
The Significance of Statistical Significance 

Hal M. Switkay 

Goldey-Beacom College, 4701 Limestone Road, Wilmington, DE 19808 

 

Abstract 

Hypothesis testing and decision rules are in the news as never before. The reproducibility 
of experiments, one of the touchstones of the scientific method, is uncertain, while some 
warn that most scientific results are wrong; see Ioannidis, as well as van der Laan. 

At the heart of the controversy is the significance of statistical significance: specifically, 
the significance of p-values. Poorly crafted decision rules have led to a loss of confidence 
in p-values, with some proposing to ban this incredibly useful tool altogether. We reject 
this over-reaction. 

We will discuss three aspects of p-values: 1) improving model specification, thereby 
reducing the probability of a type II error (false negative), by introducing new families of 
transformations to reduce skewness and excess kurtosis; 2) setting significance level as a 
decreasing function of sample size, thereby reducing the probability of a type I error 
(false positive), thus compromising between a fixed significance level and a fixed 
meaningful effect size; 3) continuous decision rules that assign plausibility levels to the 
null hypothesis and alternative hypothesis. 
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1. Introduction 

This article represents a response to the ASA’s recent Statement on p-Values, 
Wasserstein et al (2016).  The statement elicited many replies at the ASA’s subsequent 
Symposium on Statistical Inference in October 2017, in Bethesda, Maryland. Those 
responses often expressed wishful thinking that replacing the arbitrary constant 0.05 with 
the equally arbitrary constant 0.005 would solve the problems with statistical practice that 
led to the original statement. Other respondents proposed arbitrary cutoffs in the 
interpretation of likelihood ratios or Bayes factors. In contrast, we take an approach that 
attempts to fill in gaps in the classical approach to statistical inference. 

Given a dataset, an investigator wants to explore its basic descriptive properties. Beyond 
that, an investigator often wants to know whether there is anything particularly 
noteworthy about this dataset. One of the most common examples of noteworthiness 
would be a discovery that there is an unexpected association among two or more 
variables in the dataset. This includes the conclusion that two or more populations have 
different means or proportions. 

Noteworthiness is a scarce resource, and we wish to spend it wisely. Our first goal is to 
uncover hidden regularity within individual random variables and between random 
variables, using the power of elementary transformations to discover approximately 
linear relations among approximately normal variables. 

Once we have maximized the possibility of finding noteworthy relations among variables 
in a classical model, our second goal is to ensure that the newfound relations meet a 
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criterion of noteworthiness that becomes more stringent as sample size increases. Thus, 
we make it more difficult to engage in p-hacking. 

Finally, our third goal is to provide formulas quantifying our degree of belief in a null 
hypothesis or in an alternative hypothesis respectively, as a function of the significance 
level of the experiment (itself a function of sample size) and of the computed p-value. 

 

2. Model Specification 

The goal of this section is to leverage the highest possible predictive power (large �� and 
low p-value) for a model at the lowest possible cost in degrees of freedom. 

Most of the landscape of statistical practice lies within a framework in which some 
predictor or explanatory variables predict or explain some response variables. If the 
number of response variables is zero, we are doing descriptive statistics of a sample. If 
the number of explanatory variables is zero, we are doing simple estimation of population 
parameters. Otherwise, we are in the realm of predictive modeling. 

The core framework for predictive modeling among quantitative variables is the general 
linear model � = �� + � , where �  is a matrix of observations of the explanatory 
variables, � is a matrix of observations of the response variables, � is a matrix of model 
parameters, and � is a matrix of errors. This model unites linear regression, ANOVA, 
and related tests. There are well-known assumptions required for the model’s validity, but 
the meaning of these assumptions is not completely appreciated. 

The basic assumption underlying the general linear model is that the relation, or signal, 
between predictors and responses is essentially linear, if we overlook some noise. But 
one of the most basic facts about a non-constant linear function is that both its domain 
and range must be the full real number line, (−∞, ∞). In the context of a statistical model 
involving interval variables, that means that the components of both � and � must have 
support equal to the full real number line. In other words, those components must be 
capable, at least in theory, if not in actual observation, of achieving any real value. Often, 
however, random variables encountered in practice are supported instead on a semi-
infinite interval such as (0, ∞), variables such as measurements of a physical quantity 
like length/distance, area, volume, mass/weight, age/time/duration, or other positive 
unbounded quantities like income; or they may be supported on a bounded interval such 
as (0,1), variables such as proportion. 

Another key assumption is that � be multivariate normal with mean equal to the zero 
vector; but it may not be so in fact, due, among other reasons, to the support of �. Shape 
issues like this and the linearity assumption are usually treated by applying a Box-Cox 
transformation to the dependent variable. However, this approach has problems. 

1) This does not address the issue of the support of the independent variables. 

2) the range of the Box-Cox transformation cannot be a symmetrically distributed random 
variable for any value of the Box-Cox exponent �  other than zero (the logarithmic 
transformation). 

3) The Box-Cox transformations are employed most often to reduce skewness, but leave 
problems with kurtosis. 

4) Substantial deviation from normality in the image variable often causes researchers to 
give up on parametric methods, relying on less powerful non-parametric methods instead. 
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Generalized linear models form only a partial answer to violations of the assumptions of 
the general linear model. The general linear model implies that �(�) = ��, where the 
left side of the equation represents expected value, or mean. Then the generalized linear 
model is �(�(�)) = ��, where � is a link function. This more general model, including 
the original general linear model above together with logistic regression and Poisson 
regression, helps with the support of �, but not with the support of �. We propose an 
algorithm to address the support of all quantitative variables in the model, and then to 
address their normality. 

Let us begin by considering a random variable supported on an interval. If the variable is 
associated with some well-known process (for example, exponential or uniform), there is 
no need for further transformation. In practice, however, we often deal with unknown 
variables from which various observations have been drawn, and it is our job to discover 
the identity of those variables. Ideally, we hope to fit to the observations a random 
variable taken from a family of probability distributions with very few parameters to be 
estimated. 

Another approach is to transform the sought-after variable to approximate normality, 
using the fewest and simplest transformations possible, to enable the use of parametric 
methods for estimation and prediction. Our first challenge is to convert the support of an 
interval variable � to a variable supported on (−∞, ∞). These transformations �(�) and 
their inverses ���(�) are given in Table 1, corresponding to the original support of �. 
After applying transformations of this form are performed, all interval variables in the 
dataset should be supported on (−∞, ∞). 

