [− |εx| , 0)∪
(

sup
x∈[a,b]

f (x) , sup
x∈[a,b]

f (x) + |εx|
]

.

662

When εx > 0, this means f∗ (x) ∈
[

0, sup
x∈[a,b]

f (x)− εx

]

⊂
[

0, sup
x∈[a,b]

f (x)

]

, since

no value greater than sup
x∈[a,b]

f (x) − εx can be calculated. However, when εx < 0, this

means f∗ (x) ∈
[

−εx, sup
x∈[a,b]

f (x)

]

⊂
[

0, sup
x∈[a,b]

f (x)

]

, as no value less than −εx > 0

can be calculated. When the sign of εx is known, the appropriate bounds for f∗ (x) shall

be used; when the sign of εx is unknown, then f∗ (x) ∈
[

|εx| , sup
x∈[a,b]

f (x)− |εx|
]

⊂
[

0, sup
x∈[a,b]

f (x)

]

shall be used.

With the corresponding definitions for calculating M = sup
x∈[a,b]

f (x), we have

M = M∗ + εM

where εM could be non-zero or zero, and for generating u we have

uex = ugen + εu

where uex is the exact value of u in [0, 1], ugen is the calculated value of u, and εu 6= 0 is

the difference.

In a similar manner as for εx, since εu may be positive or negative, then ugen may be

greater than uex (when εu < 0) or less than uex (when εu > 0), so that it is possible for

ugen > 1 and ugen < 0, respectively; in fact, we have

ugen ∈
{

[−εu, 1− εu] , when εu is known2

[− |εu| , 1 + |εu|] , when εu is unknown

For the purposes of this paper a BADRA implementation will be assumed to be imple-

mented in such a manner that cases where ugen < 0 and ugen > 1 shall be detected and

eliminated from further consideration, i.e., any ugen found in Step 2 with a calculated value

to be in [− |εu| , 0) ∪ (1, 1 + |εu|].
When εu > 0, this means ugen ∈ [0, 1− εu] ⊂ [0, 1], since no value greater than 1−εu

can be calculated. However, when εu < 0, this means ugen ∈ [−εu, 1] ⊂ [0, 1], as no value

less than −εu > 0 can be calculated. When the sign of εu is known, the appropriate bounds

for ugen shall be used; when the sign of εu is unknown, then ugen ∈ [|εu| , 1− |εu|] ⊂ [0, 1]
shall be used.

3.2 Mistaken Accept/Reject

For a particular candidate value x, the test we would like to perform in Step 4 of the

BADRA, the Exact Test, is

uexM < fx

yet the actual test that is performed, the Practical Test, is

ugenM∗ < f∗ (x)

In particular, when the exact test accepts a candidate, that value is said to have been

Exactly Accepted; otherwise it was Exactly Rejected. Similarly a candidate value may be

either Practically Accepted or Practically Rejected. This leads to the following definitions

of a Candidate Class.

663

Definition 2 Given a candidate x generated in Step 2 of the algorithm, the candidate class

of x is called ...

1. Proper if it is practically and exactly accepted;

2. Spurious if it is practically accepted and exactly rejected;

3. Missed if it is practically rejected and exactly accepted; and

4. Improper if it is practically and exactly rejected.

Definition 3 The Strength of an implementation of the BADRA is its propensity to generate

only proper and improper candidates. A BADRA implementation is called Perfect if it only

generates proper and improper candidates, and it is called Useless if it only generates

spurious and missed candidates. The Accuracy of a BADRA implementation is measured

by (|εu| , |εx|), where Accurate implementations are near (0, 0) and Inaccurate ones have

large |εu| and/or large |εx|.

The goal of this paper is to find necessary and sufficient conditions on εx and εu so that

a BADRA implementation may be perfect, i.e., only generate proper and improper candi-

dates regardless of the particular values of εx and εu. In the alternative, the goal would be

to find necessary and sufficient conditions on εx and εu so that a BADRA implementation

may be as “perfect as possible,” i.e., be implemented with as much accuracy as possible,

which would generate as few spurious and missed candidates, both relatively and abso-

lutely, as possible. If trade-off conditions on εx and εu are available to minimize particular

undesirable candidate classes, i.e., spurious and missing, in favor of promoting particular

desirable candidate classes, i.e., proper (especially) and improper, those conditions shall

also be a goal of this paper.

3.3 The BADRA Calculation Error

We have

uexM = (ugen + εu) (M∗ + εM)

so that

uexM = ugenM∗ +

εuM∗ + εMugen + εuεM − εx
︸ ︷︷ ︸

The BADRA Calculation Error εC(x)

Note that if 0 > ugenM∗ − f∗ (x) ≥ εx and εx ≥ −εC (x), then

εuM∗ + εMugen + εuεM ≥ 0

and

fx = f∗ (x) + εx ≤ ugenM∗ ≤ ugenM∗ + εuM∗ + εMugen + εuεM = uexM

yet

ugenM∗ < f∗ (x)

This proves that a candidate x would have been accepted under the practical test (ugenM∗ <
f∗ (x)) when it would have been rejected under the exact test (uexM ≥ fx).

Likewise, if 0 ≤ ugenM∗ − f∗ (x) < εx and εx < −εC (x), then

εuM∗ + εMugen + εuεM < 0

664

and

fx = f∗ (x) + εx > ugenM∗ > ugenM∗ + εuM∗ + εMugen + εuεM = uexM

yet

ugenM∗ ≥ f∗ (x)

This proves that a candidate x would have been rejected under the practical test (ugenM∗ ≥
f∗ (x)) when it would have been accepted under the exact test (uexM < fx).

These calculation demonstrate that the interplay between ugenM∗−f∗ (x) and −εC (x)
determine the candidate class of x given ugen.

3.4 Static Versus Dynamic Errors

Finally, it is reasonable to expect εx and εu to be static, i.e., be the same value (yet not

necessarily equal) regardless of how many times x and ugen are chosen in Steps 1 and

2, respectively, in a BADRA implementation. If, however, these values depend on the

sequence number, or time, or any other external factor, then separate models for εx and εu
under such circumstances would be needed. It is common to accept εx and εu as static and

not necessarily equal, even though they may be functions of the particular values of x and

ugen within [a, b] and [0, 1], respectively.

4. Using An Approximate M

Instead of using the calculated value M∗ for M = sup
x∈[a,b]

f (x) in the practical tests, suppose

we use a rational number M0 ≥ M that is arbitrarily close to M . This value (M0 > 0,

since f is a probability density function) is exact since it is rational, and if M were rational,

then εM = 0. This means εC (x) would become

ε∗C (x) = εuM0 − εx

so that

εx < −ε∗C (x) =⇒ εx < εx − εuM0 =⇒ εu < 0

εx ≥ −ε∗C (x) =⇒ εx ≥ εx − εuM0 =⇒ εu ≥ 0

since M0 > 0. This establishes the relationship between εu and εx for a given value of

M0 ≥ M .

