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Abstract
We introduce an approach that allows one to learn a feature representation and perform clustering of
unlabeled data. The approach can also leverage any amount of additional labeled data in order to boost
the statistical performance. The proposed method is based on a semi-implicit stochastic optimization
algorithm and an entropy-regularized optimal transport algorithm. A numerical illustration on a real
dataset shows the promise of the proposed approach.
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1. Introduction

In many domains, ranging from healthcare to astronomy, collecting large quantities of labeled
data can be time-consuming and even prohibitively expensive. A paucity of such labeled
data can pose a problem when trying to perform classification tasks using large models such
as deep networks. However, collecting unlabeled data can be relatively inexpensive. Recent
work leverages unlabeled data in a variety of ways to learn feature representations using
deep networks, either with unsupervised or semi-supervised methods (Chapelle et al., 2010;
Oliver et al., 2018).

While these unsupervised and semi-supervised methods are often effective, we would
ideally like to have a single approach that works regardless of the quantity of labeled data.
The crux of learning with unlabeled data is to ensure that it does not result in degenerate
solutions. Specifically, the algorithm must avoid assigning all points to the same class
and moreover avoid mapping all of the raw features to the same embedded feature vector.
Previously these issues were dealt with using heuristic techniques, such as randomly creating
a new cluster when a cluster becomes empty.

In this work we propose an approach that naturally reduces to an unsupervised clustering
method when no labeled data is available and to a supervised classification method when
no unlabeled data is available. Our approach learns a feature representation as well, and
hence learns all components of the statistical modeling end to end. To optimize our objective
function we develop an effective algorithm that simultaneously learns the parameters of a
network and predicts the labels of the unlabeled data. We guard ourselves against degenerate
solutions by enforcing cluster balancing constraints and penalizing the norm of the learned
features. We present results showing the promise of our algorithm on a real dataset.

2. Related Work

We refer the reader to the surveys of Chapelle et al. (2010) and Oliver et al. (2018) for
overviews of semi-supervised learning methods. One line of research has explored dis-
criminative clustering methods that incorporate labeled data (Bach and Harchaoui, 2007;
Joulin and Bach, 2012; Xu et al., 2009; White and Schuurmans, 2012). In this work we
extend DIFFRAC (Bach and Harchaoui, 2007) by equipping it with an ability to learn a
feature representation as well. The approach we outline here may be interpreted as learning

*Department of Statistics, University of Washington, Seattle, WA 98195, USA

 
642



a similarity measure between input data points. This paper is an extended abstract of our
working paper (Jones et al., 2019).

3. Learning Regardless of the Level of Supervision

In this section we present the end-to-end learning framework allowing us to take advantage
of any amount of labeled and unlabeled data.

3.1 Problem formulation

Let x1, . . . , xn ∈ Rd be a sequence of observations, and assume each observation belongs
to one of k classes. The class label corresponding to each xi, denoted by y?i ∈ {0, 1}k, may
or may not be observed. We denote by S the set of indices corresponding to the labeled
data. We aim to use both the labeled and unlabeled data to learn both the parameters V of a
network φ(·;V ) : Rd → RD and the parameters W ∈ RD×k and b ∈ Rk of a classifier on
the outputs φ(xi;V ), i = 1, . . . , n.

To do so, we denote by yi, i = 1, . . . , n the rows of a matrix Y ∈ Rn×k and consider
solving the problem

min
Y ∈C,V,W,b

1

n

n∑
i=1

`
(
yi,W

Tφ(xi;V ) + b
)

+ Ω(V,W ) ,

where C = {Y ∈ {0, 1}n×k : Y 1k = 1n, yi = y?i for i ∈ S} is the constraint set on the
labels, `(y, ŷ) = ‖y − ŷ‖2 is the square loss, and Ω(V,W ) := α‖V ‖2F + λ‖W‖2F includes
the regularization terms. The scalars α ≥ 0 and λ ≥ 0 are regularization parameters. Note
that the label matrix Y is constrained so each xi is assigned to a unique class.

Avoiding degenerate solutions. The above objective can lead to two different types
of trivial solutions: one that maps all observations to the same embedded point, i.e.,
φ(x1;V ) = φ(x2;V ) = · · · = φ(xn;V ); and one that assigns all observations to the
same cluster, i.e., y1 = y2 = · · · = yn. We avoid the first problem by subtracting
the penalty ρ

∑n
i=1 ‖φ(xi;V ) − φ̄‖22 on the squared norms of the centered embeddings,

where φ̄ = 1/n
∑n

i=1 φ(xi;V ). The second problem exists even when the network pa-
rameters V are fixed, as noted by Bach and Harchaoui (2007). To avoid this behavior
we add constraints enforcing that the clusters have a minimum and maximum size, i.e.,
nmin1k ≤ Y T

1n ≤ nmax1k for some nmax ≥ nmin.
Formally, we consider then the problem

min
Y ∈C′,V,W,b

1

n

n∑
i=1

`
(
yi,W

Tφ(xi;V )+b
)

+R(V,W ) (1)

where

R(V,W )=α‖V ‖2F + λ‖W‖2F − ρ
n∑
i=1

‖φ(xi;V )− φ̄‖22

with α, λ, ρ ≥ 0. The constraint set for Y is now

C′ = {Y ∈ {0, 1}n×k : Y 1k = 1n, yi = y?i for i ∈ S, nmin1k ≤ Y T
1n ≤ nmax1k} .