Table 1. Support transformations and their inverses 

support of � �(�) ���(�) 

(−∞, ∞) � � 

(�, ∞) ln (� − �) � + �� 

(−∞, �) −ln (� − �) � − ��� 

(�, �) ln �� − �
� − �� 

� �� + �
�� + 1  

 

All transformations in the four classes above have many common features: they are 
increasing, smooth, elementary functions with increasing, smooth, elementary inverses, 
and with range equal to (−∞, ∞). If we permit linear transformations of the range, we 
can standardize the functions in all four classes so that �(0) = 0, � (0) = 1, and then the 
functions in the first three classes are seen to be limits of the functions in the fourth class, 
allowing � to decrease without bound and/or � to increase without bound, as necessary. 
Assume that � ! 0 ! � . Then to map the interval (�, �)  to (−∞, ∞) , the general 
transformation we seek has the following formula: 

�(�) = 1
1/� − 1/� ln #1 − �/�

1 − �/�$ 

Its inverse is: 

���(�) = �� %⁄ − �� '⁄

�� %⁄ �⁄ − �� '⁄ �⁄  
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In the special case where � = −1 and � = 1, �(�) is Fisher’s z-transformation, and its 
inverse is tanh (�) , the hyperbolic tangent. In the special case where � = −1  and � 
increases without bound, in the limit, �(�) = ln (1 + �) , the shifted logarithm 
transformation for variables supported on (−1, ∞), such as interest or return. 

Figure 1 depicts the transformation �(�)  above in the cases where (�, �)  is (−1,1) 
(green), (−1,2)  (red), (−1, ∞)  (blue), (−2, ∞)  (orange), and (−∞, ∞)  (black) 
respectively. 

 

Figure 1. Support transformations 

We now have the tools to transform any interval variable to one supported on (−∞, ∞). 
The other commonly encountered type of random variable is a discrete variable whose 
support equals the set of integers within an interval. If this set is bounded, it has the form 
,-, … , /0, so one should employ the transformation �(�) = ln ((� − �)/(� − �)), with 
� = - − 1 and � = / + 1. This choice of (�, �) represents the largest open interval that 
does not contain any integers outside the set ,-, … , /0. In the popular case where - = 0, 
such as binomial variables, then �(�) = ln ((� + 1)/(/ + 1 − �))  and ���(�) =
((/ + 1)�� − 1) (�� + 1)⁄ . If the support of the discrete random variable has the form 
,0,1, … 0, such as Poisson or negative binomial variables, then one should employ the 
transformation �(�) = ln (1 + �) ; here, ���(�) = �� − 1 . The transformations given 
above mimic the link functions that are used in generalized linear models, and the 
inverses of such functions. 

As an example, a bivariate dataset containing (2,4), along with a few points to the lower-
left and a few points to the upper-right, might be described by the models 2 = � + 2, or 
2 = 2�, or 2 = ��, or 2 = 2�. The researcher must have a deep acquaintance with the 
subject matter, or consult another expert with such deep acquaintance, to determine the 
range of theoretical variation (that is, the support) of the variables in the dataset. 
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We illustrate with data from the statistics of income, from the Internal Revenue Service; 
see citation. This dataset reports the cumulative proportion of individual income tax 
returns with adjusted gross income not exceeding a given level, for the tax year 2014. 
Income is supported on (0, ∞), while proportion is supported on (0,1). If we attempt to 
predict (cumulative) proportion as an approximately linear function of income, the 
positive association cannot mask the poor fit (�� = 0.2349); but logit proportion is 
predicted well as a linear function of log income (�� = 0.9850); see figure 2. 

 

Figure 2. Fitting linear models to data before and after support transformation 

Once we have performed the support transformations on all random variables in our 
model, � = �� + � is at least a theoretical possibility. But the distributions of errors are 
still a source of concern. We must consider the possible necessity of further 
transformations of our variables towards normality. 

It should be well-known that to reduce multicollinearity in linear models, one tool is 
standardization of variables. This consists of two steps: centering (setting the mean equal 
to zero by subtracting the current mean), followed by scaling (setting the standard 
deviation to one by dividing by the current standard deviation). 

Unfortunately, there is still confusion regarding the effectiveness of standardization of 
variables in reducing multicollinearity. Some practitioners point out that linear 
transformations of variables do not affect their correlations. However, we also need to be 
concerned about the stability of parameter estimates for models. Multicollinearity may be 
measured most simply by the condition number of the covariance matrix of the parameter 
estimates. And indeed, the condition number can be reduced by standardization of 
variables; see Kleinbaum et al, section 14.5.2, and Kutner et al, section 11.2. 

Centering and scaling are the transformations that would be employed in the first two 
steps of a potentially infinite process to set the moments of a random variable equal to the 
moments of the standard normal random variable. 

Substantial deviation from normality on the part of the residuals of a linear model can 
invalidate inferences made using that model. The Box-Cox family of transformations is 
not a satisfactory solution to the problem of non-normality, for reasons that were 
discussed above; and non-parametric methods yield power too easily, raising the risk of a 
false negative conclusion (type II error). 
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Instead, we suggest continuing the process of normalization that was begun by 
standardizing: that is, centering plus scaling. For each of these steps, we applied an 
appropriate member of a one-parameter family of functions: � − 8 for centering, and �/9 
for scaling. These two families have several important properties in common. 1) They are 
smooth, elementary functions of � and the parameter. 2) For each value of the parameter, 
the function of � is an increasing function with domain and range equal to (−∞, ∞). 3) 
The identity function of � is a member of the family, for some value of the parameter. 4) 
For each value of the parameter, the inverse function of � is a member of the same family, 
with some other value of the parameter. 

For the first family, given any random variable with a finite mean, there is a unique value 
of the parameter such that the mean of the transformed variable equals zero. For the 
second family, given any random variable with a finite variance, there is a unique value 
of the parameter such that the variance of the transformed variable equals one. It is 
reasonable to speculate about whether there exist analogous families of functions capable 
of transforming skewness and excess kurtosis to zero. 

To minimize excess technical detail in this presentation, we do not comment on 
additional properties satisfied by the families of centering and scaling functions. These 
properties enabled the discovery of two analogous families of functions, one intended to 
remove skewness and the other intended to remove excess kurtosis. Rather, we will 
simply present the results. For both new families, it is assumed that the original data has 
already had its support transformed to (−∞, ∞), and has then been standardized (centered 
and scaled). Importantly, data should be centered by subtracting its median, not its mean, 
to set the median to zero, as will be discussed below. 

The de-skewing functions have the form: 

�(�) = (�(1 + :�) + :� − 1) ± <(�(1 + :�) + :� − 1)� − 4:�(:� + :� − 1)
2:  

Here, : is a parameter that ranges over (0, ∞). The graph is a branch of a hyperbola; the 
selected branch passes through the origin with slope one. The + branch passes through 
the origin when 0 ! : ! 1, and is used to de-skew negatively skewed random variables; 
the – branch passes through the origin when : > 1, and is used to de-skew positively 
skewed random variables. The inverse transformation is in the same family, with 
parameter 1 :⁄ . 