In general, the algorithm efficiency lost by using a larger M value than is necessary is

gained by decreasing the likelihood of including spurious candidates in the acceptance set

and missed candidates that should have been accepted.

5. Avoiding Spurious Candidates

Criterion 4 A candidate x is spurious only if εuM ≥ εx.

Proof. If candidate x were spurious, then x is practically accepted, which means

ugenM0 < f∗ (x) =⇒ 0 > ugenM0 − f∗ (x) ≥ ugenM − f∗ (x) (1)

since M0 ≥ M and3 ugen > 0. We also have that x is exactly rejected, which means

uexM ≥ fx = f∗ (x) + εx =⇒ uexM − f∗ (x) ≥ εx (2)

3When εu > 0, then ugen ∈ [0, 1− εu], and when εu < 0, then ugen ∈ [−εu, 1]. In either case, ugen > 0.

665

Therefore, we have

εx ≤ uexM − f∗ (x) (from (2))

= (ugen + εu)M − f∗ (x) (by definition)

= (ugenM − f∗ (x)) + εuM

≤ εuM (from (1))

This means we may ensure no spurious candidates are generated by enforcing εuM <
εx. This is called the Standard Spurious Condition.

Criterion 5 A BADRA implementation will not generate any spurious candidates if εuM <
εx.

When it is not possible to ensure εuM < εx, a spurious candidate may or may not be

generated, depending on the relationship between ugen, εu, M , M0, f∗ (x), and εx. The

following theorem makes this relationship explicit.

Theorem 6 A candidate x is spurious if and only if 0 > ugenM0 − f∗ (x) ≥ ugenM −
f∗ (x) ≥ εx − εuM .

Proof. Note first that εuM ≥ εx is part of this condition; however, a case-by-case

component is also needed to make the equivalence.

(=⇒) Suppose candidate x were spurious. This means x is practically accepted, i.e.,

ugenM0 < f∗ (x) =⇒ 0 > ugenM0 − f∗ (x) ≥ ugenM − f∗ (x)

since M0 ≥ M and ugen ≥ 0. Furthermore, x is exactly rejected, i.e.,

uexM ≥ fx =⇒ 0 > ugenM − f∗ (x) ≥ εx − εuM

(⇐=) Suppose 0 > ugenM0 − f∗ (x) ≥ ugenM − f∗ (x) ≥ εx − εuM . Since 0 >
ugenM0 − f∗ (x) =⇒ ugenM0 < f∗ (x), then x is practically accepted. Furthermore, we

have

ugenM ≥ f∗ (x) + εx − εuM

so that

uexM = ugenM + εuM

≥ (f∗ (x) + εx − εuM) + εuM

= f∗ (x) + εx

= fx

so that x is exactly rejected.

6. Avoiding Missed Candidates

Criterion 7 A candidate x is missed only if (1 + εu)M < M0 + εx.

666

Proof. If candidate x were missed, then x is practically rejected yet exactly accepted.

This means

ugenM0 ≥ f∗ (x) (x is practically rejected)

uexM < fx (x is exactly accepted)

so that

ugenM0 ≥ f∗ (x)

−uexM > −f∗ (x)− εx

which means

uexM − ugenM0 < εx

and

(1 + εu)M −M0 = (M −M0) + εuM

≤ ugen (M −M0) + εuM (since M −M0 ≤ 0, ugen ∈ [0, 1])

= uexM − ugenM0

< εx

This means we may ensure no missed candidates are generated by enforcing (1 + εu)M ≥
M0 + εx. This is called the Standard Missed Condition.

Criterion 8 A BADRA implementation will not generate any missed candidates if (1 + εu)M ≥
M0 + εx.

When (1 + εu)M < M0 + εx, a missed candidate may or may not be generated,

depending on the relationship between ugen, εu, M , M0, f∗ (x), and εx. The following

theorem makes this relationship explicit.

Theorem 9 A candidate x is missed if and only if 0 ≤ ugenM0 − f∗ (x) and ugenM −
f∗ (x) < εx − εuM .

Proof. Note how this conditions is “the reverse” of the condition for spurious candi-

dates; however, the relationship between M0 and M prevents the condition from being

stated as a single cascading set of inequalities.

(=⇒) Suppose candidate x were missed. This means x is practically rejected, i.e.,

ugenM0 ≥ f∗ (x) =⇒ 0 ≤ ugenM0 − f∗ (x)

Furthermore, x is exactly accepted, i.e.,

uexM < fx =⇒ ugenM − f∗ (x) < εx − εuM

(⇐=) Suppose 0 ≤ ugenM0 − f∗ (x) and ugenM − f∗ (x) < εx − εuM . Since

0 ≤ ugenM0 − f∗ (x) =⇒ ugenM0 ≥ f∗ (x), then x is practically rejected. Furthermore,

we have

ugenM < f∗ (x) + εx − εuM

so that

uexM = ugenM + εuM

< (f∗ (x) + εx − εuM) + εuM

= f∗ (x) + εx

= fx

so that x is exactly accepted.

667

7. Perfect BADRA Implementations

The standard conditions for preventing spurious and missed candidates may be used indi-

vidually; however, they cannot be used together.

Corollary 10 A BADRA implementation using the standard conditions cannot always gen-

erate both spurious-free and missed-free candidates.

Proof. From Criterion 5, the condition εuM < εx avoids generating spurious candi-

dates. So we have

(1 + εu)M = M + εuM < M0 + εx

since M0 ≥ M . Therefore the condition (1 + εu)M ≥ M0 + εx is not available.

Similarly, Criterion 8 shows the condition (1 + εu)M ≥ M0 + εx avoids generating

missed candidates. Then we have

εuM ≥ (M0 −M) + εx ≥ εx

since M0 ≥ M . Therefore the condition εuM < εx is not available.

However, there are conditions, based on the relationship between ugen and f∗ (x),
where a BADRA implementation may produce a spurious-free and missed-free candidate.

Claim 11 A BADRA implementation generates a spurious-free and missed-free candidate

if and only if either the 0 > ugenM0 − f∗ (x) or ugenM − f∗ (x) ≥ εx − εuM condition

applies, but not when both occur at the same time.

Proof. (=⇒) By Theorem 9, to be missed-free we must have 0 > ugenM0 − f∗ (x)
or ugenM − f∗ (x) ≥ εx − εuM . Furthermore, to be spurious-free we cannot have both

0 > ugenM0 − f∗ (x) and ugenM − f∗ (x) ≥ εx − εuM , for then

0 > ugenM0 − f∗ (x) ≥ ugenM − f∗ (x) ≥ εx − εuM

since M0 ≥ M and ugen ≥ 0, which means x would be spurious by Theorem 6.