We define φi(V ) = φ(xi;V ) and Φ(V ) = (φ1(V ), . . . , φn(V ))T .
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3.2 Optimization

For Y and V fixed, the minimization over W and b in problem (1) can be performed
analytically, leading to the objective

min
V

min
M=Y Y >
Y ∈C

1

2
tr(Aλ(V )M) + α‖V ‖2F − ρ‖Φ(V )− 1nφ̄>‖2F , (2)

where M is an equivalence matrix and Aλ(V ) = λΠn

(
ΠnΦ(V )Φ(V )TΠn + nλ In

)−1
Πn

with Πn = In−1n1>n . Note that by optimizing over the equivalence matrix M instead of
the assignment matrix Y we avoid having many equivalent solutions that can be obtained
by simply permuting the cluster labels. To optimize the objective, we consider an iterative
scheme, where at each iteration: (i) an approximate solution M̂ is computed on a mini-batch
of size nb for fixed parameters V by relaxing the constraints in the assignment problem;
and (ii) a gradient step is taken to update V for M̂ fixed. This optimization strategy can be
related to the one in profile likelihood methods, where secondary variables are profiled out
and defined implicitly with respect to primary variables (Barndorff-Nielsen and Cox, 1994).

Cluster assignment. Consider the objective (2) for V fixed. This problem is hard due
to its combinatorial nature. Therefore, we relax the discrete constraints M ∈ {0, 1}nb×nb

to inequality constraints on the row and column sums of M and consider the following
regularized problem:

min
M

1

2
tr(MAλ(V )) + µDh(M ;M0)

subject to Mij = mij ∀ (i, j) ∈ K
nmin1nb

≤M1nb
≤ nmax1nb

nmin1nb
≤MT

1nb
≤ nmax1nb

,

where Dh(M ;M0) = h(M)− h(M0)− 〈∇h(M0),M −M0〉 is the Bregman divergence
of the entropic regularizer h(M) =

∑
ijMij log(Mij), and the matrix M0 is an initial

guess for the optimizer. In addition, the scalars mij are the known entries of M , where
i, j ∈ K := (S × S) ∪ {(1, 1), . . . , (n, n)}. This problem may be viewed as an entropy-
regularized optimal transport problem (Sinkhorn and Knopp, 1967; Peyré and Cuturi, 2019).
We optimize its dual via alternating minimization.

4. Numerical Illustrations

In the numerical illustrations we focus on the case when either none or only a few labels are
known. The goal is to demonstrate that the proposed approach can make use of unlabeled
data in order to decrease the classification error relative to a model trained with only labeled
data.

4.1 Setup

In the numerical illustrations we focus on the dataset MAGIC (Bock et al., 2004). MAGIC
contains measurements related to 19,020 simulated particles observed by a gamma telescope.
The goal is to distinguish between gamma particles and hadrons. Since this dataset does not
have a train/test split, we randomly split the data 75%/25% into train/test sets, and further
split the training dataset 80%/20% into training and validation sets. In the illustrations we
will focus on the case where the classes are balanced, i.e., where nmin = nmax. Therefore,
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Table 1: Classification error of the kernel network on the test set of the MAGIC dataset.

# labeled observations
0 50 100

Random initialization 0.34 0.25 0.23
Supervised initialization N/A 0.25 0.24
Our method 0.26 0.24 0.22

we randomly deleted 5,644 observations from the dataset that had label 1. We standardized
each of the ten features prior to training. The network we use is a single-layer kernel
network. This network approximates a Gaussian RBF kernel using the Nyström method
with 32 landmarks (Williams and Seeger, 2000). The bandwidth was set using the median
pairwise distance rule of thumb.

The initialization, training, and evaluation proceed as follows. The parameters V of
the Nyström approximation are initialized by randomly sampling from the inputs. During
training we use all of the available labeled data at each iteration. However, we set the batch
size for the unlabeled data to 4096. We train on only the labeled data for the first 100
iterations. Afterward, we train on both the labeled and the unlabeled data for another 400
iterations. In order to evaluate the performance of the learned features, we first either run
spectral clustering (in the case of no labeled observations) or 1-nearest neighbor (in the case
of some labeled observations) in order to estimate the labels of the unlabeled observations.
We then train a regularized least squares classifier after combining the labeled data and the
unlabeled data with the estimated labels.

4.2 Results

Table 1 presents the average classification error across 10 trials when varying the number of
labeled observations. We compare the error of our method to (a) the error when the network
parameters are fixed to their random values at initialization (“random initialization”); and
(b) the error when the network is trained using only the available labeled data (“supervised
initialization”). From the results we can see that, on average, our method outperforms both
the random initialization and the supervised initialization in each setting. Moreover, this
difference in performance is larger when the number of labeled observations is smaller. For
example, our method performs 24% better than the random initialization when there are
no labeled observations. However, this difference drops to 4% when there are 100 labeled
observations.

5. Conclusion

In this work we proposed a framework for jointly learning feature representations and
performing clustering regardless of the level of supervision. The objective function grace-
fully interpolates between unsupervised clustering and supervised classification objectives,
depending on the ratio of labeled to unlabeled data. It recovers discriminative clustering
when no labeled data exists and supervised classification when no unlabeled data exists. The
numerical illustrations demonstrated that improvements can be obtained relative to a purely
supervised alternative.
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