Figure 3 depicts the de-skewing function �(�) above for the cases : = 1/2 (red), : = 1 
(green, for comparison), and : = 2 (blue). As : decreases but remains positive, the graph 
of �(�) is bowed more sharply upward. As : increases, the graph of �(�) is bowed more 
sharply downward. 

 
619



 

Figure 3. De-skewing functions 

The de-skewing functions are order-preserving, and fix zero. If the median of the 
standardized data is zero, the median of the de-skewed data will be zero, implying that 
the mean will be zero or close to zero. This is the reason why we centered by subtracting 
the median rather than the mean of the original data. 

There are two related families of functions that are used to address issues of kurtosis, 
assuming the data has already been standardized and de-skewed. Random variables with 
low excess kurtosis (light-tailed) are treated with �(�) = sinh (:�) :⁄ , where : > 0, and 
sinh represents the hyperbolic sine; random variables with high excess kurtosis (heavy-
tailed) are treated with �(�) = asinh (:�) :⁄ , where : > 0 , and asinh represents the 
inverse hyperbolic sine. In both cases, the functions approach �(�) = � , the identity 
function, as : approaches zero. 

Figure 4 depicts instances of the functions above. Functions to increase low excess 
kurtosis are shown for : = 1 (green) and : = 2 (red); functions to decrease high excess 
kurtosis are shown for : = 1  (blue) and : = 2  (orange); the limiting case as : 
approaches zero is shown for comparison, in black. 
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Figure 4. Functions to transform excess kurtosis to zero 

We emphasize that the functions used to eliminate skewness and excess kurtosis are 
ineffective unless the variable has been transformed previously to have support (−∞, ∞). 

To test the power of these new families of transformations, we tested them in R on large 
random data sets drawn from various members of the Pearson distribution family, as well 
as on daily return data from a stock market index. We generated random samples of size 
2�@ (about 16 million) drawn from the following distributions: 1) beta with parameters 
one-half and one-half (the arcsine distribution); 2) uniform (that is, beta with parameters 
one and one); 3) chi-squared with 1 degree of freedom (the most skewed chi-squared 
distribution); 4) Student’s t with 5 degrees of freedom (the heaviest-tailed t distribution 
with finite kurtosis); 5) inverse chi-squared with 9 degrees of freedom (the most skewed 
inverse chi-squared distribution with finite kurtosis). These distributions are described in 
table 2. 

Table 2 includes a column with an apparently new concept: surplus kurtosis, defined as 
the difference of excess kurtosis minus skewness squared. This quantity varies in the 
range A−2, ∞) for any value of skewness, provided the distribution has finite kurtosis, 
and equals -2 for Bernoulli distributions and only for Bernoulli distributions. 
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Table 2. Random samples from these distributions transformed towards normality 

distribution skewness squared excess kurtosis 
surplus kurtosis = 
excess kurtosis – 
skewness squared 

β(1/2,1/2) (arcsine) 0 -1.5 -1.5 

β(1,1) (uniform) 0 -1.2 -1.2 

χ
2

(1) 8 12 4 

Student’s t(5) 0 6 6 

Inverse χ
2

(9) 160/9 ≈ 17.78 92 ≈ 74.22 

 

Our financial dataset consisted of the daily percent change in the Wilshire 5000 stock 
market index, from December 3, 1979 to September 29, 2016, with a total of 8972 
observations; this dataset exhibited negative skewness (mean less than median) and 
positive kurtosis (larger than normal fraction of extreme events), as is well-known among 
financial analysts. This last dataset was retrieved from FRED, the research division of the 
St. Louis Federal Reserve Bank, using the series identification WILL5000INDFC: see 
citation. 

For each dataset, data were transformed, based on their theoretical support, to have 
support on (−∞, ∞); then data were standardized; then data were transformed using the 
functions above to remove skewness and excess kurtosis. For each dataset, the goal was 
to produce a transformed dataset with mean equal to zero, standard deviation equal to one, 
skewness and excess kurtosis equal to zero. By searching in the parameter space, it 
proved possible to locate rational values of the parameters allowing skewness and excess 
kurtosis to approach zero as closely as desired. 

To test whether the transformed data are approximately normal, histograms and Q-Q 
plots with respect to normality were produced, and the Shapiro-Wilk normality test was 
applied. It should go without saying that the d’Agostino normality test, which looks for 
values of skewness and excess kurtosis to be close to zero, was passed quite easily! 
Furthermore, the fifth and sixth standard moments of the transformed data were 
computed, in the hope that these values would be close to 0 and 15, the values for the 
standard normal distribution. For each dataset and for each test, the results were very 
satisfactory. 

We illustrate for the case of the stock market return data. Figure 5 depicts histograms and 
normal Q-Q plots for the original data; for the data transformed to have support on 
(−∞, ∞); and for the final transformation to eliminate skewness and then excess kurtosis. 
The final Q-Q plot is (mostly) pleasingly straight, implying a very good approximation to 
normality. 
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Figure 5. Histograms and Q-Q plots for stock return data before, during, and after 
transformation 

For the record, in the original stock return data, skewness was -0.62, and excess kurtosis 
was 15.96. After transforming support to (−∞, ∞) , skewness was -0.93, and excess 
kurtosis was 19.06. This new data was standardized by subtracting the median and 
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dividing by the standard deviation. Applying the de-skewing function with parameter 
55/64 resulted in skewness equal to -0.001. Excess kurtosis remained at 15.08. Finally, 
applying the function to reduce excess kurtosis with parameter 49/37 resulted in excess 
kurtosis equal to 0.001. Both skewness and excess kurtosis could have been brought 
closer to zero with a longer search. For this final version of the data, the standardized 
fifth and sixth moments were -0.28 and 15.25 respectively, surprisingly close to the 
values expected under full normality (0 and 15). For the transformed data, a random 
sample of size 720 gave a Shapiro-Wilk statistic of 0.99721, with p-value 0.2574. 

The process described above is a method to transform a random variable to standard 
normality. One could reverse this process, starting with a standard normal distribution 
and then applying the inverse transformations in the reverse order: add or subtract 
kurtosis from a standard normal random variable; add or subtract skewness; apply a 
linear transformation to alter the scale and center of the distribution; apply shifted 
exponential or shifted logistic functions to transform support from (−∞, ∞) to a semi-
infinite or bounded interval; and conclude with a final linear transformation. This yields 
an 8-parameter family of distributions that includes all families of the Johnson 
distributions (including the log-normal and logit-normal distributions), the Gumbel and 
logistic distributions, and apparently, if the experiments above are an indication, 
distributions well approximating all the Pearson distributions as well (such as arcsine, 
beta, beta prime, chi-squared, exponential, F, gamma, inverse chi-squared, inverse 
gamma, normal, Student’s t, uniform); see Hahn and Shapiro, chapter 6. Parameter 
estimation would be challenging except for very large datasets, due to the increasingly 
large variance in the distribution of sample moments as the order increases. 