(⇐=) Suppose 0 > ugenM0−f∗ (x) xor ugenM−f∗ (x) ≥ εx−εuM (using the logical

“exclusive or”). Then by Theorem 6, x cannot be spurious since 0 > ugenM0− f∗ (x) =⇒
ugenM−f∗ (x) < εx−εuM and ugenM−f∗ (x) ≥ εx−εuM =⇒ 0 ≤ ugenM0−f∗ (x).
Furthermore, by Theorem 9, x cannot be missed since either condition contradicts the

required conditions.

Remark 12 An important consequence of Claim 11 is that a perfect BADRA implementa-

tion must always either have 0 > ugenM0 − f∗ (x) and ugenM − f∗ (x) < εx − εuM , or

0 ≤ ugenM0 − f∗ (x) and ugenM − f∗ (x) ≥ εx − εuM . The first case accepts a candi-

date practically and exactly (a proper candidate), and the second case rejects a candidate

practically and exactly (an improper candidate).

Claim 13 Let R (f∗) be the range of (real) calculated values of f . When R (f∗)∩
[
|εu|M0,

1
2M − |εx|

]
6=

∅, then there is no single value of M0 > M that makes a BADRA implementation perfect

regardless of εu and εx.

Proof. By Claim 11, for a BADRA implementation to be perfect, the choice of M0

must make either 0 > ugenM0 − f∗ (x) and ugenM − f∗ (x) < εx − εuM (to avoid a

missed candidate), or 0 ≤ ugenM0 − f∗ (x) and ugenM − f∗ (x) ≥ εx − εuM (to avoid a

spurious candidate) be valid for all ugen and x, regardless of εu and εx.

668

Given M0 > M > 0, for x0 ∈ [a, b] such that f∗ (x0) ∈
[
|εu|M0,

1
2M − |εx|

]
, which

exists by supposition, define

u∗gen =
f∗ (x0)
M0

which means

|εu| =
|εu|M0

M0
≤ u∗gen =

f∗ (x0)
M0

≤
1
2M − |εx|

M0
<

1

2
< 1− |εu|

so that

u∗genM − f∗ (x0) =

(
f∗ (x0)
M0

)

M − f∗ (x0) =

(
M

M0
− 1

)

f∗ (x0) < 0

yet

u∗genM0 − f∗ (x0) = 0

Hence, we must have

u∗genM − f∗ (x0) ≥ εx − εuM

which means εx − εuM < 0 since u∗genM − f∗ (x0) < 0.

Now let ω ≥ 2 be the smallest positive integer such that

0 <

1
M

(

1− M
M0

)

f∗ (x0)

ω
< M − |εx| −

f∗ (x0)
M0

and define

u∗∗gen = u∗gen +
1

ωM

(

1− M

M0

)

f∗ (x0)

so that

u∗∗gen =
f∗ (x0)
M0

+
1

ωM

(

1− M

M0

)

f∗ (x0) < M − |εx|

We have

u∗∗genM − f∗ (x0) =

(

u∗gen +
1

ωM

(

1− M

M0

)

f∗ (x0)

)

M − f∗ (x0)

=
(
u∗genM − f∗ (x0)

)
+

1

ω

(

1− M

M0

)

f∗ (x0)

=

(
M

M0
− 1

)

f∗ (x0) +
1

ω

(

1− M

M0

)

f∗ (x0)

=

(

1− 1

ω

)(
M

M0
− 1

)

f∗ (x0)

< 0

yet

u∗∗genM0 − f∗ (x0) =

(

u∗gen +
1

ωM

(

1− M

M0

)

f∗ (x0)

)

M0 − f∗ (x0)

=
(
u∗genM0 − f∗ (x0)

)
+

M0

ωM

(

1− M

M0

)

f∗ (x0)

= 0 +
M0

ωM

(

1− M

M0

)

f∗ (x0)

> 0

which means we cannot have u∗∗genM0−f∗ (x0) < εx−εuM as required, since εx−εuM <
0.

669

Claim 14 It is always the case that R (f∗) ∩
[
|εu|M0,

1
2M − |εx|

]
6= ∅ when |εx| >

|εu|M0 >
1

b−a
− εx.

Proof. Suppose R (f∗) ∩
[
|εu|M0,

1
2M − |εx|

]
= ∅. Then

|εx| > |εu|M0 =⇒ R (f∗) ∩
[

|εu|M0,
1

2
M − |εx|

]

= R (f∗) ∩
[

|εx| ,
1

2
M − |εx|

]

This means εuM0 + εx < |εx| + εx ≤ f∗ (x) + εx = fx for all x ∈ [a, b]. Hence, we

have

1 = (b− a)

(
1

b− a

)

< (b− a) (|εu|M0 + εx) <

∫ b

a

f (x) dx

which is a contradiction.

Conclusion 15 A BADRA implementation with |εx| < 1
2M and |εu| < 1

2 and |εx| >
|εu|M0 >

1
b−a

− εx cannot be perfect.

Now consider the possibility that

|εx| ≥
1

2
M

contrary to the intuitive desire to minimize |εx|; the condition |εu| < 1
2 remains, and there

is now no restriction on the relationship between |εx| and |εu|M0, nor between any of these

values and a and b.
We have

M ≥ f∗ (x) + |εx| ≥ f∗ (x) +
1

2
M =⇒ f∗ (x) ≤

1

2
M

and

εx > 0 =⇒ εuM <
1

2
M ≤ εx =⇒ εx − εuM > 0

εx < 0 =⇒ εuM > −1

2
M ≥ εx =⇒ εx − εuM < 0

so that

εx > 0 =⇒ εx − εuM ≥

{
−εuM ≥ − |εu|M

εx ≥ 1
2M =⇒ εx ≥ M − εx

}

=⇒ εx − εuM ≥ (1− |εu|)M − εx

 ≥ ugenM − f∗ (x)

εx < 0 =⇒ ugenM − f∗ (x) ≥ |εu|M − 1

2
M ≥

{
|εu|M ≥ −εuM

−1
2M ≥ εx

}

=⇒ |εu|M − 1
2M ≥ εx − εuM

which means when εx > 0 all candidates are accepted exactly (εx − εuM > ugenM −
f∗ (x)) except when εx − εuM = ugenM − f∗ (x), when x would be rejected, and ac-

cepted/rejected practically depending on the sign of ugenM0 − f∗ (x). Furthermore, when

εx < 0 all candidates are rejected exactly (εx − εuM ≤ ugenM − f∗ (x)) and again

accepted/rejected practically depending on the sign of ugenM0 − f∗ (x). Note that the

particular value of M0 here is not relevant.