Nevertheless, the purpose of this section was not to produce new families of distributions, 
as useful as they would be for prediction of univariate phenomena, but rather to find new 
elementary transformations to uncover normal behavior underlying variables supported 
on intervals. These techniques should maximize the usefulness of powerful parametric 
models, thus locating the signal amidst the noise, increasing ��, decreasing the p-value, 
and reducing the probability of a type II error (false negative). 

 

3. Significance Level and Sample Size 

Skepticism about classical null hypothesis significance testing in recent years has 
tarnished unjustly the reputation of the p-value. In fact, all the skepticism directed at the 
p-value should have been directed instead at the unjustified assumption that the 
significance level B  for most experiments should remain constant, at 0.05, or indeed, 
constant at any pre-specified level. The goal of this section is to argue that the 
significance level should decrease as a function of sample size. We tentatively propose a 
formula for B and a means to employ it in predictive modeling. 

For much of modern statistical history, null hypothesis significance testing has relied on 
the comparison of the p-value to a seemingly arbitrary value of 0.05, since approximately 
5% of the data in a normal distribution is more than 2 standard deviations away from the 
mean, and 5% and 2 are nice, round numbers that are easy to remember. It should be self-
evident that 0.005, the suggested replacement for 0.05, is just as arbitrary a number as 
0.05. 

However, common test statistics are functions of two quantities: observed effect size 
relative to variability, and sample size. Given two experiments that detect the same 
relative effect size, the one with the larger sample size will yield a more extreme value of 
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the test statistic, and hence a smaller, more significant p-value. This is all as it should be; 
the more we can reproduce a non-trivial effect, in violation of the null hypothesis, the 
more significant the result appears to be. 

This last observation points out the weakness of the argument that statistical tests should 
report only effect size, as important as that is. A knowledge of the sample size must be 
the inseparable companion of a knowledge of the effect size. Indeed, it can be argued that 
the sample size is the first, or perhaps the zeroth, in a series of numerical characteristics 
of a quantitative sample, a characteristic that is followed by the mean, variance, skewness, 
and kurtosis. 

Since a larger sample size causes a fixed effect size to become more significant 
automatically, it follows that our problem is not with the p-value itself, but rather in the 
target for which we aim. That target is the significance level, B , which should itself 
decrease as a function of sample size. We expect that such a methodology would reduce 
the frequency of false positives and false negatives, compared with introducing a new 
target level for B, such as 0.005. 

Series of observations taken across time provide yet another argument in support of 
decreasing significance levels as a function of sample size. Consider a series of annual 
observations of some quantity of interest, such as median income adjusted for inflation. 
Our research interest is to determine whether there has been a significant change in this 
quantity during the period of observation. There may be a slight trend in the annual data, 
a trend that is not significant in the traditional sense. However, if more frequent data 
becomes available, such as quarterly or monthly data, the trend suddenly becomes 
significant. The absolute value of the test statistic will increase automatically, because, as 
discussed below, the test statistic is approximately proportional to the square root of the 
sample size. Hence, the target significance level needs to decrease in response. 

What should the target significance level be? We shall present heuristic arguments for 
several candidate functions, and choose among them. 

We begin by recalling the central limit theorem: when sample sizes are sufficiently large, 
sample means taken from a population with finite variance are distributed approximately 
normally. Suppose we perform an experiment, consisting of drawing C  paired 
observations from two normal populations with a common, known standard deviation. 
Our null hypothesis is that the means of the two populations are equal; thus, that the 
difference of the means is zero; thus, that the mean of the differences is zero. 

If the null hypothesis is true, then D = �̅ F9 √C⁄ H⁄ = √C(�̅ 9⁄ ) is normally distributed 
with mean zero and standard deviation one, where �̅ is the sample mean difference, and 9 
is the standard deviation of the population of differences. The relative effect size is just 
�̅ 9⁄ , but the test statistic incorporates the sample size, being √C times as large. The p-
value of the test statistic is the probability that a standard normal random variable has 
absolute value greater than that of D. For the sake of argument, our first candidate for the 
significance level function is the p-value of D above, where the relative effect size is one: 
in other words, the probability that a standard normal random variable has absolute value 
larger than √C. 

In practice, if the population mean is not known, it is unlikely that the population 
standard deviation would be known. We approximate the latter with the sample standard 
deviation I . Then J = �̅ FI √C⁄ H⁄ = √C(�̅ I⁄ )  is distributed as a Student’s-t random 
variable, with C − 1 degrees of freedom. Our second candidate for the significance level 
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is the p-value of J, where the relative effect size is one: in other words, the probability 
that a t-variable with C − 1 degrees of freedom has absolute value larger than √C. 

The pattern of test statistics from the Student’s-t family (including normal random 
variables as a limiting case) being on the order of the square root of the sample size 
extends to another case: that of the sample correlation. Assuming data comes from a 
bivariate normal distribution with zero correlation, if we draw a sample of size C with 
correlation K , then J = √C − 2FK √1 − K�⁄ H  is distributed as a Student’s-t random 
variable, with C − 2 degrees of freedom. This observation will be used below. 

We depict both significance level candidate functions in Figure 6, where the vertical axis 
gives probabilities on a logarithmic scale. The D tail probabilities are shown in orange, 
while the J tail probabilities are shown in gray. Both graphs are asymptotically linear, 
indicating that these functions decrease asymptotically exponentially as functions of C. 
The increasing gap between the two graphs shows that while the absolute difference 
between the two tail probabilities decreases towards zero as C  increases, the relative 
difference increases without bound. (Incidentally, this demonstrates that we mislead our 
students when we teach them that the normal distribution is a satisfactory approximation 
to the Student’s-t distribution when the number of degrees of freedom is at least 30; the 
approximation is not good in the tail.) The green line is the traditional level B = .05. The 
two other functions in the graph will be described below. 

 

Figure 6. Candidate targets for significance level as a function of sample size 
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There is another interpretation for the values of these two significance level functions: 
namely, as sample mean and standard deviation remain fixed, or alternatively, as relative 
effect size remains fixed, these are the values of B  for which confidence intervals 
maintain constant width as sample size changes. 

The rapid fall-off in even the J tail probabilities implies that this significance level target 
is too strict; that is, it puts researchers at risk of type II (false negative) errors nearly all 
the time. This would be the case even if we chose a constant relative effect size less than 
one. We need an argument allowing for a more lenient standard, one that makes it 
somewhat easier (but not too easy!) to reject the null hypothesis. We consider such a 
heuristic argument below. 

Consider a location on earth near the equator, where temperatures remain approximately 
constant throughout the year. At this location, we record the high temperature every day. 
Every time the newest daily high temperature reaches a record, either higher than any 
previous measurement or lower than any previous measurement, we sound an alarm 
indicating that a noteworthy event has taken place. 

The daily high temperature is a continuous variable. We assume that our thermometer is 
capable of arbitrarily high precision. The probability that any two days have high 
temperatures that match exactly is zero. Suppose there are C observations so far, and we 
want to know how likely it is that the next observation will be a record. The C + 1 
observations could fall in any of (C + 1)! orderings, all equally likely, independent of the 
distribution of the temperatures themselves. The newest observation is the minimum of 
the set in C! cases, and is the maximum of the set in C! cases. Thus, the probability that 
the newest observation is the minimum of the set is 1/(C + 1), the probability that the 
newest observation is the maximum of the set is 1/(C + 1), and the probability that the 
newest observation is a record of either sort is 2/(C + 1). 

Our third candidate for the significance level is 2/(C + 1), where C is the sample size. It 
appears in Figure 5 as well, as a blue curve. This new significance level coincides with 
the traditional alpha, 0.05, when C is 39. When C is less than 39, it is easier to reject the 
null hypothesis compared to the traditional standard, but as C increases beyond 39, it is 
very gradually increasingly difficult to reject the null hypothesis. This accords with our 
intuition that when a given effect size is observed and replicated in larger and larger 
samples, the results are increasingly significant. Thus, we should demand a greater level 
of surprise, and therefore a smaller p-value, when the sample size increases, to justify 
rejecting the null hypothesis. 

This line of reasoning invites further comment. It would appear that the mere replication 
of an effect size in larger and larger samples demonstrates the very noteworthiness we 
seek in rejecting the null hypothesis, and thus that there is no need to have the 
significance level decrease with sample size. The best argument against this conclusion is 
our observation of statistical practice, wherein statistically significant conclusions are 
frequently found on opposing sides of an argument, to the point that the public loses faith 
in scientific announcements; see Bohannon. It is vital that the award of noteworthiness 
not be conferred upon the results of an experiment merely by virtue of the large sample 
size. Moreover, our approach slows the decrease in the minimum significant effect as a 
function of sample size. 

In a private communication, statistician William Huber described the justification above 
of the formula 2/(C + 1)  as a thought experiment. It does not carry an obvious 
theoretical imperative. We can alter this thought experiment and the resulting formula 
slightly to give it a theoretical basis. 
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Imagine that the series of equatorial temperatures is C  observations long. Then the 
probability that the next observation will set a record is 2/(C + 1). This formula is 
recognizable in the context of plotting positions for a Q-Q plot, if one uses the :/(C + 1) 
approach to plotting the : -th order statistic from a set of C observations. The formula 
2/(C + 1)  equals the probability that a new observation drawn from a continuous 
uniform distribution is less than the minimum, or more than the maximum, of a set of C 
observations drawn from that same uniform distribution; see Wackerly, Mendenhall, and 
Scheaffer, chapter 6. 

Other approaches to the plotting position problem can suggest other heuristic arguments, 
other probabilities, and other formulas for the target significance level. These new 
formulas may have the form (2 − 2�) (C + 1 − 2�)⁄ , where � lies in the interval A0,1); 
the formula proposed in the previous paragraph corresponds to � = 0. As � increases, the 
fraction above decreases; therefore, out of all significance levels defined by the fraction 
above, the significance level 2/(C + 1) makes rejection of the null hypothesis the easiest. 

The formula :/(C + 1) represents the mean of the beta distribution with parameters : 
and C − : + 1 , which is the distribution of the :  -th order statistic from a set of C 
observations drawn independently from the uniform distribution on (0,1); hence :/(C +
1)  is the mean of the :  -th order statistic from the uniform distribution; again see 
Wackerly, Mendenhall, and Scheaffer, chapters 4 and 6. We may prefer a distribution-
free approach, in which case we should consider the median of the :-th order statistic, 
since medians are preserved by order-preserving transformations of random variables. 
Although there is no closed formula for the general case of the median of the beta 
distribution with parameters :  and C − : + 1 , we are only concerned here with the 
location of the median values of the minimum (: = 1) and maximum (: = C), for which 
closed formulas do exist: 1 − 2�� M⁄  for the case : = 1, and 2�� M⁄  for the case : = C. 
Our fourth candidate for the significance level is 2F1 − 2�� M⁄ H. This is depicted as a 
yellow curve in Figure 5, and represents a slightly stricter standard of significance than 
2/(C + 1), being smaller by a factor of approximately ln 2. This is closest to 0.05 when 
C is 27. 

These two newest candidates for the significance threshold, based on order statistics, are 
larger than the first two candidates, which were based on a fixed relative effect size. We 
observed that confidence intervals constructed using the first two significance thresholds 
would have constant width regardless of sample size, by design. Hence confidence 
intervals constructed using the larger significance thresholds based on order statistics will 
become narrower as sample size increases, as is the case with current standard practice. 
The difference is that confidence intervals will become narrower with increasing sample 
size more slowly under our proposal, compared with current practice. 

Next, we compute critical values of D, J, the relative effect size or signal-to-noise ratio 
(SNR), and K. Assuming that a random variable follows a standard normal distribution, or 
a J distribution with C − 1 degrees of freedom, or represents a sample correlation from a 
bivariate normal distribution with zero population correlation, Figures 7 and 8 depict the 
minimum values of the absolute values of D and J (Figure 7), and SNR and K (Figure 8) 
respectively that would be considered significantly different from zero, versus the sample 
size C , using the two-sided significance thresholds 2/(C + 1) (labeled “mean” in the 
diagram) and 2F1 − 2�� M⁄ H (labeled “median” in the diagram). Traditional values based 
on two-sided tests with B = .05  are shown as well. The growth rate for the newly 
proposed critical values of the absolute values of D and J is approximately on the order of 

 
628



NF<ln (C)H, a very slowly growing function of C; and we compute K = J √C − 2 + J�⁄ , 
employing J with C − 2 degrees of freedom. 

The critical value for the relative effect size or SNR very closely tracks that of K. It also 
represents the radius of the confidence interval for the population mean around the 
sample mean, as measured in multiples of the population (respectively sample) standard 

deviation. Thus the order of SNR and of K is approximately NF<ln (C) C⁄ H. 

 

Figure 7. Critical values of |z| and |t| vs. sample size 
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Figure 8. Critical values of |SNR| and |r| vs. sample size 

For comparison with traditional practice, we offer in table 3 a brief selection of 
significance levels, and minimum significant positive levels for J, SNR, and K, associated 
to various sample sizes, in table 2, using the distribution-free approach, where B =
2F1 − 2�� M⁄ H. 