Conclusion 16 A BADRA implementation with |εx| ≥ 1
2M and |εu| < 1

2 cannot be perfect

regardless of M0.

670

Finally, consider |εx| ≥ 1
2M and |εu| ≥ 1

2 ; there is still no restriction on the relationship

between |εx| and |εu|M0, nor between any of these values and a and b.
We still have

|εx| ≥
1

2
M =⇒ f∗ (x) ≤

1

2
M

and

|εu| ≥
1

2
=⇒ 1− |εu| ≤

1

2
so that

1

2
(M0 −M) ≤ |εu|M0−

1

2
M ≤ ugenM0−f∗ (x) ≤ (1− |εu|)M0−|εx| ≤

1

2
(M0 −M)

which means

ugenM0 − f∗ (x) =
1

2
(M0 −M) ≥ 0

since M0 ≥ M , which means all candidates are practically rejected.

Conclusion 17 A BADRA implementation with |εx| ≥ 1
2M and |εu| ≥ 1

2 only generates

improper and missed candidates regardless of M0.

Conclusion 18 A BADRA implementation cannot possibly be perfect unless |εx| < 1
2M

and |εu| < 1
2 and either 0 < |εx| ≤ |εu|M0 or εx + |εu|M0 ≤ 1

b−a
(or εu = 0 = εx).

Note that the condition 0 < |εx| ≤ |εu|M0 would allow for |εu|M0 ≥ εuM ≥ εx =
|εx| > 0 when, e.g., εu > 0 and εx > 0, since M0 ≥ M , which, in turn, allows for

spurious candidates. Furthermore, it shall usually be the case that a and b are far enough

apart, and εu and εx are small enough values (in absolute value), so that the condition

εx + |εu|M0 ≤ 1
b−a

is easily satisfied.

Therefore, the focus herein is on the two necessary conditions given by

|εu| <
1

2
and |εx| <

1

2
M

to characterize a perfect BADRA implementation.

8. Efficient BADRA Implementations

We first need a special measure on the candidate set [a, b] since f is defined outside of [a, b],
but all inference must be to the set [a, b] in a BADRA implementation.

Definition 19 Let ([a, b] ,S, µ) be a probability measure space defined on [a, b] with mea-

surable sets S , where µ is given by

µ (S) =

∫

x∈S f (x) dx
∫ b

a
f (x) dx

for a measurable set S ∈ S .

Theorem 20 A BADRA implementation with εuM < εx and − |εu|M0 ≤ εx ≤ |εu|M0+
(M −M0), given ugen, will generate a proper candidate with probability µ (SP), where

SP = {x ∈ [a, b] : M ≥ fx > ugenM0 + εx ≥ 0}
and will generate a missed candidate with probability µ (ST), where

ST =

{

x ∈ [a, b] : M ≥ ugenM0 + εx ≥ fx >
1

2
(ugen (M +M0) + εuM + εx) ≥ 0

}

and an improper candidate otherwise with probability 1− µ (SP)− µ (ST).

671

Proof. The restrictions on the size of εx, given εu and M0, are

0 ≤ 1

2
(ugen (M +M0) + εuM + εx) ≤ M and 0 ≤ ugenM0 + εx ≤ M

and since ugen ∈ [|εu| , 1− |εu|], we have

− (|εu|+ εu)M − |εu|M0 ≤ εx ≤ M − (1− |εu|)M0 + (|εu| − εu)M

and

− |εu|M0 ≤ εx ≤ M − (1− |εu|)M0

respectively, so that

− |εu|M0 ≤ εx ≤ |εu|M0 + (M −M0)

satisfies both restrictions.

By Criterion 5, εuM < εx means such a BADRA implementation is spurious-free.

Then given ugen ∈ [|εu| , 1− |εu|] and εuM < εx, we have

1

2
(εuM + εx) < εx and

1

2
ugen (M +M0) ≤

1

2
ugen (M0 +M0) = ugenM0

since M0 ≥ M and ugen > 0, so that

ugenM0 + εx >
1

2
(ugen (M +M0) + εuM + εx)

Hence, we have

fx > ugenM0 + εx =⇒ fx >
1

2
(ugen (M +M0) + εuM + εx)

which applies if and only if

ugen (M +M0)− 2 (f∗ (x) + εx) < (εx − εuM)− 2εx

which is valid if and only if

ugenM − f∗ (x) + (ugenM0 − f∗ (x)) < εx − εuM

Since we also have

fx > ugenM0 + εx =⇒ ugenM0 − f∗ (x) < 0

then x is practically accepted.

However, we also have

ugenM − f∗ (x) ≤ ugenM0 − f∗ (x) < εx − εuM

since M0 ≥ M and ugen > 0, and ugenM0 − f∗ (x) is negative and εx − εuM is positive,

so that x is exactly accepted. This means x is proper.

Furthermore, we have fx ≤ ugenM0 + εx =⇒ ugenM0 ≥ f∗ (x), i.e., x is practically

rejected, while fx > 1
2 (ugen (M +M0) + εuM + εx) =⇒ ugenM − f∗ (x) ≤ ugenM −

f∗ (x) + (ugenM0 − f∗ (x)) < εx − εuM , i.e., x is exactly accepted. This means x is

missed.

The only remaining choice is an improper candidate (since spurious candidates were

eliminated by εuM < εx).

672

Proper

Missed

Improper

ugen

fx

0 1|εu| 1− |εu|

|εu|M0 + εx

(1− |εu|)M0 + εx

1

2
(|εu| (M +M0) + εuM + εx)

1

2
((1− |εu|) (M +M0) + εuM + εx)

M

Figure 1: Efficient BADRA Implementation Candidate Classes

Note how the condition εx + |εu|M0 ≤ 1
b−a

is not explicitly used in the proof of

Theorem 20; it is necessary only through Conclusion 18.

A BADRA implementation conforming to the requirements of Theorem 20 is called

an Efficient BADRA Implementation. See Figure 1 for a depiction of the three possible

candidate classes available through Theorem 20.

Note how εu = 0 = εx means ugen = uex, so that M0 = M would reduce SP

to {x ∈ [a, b] : fx > uexM} and ST to {x ∈ [a, b] : uexM ≥ fx > uexM} = ∅, which

means 1− µ (SP)− µ (ST) = µ ({x ∈ [a, b] : fx ≤ uexM}).
Note also that the slope of the line dividing the proper and missed regions has slope

M0, which is necessarily no less than the slope of the line dividing the missed and improper

regions, namely 1
2 (M +M0) (since M0 ≥ M). Since these two lines start at |εu|M0 + εx

and 1
2 (|εu| (M +M0) + εuM + εx), respectively, i.e., when ugen = |εu|, and

|εu|M0 >
1
2 |εu| (M +M0)

εuM < εx =⇒ εx > 1
2 (εuM + εx)

}

=⇒ |εu|M0+εx >
1

2
(|εu| (M +M0) + εuM + εx)

then these two lines do not intersect.