Table 3. Significance levels and minimum significant positive levels for J, SNR, and K 

C B 
J 

O� = C − 1 
P/� = 

�̅ I⁄ = J √C⁄  
K 

O� = C − 2 

2 0.5858 0.7612 0.5383 – 

6 0.2182 1.4079 0.5748 0.5895 

24 0.0569 2.0044 0.4092 0.3938 

120 0.0115 2.5663 0.2343 0.2299 

720 0.0019 3.1131 0.1160 0.1154 

5040 0.0003 3.6403 0.0513 0.0512 
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Recall the standard minimum sample size formulas for detecting differences in 

population means or population proportions respectively: C = FDQ �⁄ 9 P�⁄ H�
and C =

FDQ �⁄ (2P�)⁄ H�
, where P�  stands for sampling error. (The second formula is a 

conservative sample size formula, making no prior assumptions on the likely population 
proportion.) Traditionally, the significance level B has been set arbitrarily, but now we 
have made the argument that B should itself be a function of C. From this follows an 
algebraic consequence: that with a sample of size C, there is a minimum sampling error 
that can be prescribed, in the case of proportions; and in the case of means, there is a 
minimum ratio of sampling error to standard deviation. 

In other words, given a sample of size C, there is a positive lower bound on the fineness 
of resolution with which we may distinguish between two populations. This bound 
decreases as a function of C, and is essentially the relative effect size or SNR in table 2. 
For the case of estimating population proportions, however, we no longer set B arbitrarily; 
rather, it is a function of C , which in turn will be computed based on the largest 
acceptable sampling error. 

It is common in polling practice to cite a “margin of error” of ±3% = ±.03. This is 
achieved when the sample size C  is at least 3492, when we solve C =
FJ(Q �⁄ ),(M��) (2 × .03)⁄ H�

, using B = 2F1 − 2�� M⁄ H ; but then B = .0004 , so the 
confidence level is 99.96%. In contrast, if we use the traditional sample size of 
approximately 1000, we maintain a high confidence level of 99.86% (B = .0014), but 
now the margin of error is about ±5%. All inferences from such a poll are predicated on 
the assumption that the sample is indeed representative of the population, of course. 

With the figures above in hand, we can offer a tentative heuristic argument to support 
using these apparently arbitrary formulas for significance thresholds. If a null hypothesis 
is assumed to hold in some experiment, as we gather data, our attention will be drawn to 
the observation that appears to conflict with the null hypothesis most strongly; because if 
the most extreme observation does not shake our belief in the null hypothesis, the other 
observations will not do so either. Our curves represent the thresholds where one 
observation bursts beyond the bounds that would be expected from the behavior of the 
other observations. 

These tentative heuristic arguments do not preclude further discussion and 
recommendations for alternative significance threshold functions, either stricter or more 
lenient. However, any such significance threshold function should lie between a constant 
significance function and one derived from a constant relative effect size. In particular, it 
is arguable that the significance level vary, presumably decreasing, with the number of 
predictors. We address this issue next. 

Multiple tests will affect the formula for significance level. Suppose we wish to 
investigate whether T  is approximately a linear function of U�, … , UV  based on C 
observations. Assume that variables have been transformed as in the first section of this 
paper to have support on (−∞, ∞) and to be approximately normal, and assume the 
conditions of multiple linear regression are met. Suppose we have settled on some 
formula for a target significance level as a function of sample size and call it B(C). 

Consider a forward selection process. We would be tempted to declare a significant 
correlation between T and one of the U’s if the p-value of the correlation were less than 
B(C). There is some risk of a type I error (false positive) in the case of one correlation; 
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but now we are permitting : different variables to compete for the honor of being in 
significant correlation with T, so we are increasing our family-wise type I error risk. 

This implies that the first variable, if any, to be declared in significant correlation with T 
must meet a more stringent standard. If the multiple tests are known to be independent, 

we lower the significance threshold to 1 − F1 − B(C)H� V⁄
, the Šidák correction; if the 

multiple tests are not known to be independent, we use the even lower significance 
threshold B(C)/:, the Bonferroni adjustment. When B(C) is sufficiently close to zero, 
these formulas converge, as shown in Figure 9, which shows the case where : is 2. The 
blue curve shows the Šidák correction, and the red line is the Bonferroni correction. 

 

Figure 9. Adjusting the significance level for two tests 

If there is a proposed predictor variable whose correlation with T has a p-value less than 

1 − F1 − B(C)H� V⁄
, or B(C)/: if the tests are not known to be independent, choose the 

most highly correlated variable as the first to enter the model. Once this relation has been 
established, there remain : − 1 variables competing to enter the model as the second 

most significant variable. The threshold for significance is now 1 − F1 − B(C)H� (V��)⁄
, 

or B(C)/(: − 1) if the tests are not known to be independent; these are slightly larger. 
The most significant predictor variable, if any, meeting this threshold is added to the 

model. The significance threshold for the third variable will be 1 − F1 − B(C)H� (V��)⁄
 or 

B(C)/(: − 2) as the case may be, and so on. 

The process described above is the Holm-Bonferroni method; see Holm. In this process, 
: represents the number of parameters that are estimated in a model. In a linear model 
including an intercept, :  must represent the number of proposed predictors plus the 
intercept. It could represent the number of terms in an ARIMA model, the number of 
principal components in a dataset, the optimal number of clusters for a dataset, and so on. 
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This method of variable selection demands parsimony; the more variables one throws 
into one’s dataset, the more likely it is that we will find a spurious correlation that is 
noise rather than signal. This requires us to find ways to reduce the dimension of the 
space of potential explanatory variables. 

This goal can be accomplished by using principal components analysis on the proposed 
predictor variables U�, … , UV, after those variables have been treated as described in the 
first section for support and normality issues. The resulting dataset should be a better 
approximation of a multivariate normal dataset. Once the principal components have 
been identified, one could then run principal components regression: that is, a multiple 
regression of T  against the principal components identified in the analysis of the 
proposed predictor variables U�, … , UV . This should also help protect against potential 
multicollinearity in the model. 

Although there has been some discussion of the idea of linking the reporting of p-values 
to the reporting of sample sizes, our specific proposal that the significance threshold 
should decrease with increasing sample size in a particular fashion appears to be new. 
The techniques discussed in this section, including setting the threshold significance level 
as a decreasing function of sample size based on the median of the minimum and the 
median of the maximum, together with principal components regression based on the 
Holm-Bonferroni method and the Bonferroni correction, should go a long way towards 
prevention of type I (false positive) errors, helping us to avoid being fooled by 
randomness, one theme of Taleb’s Incerto works; also see Banerjee’s new work on p-
values. 

Before leaving this subject, we consider an alternate approach to determining a threshold 
for significance that depends on sample size. This alternate approach makes use of the 
distribution of the sample coefficient of determination K�. If the population coefficient of 
determination W� is zero, then K�~Y((: − 1) 2⁄ , (C − :) 2⁄ ), where : is the number of 
predictors in the model (including the constant term), and C remains the sample size; see 
for example the note of Papadopoulos. The mean of this distribution is (: − 1) (C − 1)⁄ ; 
see Wackerly, Mendenhall, and Scheaffer. Then we can declare the observed coefficient 
of determination to be significant if it exceeds this mean. That is, we declare significance 
if K� > (: − 1) (C − 1)⁄ . This formula is easy to use and to explain. 

In our previous threshold approach, we determined that the minimum significant value of 
|K| was on the order of <ln (C) C⁄ , which implies that the minimum significant value of 
K�  is on the order of ln (C) C⁄ . Given a fixed number of predictors : , the threshold 
(: − 1) (C − 1)⁄  makes it easier to find significance. In the interests of controlling false 
positives, we will not recommend using this alternate approach. 

 

4. Continuous Decision Rules 

If an outcome of interest has a continuous quantitative description, then an ordinal 
variable would be more informative than a nominal variable; a discrete quantitative 
variable would be more informative than an ordinal variable; and a continuous 
quantitative variable is the most informative of all. Decision making is traditionally 
presented in dichotomous, either/or, yes/no terms. Indeed, the consumers of statistics 
often require dichotomous judgments: is the transaction fraudulent; is the drug safe; and 
so on. We explore continuous interpretations of decision making. 
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The traditional framework of null hypothesis significance testing (NHST) is to contrast a 
null hypothesis (typically an equation or set of equations regarding population parameters) 
against an alternative hypothesis, the negation of the null hypothesis; set a significance 
level B between 0 and 1; collect data; compute a test statistic based on the data; compute 
the p-value of the test statistic under the null hypothesis; and then either reject the null 
hypothesis if the p-value is less than B, or fail to reject the null hypothesis otherwise. 

Suppose, however, that before taking that last step, we express some uncertainty about 
our decision, wondering what might happen were the experiment to be repeated. We 
might attempt to compute a probability that the null hypothesis should be rejected. 
Traditionally, that probability was known to be one if the p-value is less than B ; 
otherwise the probability was known to be zero. 

Instead, we propose that the probability of rejecting the null hypothesis, [(\), should be 
a non-increasing function of the p-value \, such that [(0) = 1 and [(1) = 0. Then the 
classic method of NHST is illustrated in Figure 10, for B = 0.05. 

 

Figure 10. Classic NHST with B = 0.05 

Since both [ and \ are supported on the unit interval, we invoke the method of an earlier 
section of this paper. Consider the class of functions [(\) such that the logit of [(\) is a 
linear function of the logit of \ . That is, logit([) = Y_ + Y�logit(\) , or 
ln ([ (1 − [)⁄ ) = Y_ + Y�ln (\ (1 − \)⁄ ). Exponentiating both sides and solving for [ 
yields: 

[ =
�`a � \

1 − \�`b

1 + �`a � \
1 − \�`b 
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This function has domain and range equal to (0,1), and is decreasing if and only if Y� is 
negative. As \ approaches 0 or 1 respectively, [ approaches 1 or 0 respectively if Y� is 
negative. 

For convenience, we set Y_ to equal the logit of B. Then we can rewrite our formula for [: 

[ =
B � \

1 − \�`b

1 − B + B � \
1 − \�`b 

As Y� approaches zero, the function [(\) approaches the constant function at B. That is, 
if we ignore the p-value, we reject the null hypothesis with probability B; and that is 
consistent with our traditional understanding. Also, for any value of Y�, [(1/2) is B; so, 
if the data seem equally consistent or inconsistent with the null hypothesis, reject the null 
hypothesis with probability B ; and that too is consistent with our traditional 
understanding. 

When Y� = −1, we observe two interesting properties: this is the only negative value of 
Y� for which the graph of [(\) lacks an inflection point on (0,1); and, more interesting 
to statisticians, this is the only value of Y� for which [(B) = 1/2. This last observation 
can be read as stating that when the p-value is less than B , we lean more towards 
rejecting the null hypothesis, but when the p-value is more than B, we lean more towards 
not rejecting the null hypothesis. The narrative of the last sentence is the most consistent 
with mainstream practice in NHST. We depict the function [(\) for Y� = −1 and B =
0.05 in Figure 11. 

 

Figure 11. A continuous decision rule with B = 0.05 
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For convenience, we supply the simplified version of the formula for [(\), and for its 
complement, in the case Y� = −1: 

[ = B (1 − \)
(1 − B) \ + B (1 − \) 

1 − [ = (1 − B) \
(1 − B) \ + B (1 − \) 

This discussion begs the question: what does “the probability of rejecting the null 
hypothesis” mean? It could refer to the relative frequency of rejecting the null hypothesis 
in repeated, independent experiments producing similar data. More broadly, however, we 
can associate 1 − [  with our degree of belief in the null hypothesis, and [  with our 
degree of belief in the alternative hypothesis. This is not the same as “the probability that 
the null hypothesis is true, respectively false”. But it does capture the weight of evidence 
in support of, or respectively against, the null hypothesis, and thus the plausibility of the 
null and alternative hypotheses. 

We might go further and define [  to measure the “noteworthiness” of the data, as 
opposed to the significance, which is the p-value. In this fashion, we acknowledge that a 
p-value requires sample size for context, because for a fixed effect size, the p-value is 
already decreased by a large sample size; a p-value of 0.051 computed on a sample of 
size 10 is more interesting than a p-value of 0.049 computed on a sample of size 1000. 

In this section, we have not addressed the issue of how B  should be chosen. It was 
addressed, however, in the preceding section, as a function of sample size. Once an 
experiment is performed and a p-value computed, then the formulas above for 1 − [ and 
for [ respectively inform us as to the degree of plausibility we may find in the null 
hypothesis and in the alternative hypothesis respectively. 

We illustrate these formulas in figure 12. 
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Figure 12. The p-by-B square 

Figure 12 depicts the unit square, where the horizontal axis measures B and the vertical 
axis measures p, both varying between 0 and 1. The heavy vertical line within the square 
indicates the chosen value for B, and the heavy horizontal line within the square indicates 
the observed value for p. The area of the pink rectangle is the numerator for [; the area of 
the light blue rectangle is the numerator for 1 − [; the denominator for both fractions is 
the sum of the areas of the two colored rectangles. Thus, the preponderance of evidence 
is in favor of the alternative hypothesis when the area of the pink rectangle exceeds the 
area of the light blue rectangle ([ > 1 2⁄ ); otherwise the preponderance of evidence is in 
favor of the null hypothesis. 