9. Ensuring Minimally Missed Candidates

The objective of finding necessary and sufficient conditions for a perfect, or “as perfect

as possible,” BADRA implementation is therefore to choose εu, εx, and M0 (to the extent

possible in a particular implementation) subject to the conditions of Theorem 20. This

will minimize µ (ST), thereby making an efficient BADRA implementation “as perfect as

possible” when εu 6= 0 and εx 6= 0.

For non-zero εu and εx, this minimization would be optimal if we may choose M0 = M
(when the value of M may be errorlessly calculated) and εuM = εx, for together these

values ensure that

− |εu|M0 = − |εu|M ≤ εuM = εx ≤ |εu|M = |εu|M0 = |εu|M0 + (M −M0)

as required in Theorem 20, and this would completely “squeeze out” the missed region (the

middle region in Figure 1) by achieving

1

2
(ugen (M +M0) + εuM + εx) =

1

2
(ugen (M0 +M0) + εx + εx) = ugenM0 + εx

673

Indeed, by Theorem 6, εuM = εx would not admit spurious candidates, since the

condition

0 >
︸ ︷︷ ︸

accept practically

ugenM0 − f∗ (x) = ugenM − f∗ (x) ≥
︸ ︷︷ ︸

reject exactly

εx − εuM = 0

is a contradiction.

However, if M0 cannot be chosen as M , i.e., we must have M0 > M , then εuM =
εx ≤ |εu|M0 + (M −M0) would still not admit spurious candidates (by Theorem 6), and

such a choice would still provide

− |εu|M0 < − |εu|M ≤ εuM = εx ≤ |εu|M0 + (M −M0)

as required in Theorem 20, and it would minimize the missed region (see Figure 1) by

uniformly minimizing, i.e., regardless of εu and εx, the difference between ugenM0 + εx
and 1

2 (ugen (M +M0) + εuM + εx), i.e., we would have

(ugenM0 + εx)−
(
1

2
(ugen (M +M0) + εuM + εx)

)

=
1

2
(ugen (M0 −M) + εx − εuM)

=
1

2
ugen (M0 −M)

Conclusion 21 With the understanding that εx + |εu|M0 ≤ 1
b−a

, an efficient BADRA

implementation is perfect when M0 = M and εuM = εx; otherwise, if M0 must be chosen

greater than M , then an efficient BADRA implementation is as perfect as possible when

εuM = εx ≤ |εu|M0 + (M −M0).

10. Marginal Penalties And Sacrifices

Note also that we may write

1

2
(ugen (M +M0) + εuM + εx) = uexM +

1

2
(ugen (M0 −M) + εx − εuM)

and

ugenM0 + εx = uexM + ugen (M0 −M) + εx − εuM

For fixed non-zero εu and εx, define

ξugen,M0
= ugen (M0 −M) + εx − εuM > 0

to be the Marginal Proper Penalty Given ugen And M0. Note that ξugen,M0
is necessarily

positive, since, in an efficient BADRA implementation, we have εuM < εx, ugen ≥ 0, and

M0 ≥ M . This measures the reduction in the likelihood of proper candidates in an efficient

BADRA implementation as a “penalty” for choosing M0 > M with fixed non-zero εu and

εx.

Claim 22 In an efficient BADRA implementation, ξ = min
M0≥M

ξugen,M0
occurs when M0 =

M , and at this value we have

SP = {x ∈ [a, b] : fx > uexM + ξ}

ST =

{

x ∈ [a, b] : uexM + ξ ≥ fx > uexM +
1

2
ξ

}

674

Proof. Clearly ξ = min
M0≥M

ξugen,M0
= εx − εuM occurs when M0 = M for fixed εu

and εx, so that

max

{
1
2 (ugen (M +M0) + εuM + εx) ,

ugenM0 + εx

}∣
∣
∣
∣
M0=M

= max

{
uexM + 1

2 (εx − εuM) ,
uexM + (εx − εuM)

}

= max

{

uexM +
1

2
ξ, uexM + ξ

}

= uexM + ξ

since εuM < εx (which means ξ > 0) in an efficient BADRA implementation. Therefore,

we have

SP = {x ∈ [a, b] : fx > uexM + ξ}
and

ST =

{

x ∈ [a, b] : uexM + ξ ≥ fx > uexM +
1

2
ξ

}

Since fx > uexM means x is exactly accepted, then define ξ to be the Marginal Proper

Sacrifice. This measures the reduction in the likelihood of proper candidates in an efficient

BADRA implementation that are “sacrificed” by having non-zero εu and εx.

Note that ξugen,M0
and ξ are only defined for efficient BADRA implementations.

The marginal proper sacrifice ξ is therefore the minimum marginal proper penalty avail-

able for a given set of non-zero εu and εx regardless of ugen and M0 ≥ M . Note that

|εu| (M0 −M) ≤ ξugen,M0
− ξ ≤ (1− |εu|) (M0 −M)

by definitions, since M0 ≥ M and ugen ∈ [|εu| , 1− |εu|].
Finally, note that when εuM = εx in an efficient BADRA implementation we automat-

ically have a zero marginal proper sacrifice, since then ξugen,M0
= ugen (M0 −M) so that

ξ = 0.

11. The Minimum Expected Number Of Improper Candidates

The choice of M that minimizes the expected number of rejections per unit candidates is

the value of M that maximizes the expectation of accepting an individual candidate.

If T is the random variable that chooses candidate t uniformly on [a, b], then P (T = t) =
1

b−a
(since

∫ b

a
1

b−a
dx = 1), and if U is the random variable that chooses u uniformly on

[0, 1], then P
(

U ≤ f(t)
M

|T = t

)

= f(t)
M

, where M ≥ f (t) for all t ∈ V.

We have

P (t accepted) = P

(

u <
f (t)

M
| {T = t, U = u}

)

= P

(

U <
f (t)

M
|T = t

)

P (T = t)

=
f (t)

(b− a)M

Therefore, we have

E [t accepted] =

∫

V

f (t)

(b− a)M
t dV =

(
1

(b− a)

∫

V

f (t) t dV

)
1

M
< ∞

675

and viewing E [t accepted] strictly as a function of M (with fixed a, b, and finite
∫

V
f (t) t dV),

we have that 1
M

is maximized at the smallest available value of M , which is the greatest

lower bound for M , i.e.,

max
M≥f

E [t accepted] = sup
t∈V

f (t)

Note that these arguments apply to t and V of arbitrary (real) dimensions.

12. Example BADRA Implementations

Several calculation examples will demonstrate the dynamics of various BADRA implemen-

tations. The first example shows how easily spurious candidates may occur in a BADRA

implementation unless specific condition on εu and εx are imposed. The other six examples

use the same M0 = 2
5 value justified in the first example for generating standard normal

variates on [−6, 6] with various conditions on the two qualifying criteria of Theorem 20 for

an efficient BADRA implementation.

For the purposes of the six calculation examples, Criterion I shall be εuM < εx and

Criterion II shall be − |εu|M0 ≤ εx ≤ |εu|M0 + (M −M0) with the understanding that

Criterion III (εx+ |εu|M0 ≤ 1
b−a

) shall always be satisfied since the largest absolute value

for εu and εx shall be 1
100 where a = −6 and b = 6.

12.1 Spurious Candidates

Our goal in this example is to generate at least 1, 000, 000 random variates from the stan-

dard normal distribution. This means we must generate at least one million proper can-

didates x according to the algorithm from the pairs (ugen, f∗ (x)) without spurious candi-

dates.

Suppose we use the approximate4 M value M0 = 2
5 , and are using a continuous uni-

form random variate generator on [0, 1] such that εu = 1
1000 > 0. This means the value of

ugen is always slightly smaller (by 0.001) than it should be. As an example, if uex = 0.616
(using a three decimal place generator) comes from a true continuous uniform variate gen-

erator, yet ugen = 0.615 is used, then εu = 0.001.

Suppose further that εx = − 1
100 < 0, so that f∗ (x) is calculated to a value slightly

larger (by 0.01) than it should be.

This means5

εx − εuM < 0

so that if we have

0 > ugenM0 − f∗ (x) > ugenM − f∗ (x) ≥ εx − εuM

then x is a spurious candidate. The exact probability of this happening is therefore6

P (Spurious) =

∫ 1−|εu|

|εu|

(
φ−1 (M (x+ εu))− φ−1 (M0x+ εx)

)
dx

4Since the standard normal distribution has density function f (x) given by 1√
2π

e−
1

2
x2

, then the maximum

occurs at its mean value x = 0, namely

M =
1√
2π

≈ 0.398942 < 0.4 =
2

5
= M0

This choice for M0 is very close to M .
5Such a BADRA implementation is not efficient by Theorem 20.
6This result generalizes to any inverse cumulative probability function.

676

where φ−1 is the truncated (to [−6, 6]) inverse cumulative distribution function of the stan-

dard normal distribution.

With M0 = 2
5 , M = 1√

2π
, εx = − 1

100 , and εu = 1
1000 , whenever ugen and f∗ (x) have

the relationship7

1

1000

(

10 +
1√
2π

)

+
1√
2π

ugen ≥ f∗ (x) >
2

5
ugen (3)

then x is spurious. As an example, when ugen = 0.615, then we have

0.25575 ≈ 1

1000

(

10 +
1√
2π

)

+
1√
2π

(0.615) ≥ f∗ (x) >
2

5
(0.615) = 0.246

so that any x where f∗ (x) ∈ (0.246, 0.255], such as when x = 0.97 (f∗ (0.97) = f (0.97)+
1

100 ≈ 0.24923 + 0.01 = 0.25023), is spurious.

The width of the spurious-generating interval from (3) is

0.0093423 .
1

1000

(

10 +
1√
2π

)

+

(
1√
2π

− 2

5

)

ugen . 0.010398

and is shifted upwards according to 2
5ugen and 1√

2π
ugen, as ugen ranges from |εu| to 1−|εu|.

Every time (3) is satisfied for an individually calculated (ugen, f∗ (x)) pair, then x
becomes part of the acceptance set when it should have been rejected. Note also that by the

symmetry of the standard normal distribution, if x qualifies as spurious, then so does −x.

We may closely approximate the exact probability of a spurious candidate in this ex-

ample using8

∫ 1−| 1

1000
|

1

40

(

φ−1

(
1√
2π

(

x+
1

1000

))

− φ−1

(
2

5
x− 1

100

))

dx ≈ 0.8309621

where 1
40 is used instead of

∣
∣ 1
1000

∣
∣ since

1 ≥ 2

5
x− 1

100
> 0 =⇒ 101

40
> 1 ≥ x >

1

40
>

∣
∣
∣
∣

1

1000

∣
∣
∣
∣

and using 1−
∣
∣ 1
1000

∣
∣ as the upper limit is valid since

1 ≥ 1√
2π

(

x+
1

1000

)

> 0 =⇒
√
2π − 1

1000
> 1−

∣
∣
∣
∣

1

1000

∣
∣
∣
∣
≥ x > 0 > − 1

1000

The remaining part of the exact probability, namely on x ∈
[∣
∣ 1
1000

∣
∣ , 1

40

]
, is positive and

significantly smaller than the approximation on
[
1
40 , 1−

∣
∣ 1
1000

∣
∣
]
. In particular, its value

is approximately 0.1439139, so that the combined value for the entire
[

1
1000 , 1− 1

1000

]

interval is approximately 0.9748761.

This means for every 1, 000 candidates the expected number of spurious candidates is

approximately (1000) (0.9748761) / (6− (−6)) ≈ 81, or 8.1% of all candidates.

7Since εx = − 1

100
, then we also have

1√
2π

(

ugen +
1

1000

)

≥ fx = f∗ (x)−
1

100
>

2

5
ugen −

1

100

8See Appendix 3 for the MAPLE code used to calculate this approximation. MAPLEr is a registered

trademark of Maplesoft (a division of Waterloo Maple, Inc.), 615 Kumpf Drive, Waterloo, Ontario, Canada,

N2V 1K8. The MAPLE version used to produce the results found in this paper is 2017.1, June, 19, 2017,

Maple Build ID 1238644.

677

12.2 Example 1: Not Efficient Due To Criterion I

Standard normal random variates are chosen from a BADRA implementation (with initial

seed 105661067) where εu > 0 and εx < 0, and − |εu|M0 ≤ εx ≤ |εu|M0 + (M −M0),
yet εuM ≥ εx, where M = 1√

2π
and M0 = 2

5 . This means Criterion I is not true, even

though Criterion II is valid. This is accomplished by setting εu = −10εx, for then we

always have εuM ≥ εx (a positive is always greater than a negative), and

− |εu|M0 = − |−10εx|M0 = (10εx)
2

5
= 4εx ≤ εx

since εx < 0, and

M −M0

1 + 10M0
=

1√
2π

− 2
5

1 + 10
(
2
5

) ≈ −0.00021154 > − 1

1000

so that

εx ≤ − 1

1000
=⇒ εx ≤ M −M0

1 + 10M0
=⇒ εx ≤ −10εxM0+(M −M0) = |εu|M0+(M −M0)

since εu > 0.