We can even provide a quasi-Bayesian heuristic explanation of the formulas for [ and 
1 − [. Bayes’s rule would yield the given formulas, the first for [(c�|O�J�) and the 
second for [(c_|O�J�), provided the following interpretations were true: 

 \ = [(O�J�|c_). This much, at least, is true by definition. 
 1 − B = [(c_) and B = [(c�). This assertion cannot be accepted, since each of 

the two hypotheses is either true or false. Furthermore, it compromises the 
meaning of B, which is [(K�d�eJ c_|c_). 

 1 − \ = [(O�J�|c�). This is the most difficult assumption, since it implies that 
the data can be observed only under one of the two hypotheses: and furthermore, 
this set of data must always be observed. 
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The form of the two formulas clearly invites some sort of Bayesian explanation, and we 
invite the reader to suggest a more acceptable explanation than that proposed above. 

There has been much discussion recently about the banishment of the very concept of 
statistical significance itself, as well as dichotomous decision rules. The identification of 
the [  and 1 − [  functions might open the door to a potential compromise between 
traditional dichotomous rules and the alternative gaining popularity in the statistical 
community, which is: failing to give any guidance at all to decision makers who must 
make dichotomous choices. Various polychotomous rules are proposed below. 

We propose a trichotomous decision rule as follows: 

 if [ > 2 3⁄ , we declare that there is substantial evidence in favor of the 
alternative hypothesis, and we find the alternative hypothesis plausible; 

 if 1 3⁄ ! [ ≤ 2 3⁄ , we declare that the evidence is ambiguous; 
 if [ ≤ 1 3⁄ , we declare that there is substantial evidence against the alternative 

hypothesis, and we find the null hypothesis plausible. 

This rule could easily be adjusted to replace the fractions above with 1 2⁄ ± e, for other 
values of e between 0 and 1/2.  

A tetrachotomous decision rule would work as follows: 

 if [ > 3 4⁄ , we declare that there is strong evidence in favor of the alternative 
hypothesis, and we find the alternative hypothesis very plausible; 

 if 1 2⁄ ! [ ≤ 3 4⁄ , we declare that there is weak evidence in favor of the 
alternative hypothesis, and we find the alternative hypothesis somewhat plausible; 

 if 1 4⁄ ! [ ≤ 1 2⁄ , we declare that there is weak evidence against the alternative 
hypothesis, and we find the null hypothesis somewhat plausible; 

 if [ ≤ 1 4⁄ , we declare that there is strong evidence against the alternative 
hypothesis, and we find the null hypothesis very plausible. 

A pentachotomous decision rule would work as follows: 

 if [ > 4 5⁄ , we declare that there is strong evidence in favor of the alternative 
hypothesis, and we find the alternative hypothesis very plausible; 

 if 3 5⁄ ! [ ≤ 4 5⁄ , we declare that there is weak evidence in favor of the 
alternative hypothesis, and we find the alternative hypothesis somewhat plausible; 

 if 2 5⁄ ! [ ≤ 3 5⁄ , we declare that the evidence is ambiguous; 
 if 1 5⁄ ! [ ≤ 2 5⁄ , we declare that there is weak evidence against the alternative 

hypothesis, and we find the null hypothesis somewhat plausible; 
 if [ ≤ 1 5⁄ , we declare that there is strong evidence against the alternative 

hypothesis, and we find the null hypothesis very plausible. 

 

5. Summary and Recommendations 

It has been our goal in this paper to sketch the outline of a program for the analysis and 
interpretation of data. 

Given a set of observations of random variables, we begin by establishing the maximum 
theoretical support of all variables, with the assistance of a subject matter expert if 
required. If these are interval variables, we use the functions in the first section to 
transform support to (−∞, ∞). If these variables represent the integers within an interval, 
we use the transformation of the largest open interval containing those integers and only 
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those integers, to the interval (−∞, ∞). Once the variables are supported on (−∞, ∞), we 
subtract the median, divide by the standard deviation, and use the functions of the first 
section to remove skewness and excess kurtosis. At this point, the first four moments of 
the transformed variables present themselves as being close to those of a standard normal 
random variable. 

With the variables approximating normality, classical parametric methods are more easily 
enabled, giving us more power, and providing the optimal opportunity to distinguish 
signal from noise. We test for the existence of a non-trivial linear relation among 
specified variables in the dataset, by comparing the computed p-value to a significance 
threshold that varies with the sample size. We recommend the use of B = 2F1 − 2�� M⁄ H, 
where C  is the sample size. We note the simple lower and upper bounds 
(2 ln 2) (C + 1)⁄ ! 2F1 − 2�� M⁄ H ! (2 ln 2) C⁄ , bounds that grow asymptotically close 
as C grows without bound. 

If there are multiple tests occurring, as in the forward selection construction of a multiple 
regression model with :  candidate predictors, we encourage the use of the Holm-
Bonferroni method with the Bonferroni correction: test the most significant predictor 
against the significance level 2F1 − 2�� M⁄ H/:, then the second most significant predictor 

against the significance level 2(1 − 2�� M⁄ )/(: − 1), and so on, until a non-significant 
result is found. If necessary with many predictors, regress against principal components 
of the predictors rather than the original data. 

We refer readers to Macnaughton’s survey on decision rules, where he argues that the p-
value itself is best to detect effects, as well as the related paper by García-Pérez. In this 
paper, we have compromised between two approaches. The first is the traditional 
approach of comparing the p-value against a constant significance level B, no matter how 
small the effect size, as shown by the green line in figure 6. This runs the risk of too 
many false positive results. The opposite extreme consists of reporting only an effect size, 
no matter how small the p-value, as shown by the orange and gray curves in figure 6. 
This runs the risk of too many false negative results. Our compromise appears as the 
yellow curve in figure 6. 

Once we have computed our p-value and our target significance level B, we can express 
our degree of belief in the null hypothesis as: 

(1 − B) \
(1 − B) \ + B (1 − \) 

and our degree of belief in the alternative hypothesis, the noteworthiness, as: 

B (1 − \)
(1 − B) \ + B (1 − \) 

We recommend changing statistics education to address, within the very first introductory 
course, the support of random variables and important probability distributions in general, 
as well the support of various types of quantities likely to be encountered in statistical 
practice. The formulas provided for support transformations, for the significance 
threshold as a function of sample size, and for the degree of belief in the null and 
alternative hypotheses as functions of the significance level and the p-value, are very easy 
for introductory statistics students to compute as well, and should be introduced as soon 
as possible. 
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