(a) Histogram Of No Error Acceptance Set

(b) Very Large Error (εu = 0.01) Differ-

ences

(c) Huge (εu = 0.1) Error Differences

Figure 2: Imperfect BADRA Implementation Due To Criterion I

678

In particular, two acceptance sets were generated from such a BADRA implementa-

tion with εu = −10εx = 1
100 (Very Large Error) and 1

10 (Huge Error). In this case,

1, 042, 631 proper variates were generated from 5, 000, 000 candidates without error (εu =
0 = εx). The numbers of proper variates generated with each error value were 1, 104, 272
(61, 641 ⇐⇒ 5.58% spurious) and 1, 634, 300 (591, 669 ⇐⇒ 36.2% spurious), respec-

tively, from 5, 000, 000 candidates. Note the large and extremely large, respectively, num-

ber/percentage of spurious candidates found in both acceptance sets. Referring to Figure 2,

subfigures (b) − (c) demonstrate how the number of spurious candidates (positive count)

increases as the size of εu increases, and the distribution of the spurious candidates is es-

sentially uniform, so that variates away from the mean are more and more over-represented.

There are no missed candidates (negative count) since

(1 + εu)M ≥
(

1 +
1

100

)
1√
2π

≈ 0.40293 ≥ 0.399 =
2

5
− 1

1000
≥ M0 + εx

12.3 Example 2: Not Efficient Due To Criterion II

Standard normal random variates are chosen from a BADRA implementation (with ini-

tial seed 295013173) where εu > 0 and εx > 0, and εuM < εx, yet εx > |εu|M0 +
(M −M0), where M = 1√

2π
and M0 = 2

5 . This means Criterion II is not true, even

though Criterion I is valid. This is accomplished by setting εu = εx, for then we always

have εuM < εx (since M < 1), and

εx > 0 >

1√
2π

− 2
5

1− 2
5

=
M −M0

1−M0

which means

εx > εxM0 + (M −M0) = |εu|M0 + (M −M0)

since εu > 0.

In particular, four acceptance sets were generated from such a BADRA implementation

with εu = εx = 1
1000 (Large Error), 1

10000 (Medium Large Error), 1
100000 (Small Error), and

1
1000000 (Very Small Error). In this case, 1, 041, 586 proper variates were generated from

5, 000, 000 candidates without error (εu = 0 = εx). The numbers of proper variates gener-

ated with each error value were 1, 036, 560 / 1, 040, 917 / 1, 041, 409 / 1, 041, 497, respec-

tively, from 5, 000, 000 candidates. Referring to Figure 3, subfigures (b)− (e) demonstrate

how the number of missed candidates (negative count) decreases with the size of εu = εx,

yet they do not completely disappear. Furthermore, the tails of the acceptance set contain

the highest portion of the missed candidates, especially when the error is very small. There

are no spurious candidates (positive count) as ensured by Criterion I.

12.4 Example 3: Not Efficient Due To Criteria I And II

Standard normal random variates are chosen from a BADRA implementation (with initial

seed 84985431) where εu > 0 and εx > 0, with εuM ≥ εx and εx > |εu|M0+(M −M0),
where M = 1√

2π
and M0 = 2

5 . This means both Criteria I and II are not true.This is

accomplished by setting εu = 1
1000 and εx = γεu, for 1

10000 ≤ γ ≤ 1
10 , for then we always

have

εuM > εu =
1

γ
εx > εx

679

(a) Histogram Of No Error Acceptance Set

(b) Large Error (εu = 0.001) Differences (c) Medium Large (εu = 0.0001) Error Dif-

ferences

(d) Small Error (εu = 0.00001) Differences (e) Very Small Error (εu = 0.000001) Dif-

ferences

Figure 3: Imperfect BADRA Implementation Due To Criterion II

since εu, εx > 0, M > 1, and 1
γ
≥ 10, and

εu =
1

1000
=⇒ |εu|M0 + (M −M0) =

∣
∣
∣
∣

1

1000

∣
∣
∣
∣

2

5
+

(
1√
2π

− 2

5

)

≈ −0.00065772

<

(
1

10000

)(
1

1000

)

< γεu = εx

In particular, four acceptance sets were generated from such a BADRA implementation

with γ = 1
10 (Medium Large Error), 1

100 (Small Error), 1
1000 (Very Small Error), and 1

10000
(Tiny Error). In this case, 1, 040, 897 proper variates were generated from 5, 000, 000

680

(a) Histogram Of No Error Acceptance Set

(b) Medium Large Error (εx = 0.0001) Dif-

ferences

(c) Small (εx = 0.00001) Error Differences

(d) Very Small Error (εx = 0.000001) Dif-

ferences

(e) Tiny Error (εx = 0.0000001) Differences

Figure 4: Imperfect BADRA Implementation Due To Criteria I And II

candidates without error (εu = 0 = εx). The numbers of proper variates generated with

each error value were 1, 044, 553 / 1, 045, 695 / 1, 045, 824 / 1, 045, 868, respectively, from

5, 000, 000 candidates. Referring to Figure 4, subfigures (b) − (e) demonstrate how the

spurious candidates are essentially uniformly distributed over [−6, 6] (with notable gaps

and peaks are particular values), which means the acceptance sets with non-zero errors

have values away from the mean that over-represent the no-error counts.

There are no missed candidates (negative count) in the four calculated acceptance sets.

681

However, missed candidates are not necessarily excluded (by Criterion 8) since

(1 + εu)M =

(

1 +
1

1000

)
1√
2π

≈ 0.39934

< 0.4000001 =
2

5
+

1

10000

(
1

1000

)

≤ M0 + γεu

= M0 + εx

Furthermore, by Theorem 9, a missed candidate occurs only when f∗ (x) ≤ ugenM0 =
2
5ugen and

ugenM − f∗ (x) = ugen
1√
2π

− f∗ (x)

< εx − εuM

= γεu − εuM

≤ (γ −M) εu < 0

since εu > 0 and γ < 1
10 < M , so that a superset of missed candidates satisfies 1√

2π
ugen <

f∗ (x) ≤ 2
5ugen : 0.398 94, which occurs only when f∗ (x) is between 1√

2π
ugen and 2

5ugen.

Since 2
5 − 1√

2π
≈ 0.0010577, the occurrence of such a condition is exceptionally rare.

12.5 Example 4: Efficient Yet Not As Perfect As Possible

Standard normal random variates are chosen from a BADRA implementation (with initial

seed 176123807) where εu < 0 and εx > 0, and εuM < εx and − |εu|M0 ≤ εx ≤
|εu|M0 + (M −M0), where M = 1√

2π
and M0 = 2

5 . This is accomplished by setting

εu = − 1
100 and εx = −γεu, for 1

10000 ≤ γ ≤ 1
10 , for then εuM < 0 < εx, and

− |εu|M0 = εuM0 = −1

γ
εxM0 < −εxM0 < 0 <

∣
∣
∣
∣
− 1

100

∣
∣
∣
∣

2

5
+

(
1√
2π

− 2

5

)

= |εu|M0+(M −M0)

since − 1
γ
< −1, εu < 0, and εx > 0.

In particular, four acceptance sets were generated from such a BADRA implementation

with γ = 1
10 (Large Error), 1

100 (Medium Large Error), 1
1000 (Small Error), and 1

10000 (Very

Small Error). In this case, 1, 042, 611 proper variates were generated from 5, 000, 000
candidates without error (εu = 0 = εx). The numbers of proper variates generated with

each error value were 1, 008, 366 / 1, 014, 068 / 1, 014, 653 / 1, 014, 705, respectively, from

5, 000, 000 candidates. Referring to Figure 5, subfigures (b) − (e) demonstrate how the

number of missed candidates (negative count) is essentially constant over most of [−6, 6],
excluding the extreme tails, which means the acceptance sets with non-zero errors have

values away from the mean that under-represent the no-error counts. There are no spurious

candidates (positive count) since εuM < εx.

Note the reason there are so many missed candidates in this example is the distance

from εuM to εx; in this example, they even differ in sign. The closer εuM is to εx, while

still maintaining εuM < εx (to exclude spurious candidates), the fewer missed candidates

would be allowed.

682

(a) Histogram Of No Error Acceptance Set

(b) Large Error (εx = 0.001) Differences (c) Medium Large (εx = 0.0001) Error Dif-

ferences

(d) Small Error (εx = 0.00001) Differences (e) Very Small Error (εx = 0.000001) Dif-

ferences

Figure 5: Efficient BADRA Implementation Yet Not As Perfect As Possible

12.6 Example 5: As Perfect As Possible

Standard normal random variates are chosen from a BADRA implementation (with initial

seed 420134114) where εu < 0 and εx < 0, and εuM = εx ≤ |εu|M0+(M −M0), where

M = 1√
2π

and M0 = 2
5 . This is accomplished by setting εu = − 1

100 and9 εx = εuM , for

then we have

εu = −0.01 ≤ −0.0013239 ≈
1√
2π

− 2
5

1√
2π

+ 2
5

=
M −M0

M +M0

9For this example calculation, the IEEE 754 floating point value of M = 1√
2π

used in the BADRA imple-

mentation is considered exact.

683

so that

εu ≤ M −M0

M +M0
=⇒ εuM − |εu|M0 ≤ M −M0 =⇒ εuM ≤ |εu|M0 + (M −M0)

since εu < 0.

(a) Histogram Of No Error Acceptance Set

(b) Very Large Error (εu = −0.01) Differ-

ences

(c) Huge (εu = −0.1) Error Differences

Figure 6: Efficient BADRA Implementation As Perfect As Possible

In particular, two acceptance sets were generated from such a BADRA implementation

with εu = − 1
100 (Very Large Error) and − 1

10 (Huge Error). In this case, 1, 040, 905 proper

variates were generated from 5, 000, 000 candidates without error (εu = 0 = εx). The num-

bers of proper variates generated with each error value were 1, 040, 683 and 1, 039, 851, re-

spectively, from 5, 000, 000 candidates. Referring to Figure 6, subfigures (b)− (c) demon-

strate how the number of missed candidates (negative count) is essentially constant over

most of [−6, 6], which means the acceptance sets with non-zero errors have values away

from the mean that under-represent the no-error counts. There are no spurious candidates

(positive count) since εuM = εx.

Note that the reason there are still so many missed candidates for an efficient BADRA

implementation that is reputedly “as perfect as possible” is the distance between M0 and

M : The closer M0 is to M , the smaller εu < 0 may be in absolute value, which would then

allow for fewer missed candidates while still preventing any spurious ones.

684

12.7 Example 6: Perfect

Standard normal random variates are chosen from a BADRA implementation (with initial

seeds 212135135 and 531531212 for negative and positive εu, respectively) where εu and

εx have the same sign, and εuM = εx, with M0 =
1√
2π

= M .

In particular, two acceptance sets were generated from such a BADRA implementation

with εu = ± 1
100 (Very Large Error) and ± 1

1000000 (Very Small Error). In these cases,

1, 043, 677 and 1, 044, 835 proper variates were generated from 5, 000, 000 candidates

without error (εu = 0 = εx), corresponding to comparisons to negative and positive εu,

respectively. The numbers of proper variates generated with each error value were the same

as for the no-error acceptance sets (which follows from a “perfect” BADRA implementa-

tion). Referring to Figures 7 and 8, subfigures (b) − (c) of each figure demonstrate how

there are no spurious candidates (positive count) nor missed candidates (negative count).

Note finally that both conditions εuM = εx and M0 = M are the only required conditions

for a perfect BADRA implementation, regardless of the validity of any other pertinent con-

dition required under other BADRA implementations.

(a) Histogram Of No Error Acceptance Set

(b) Very Large Error (εu = −0.01) Differ-

ences

(c) Very Small (εu = −0.000001) Error Dif-

ferences

Figure 7: Perfect BADRA Implementation With Negative εu (And εx)

685

(a) Histogram Of No Error Acceptance Set

(b) Very Large Error (εu = 0.01) Differ-

ences

(c) Very Small (εu = 0.000001) Error Dif-

ferences

Figure 8: Perfect BADRA Implementation With Positive εu (And εx)

12.8 Conclusions From The Examples

The only conditions on the error structure of a BADRA condition that prevents spurious

and missed candidates are εuM = εx and M0 = M . If M0 must be chosen greater than

M , then the closer εx is to εuM (subject to εuM < εx), the fewer missed candidates

are introduced into the acceptance set. This is critical in an “efficient yet not as perfect

as possible” BADRA implementation, as evidenced in Example 4, where εuM < εx and

− |εu|M0 ≤ εx ≤ |εu|M0 + (M −M0) are valid, yet εu < 0 and εx > 0 separate

the values of εuM and εx to the point where many missed candidates are introduced into

the acceptance set. Therefore, providing εuεx > 0 promotes the minimization of missed

candidates in the acceptance set when a BADRA implementation is efficient yet not as

perfect as possible.

686

