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Abstract

We investigate the impact of possibly incoherent imputation models on mediation
analyses. In particular, we discuss commonly used joint modelling approach as well as
variable-by-variable approach when the ultimate analytical goal in mediation analysis.
Practical advantages of each approach along with the discussion on coherence of the
imputation model is our focal point in our manuscript. A comprehensive simulation
study is summarized to gauge the performance of widely utilized imputation models.
Key Words: Mediation analysis, missing data, multiple imputation, compatible impu-
tation

1 Introduction

Missing data is one of the most pervasive problem in the public health data. Mediation anal-
ysis is no exception to this. Methods by Fritz & MacKinnon (2008) and many others are
commonly used techniques in exploring relationships through mediator variables. However,
to the best of our knowlegde, limited number of studies have been conducted to investi-
gate how missing values should be handled in mediation analysis. Zhang & Wang (2013)
introduce and compare four approaches to deal with missing data in mediation analysis in-
cluding listwise deletion, pairwise deletion, multiple imputation (MI) by Rubin (1976), and
a two-stage maximum likelihood (TS-ML) method under various missingness mechanisms
through simulation studies. In this study, they show that MI performed well when miss-
ingness mechanism is independent of any of the observed variables (i.e. missing completely
at random (MCAR)) or when the missingness mechanism depends only on the observed
variables but not on the missing variables (missing at random (MAR)) in the sense defined
by Rubin (1976). However, the performance of MI under different imputation models that
may or may not be compatible with the mediation analysis were not compared.

There is vast literature on missing data. Since the seminal work of Dempster et al.
(1977), there has been a significant development in the missing data methodology. Campion
& Rubin (1989) provides principle solutions in multiple imputations for survey data. There
are two widely accepted types of solutions towards missing data problems. Researchers
either use EM type solutions or multiple imputation type solutions, and multiple imputation
is becoming more popular in application. Our focus here is based on multiple imputation to
understand the nuances between imputation models leading to inference by MI. There are
generally two widely accepted approaches to forming an imputation model: joint modeling
(Schafer (1999); Little & Rubin (1988)) and sequential or variable-by-variable modeling
(Raghunathan et al. (2001); van Buuren (2007)).

Many of the developments so far on MI have been made available to practitioners. Ex-
amples include . van Buuren & Groothuis-Oudshoorn (2011) who developed the R package
mice which implements a wide variety of algorithms under variable-by-variable imputation
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and provides additional options to draw from the potential conditional predictive distri-
butions, such as predictive-mean and propensity-score matching. Joseph L. Schafer and
Alvaro A. Novo (2013) developed the R package norm for the analysis of multivariate nor-
mal datasets with missing values. Raghunathan, Lepkowski, VanHoewyk, and Solenberger
(2001) developed a SAS macro, ”IveWare”, for the application of variable-by-variable im-
putation in SAS. In STATA, we have the procedure ”ICE” by Royston and White (2011)
to implement multiple imputation method for missing data problem.

There has been numerous studies investigating performance and robustness of alter-
native MI models. One example is Yucel et al. (2018) who presented a simulation study
assessing the compatibility of sequential approach with the joint data generation mechanism
based on a family of hierarchical regression models for correlated data. They found that the
sequential method leads to well-calibrated estimates and often performs better than meth-
ods that that are currently available to practitioners. Hughes et al. (2014) showed that
order effects (systematic differences depending upon the rank of the variables) in categori-
cal variable was small when applying joint modeling method, especially when associations
between variables are weak. Order effects are ubiquitous in medical research, but their re-
sults recommend that they may be small enough to be negligible. Mistler & Enders (2017)
claims that JM draws missing values simultaneously for all incomplete variables using a
multivariate distribution, whereas FCS imputes variables one at a time from a series of uni-
variate conditional distributions. The study examined four multilevel multiple imputation
approaches and concluded that their analytic work and computer simulations showed that
FCS are more restrictive and impose implicit equality constraints on functions of the within-
and between-cluster covariance matrices. Akande et al. (2017) used simulation studies to
compare repeated sampling properties of three multiple imputation methods for categorical
data: chained equations using generalized linear models, chained equations using classifica-
tion and regression trees, and a fully Bayesian joint distribution based on Dirichlet process
mixture models. In the circumstances of this study, the results suggest that default chained
equations approaches based on generalized linear models are dominated by the default re-
gression tree and Bayesian mixture model approaches.

In this paper, we discuss and compare joint Model and fully conditional specification
imputation methods in mediation analysis with missing data problem. We start by in-
troducing how to estimate mediation effects, followed by how imputation method works
in this model. Then, the theoretical comparison of two methods is provided. Finally, we
conduct simulation studies with finite samples to assess and compare the performance of
the methods under different missing data mechanisms.

2 Methods

2.1 Notation

Suppose K random variables D = (D1, ..., DK)T are intended to be observed on N subjects
with missing values. Subscripts i and j are used to index subjects and variables respectively
(i = 1, ..., N ; j = 1, ...,K). Let dij denote an ith row and jth column element in an (N ∗K)
matrix. We denote the column j of matrix d by dj=(d1j , ..., dNj)

T . We denote the complete
data matrix U = (uij), the missing data indicator matrix R = (Rij) and φ as the unknown
parameters in the section of introducing missingness mechanism. In mediation analysis
model, Y is denoted as the response variable, M is denoted as the mediator, and X is
denoted as the independent variable. Three variables (X,Y,M) are included in the data
matrix U . η is the matrix includes M and Y , δ represents mediation effect, β is the matrix
of regression coefficients on mediator, I represents interactive term, and γ is the matrix of
regression coefficients on x and I. For the purpose of missing data imputation, we will have
to model all variables regardless of covariates and response as variables to be modeled.

2.2 Mediation Analysis Model

In this study, the analysis is based on a specified mediation analysis model. For example,
Figure 1 is a typical display of mediation model. This is a single level model with one
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mediator only, and there could be multiple independent variables. Additionally, we have

Figure 1: Diagram for mediation analysis

the corresponding relationship expressed in Bentler-weeks form as follows.

η = β ∗ η′ + γ ∗ ε, (1)

[
M
Y

]
=

[
0 0
b 0

]
∗
[
M
Y

]
+

[
a 1 1 0
c′ 1 0 1

]
∗


X
I
eM
eY

 , (2)

where M is a representative of the mediator and it could be either discrete or continuous
variable. Y is a representative of the response variable and it also could be continuous or
discrete variable. for example, the number of hospital visits (disease such as COPD, asthma
and etc.), X refers to independent variables, for example, temperature, dewpoint and other
covariates. I represents the interactive terms. eM ∼ N(µM , σ

2
M ) and eY ∼ N(µY , σ

2
Y ). eM

and eY represent the error terms in linear regressions for M and Y , respectively.
In this case, we use c′ to measure the direct effect of X on Y . And we use a and b

to measure the relations between X, M and Y . We use δ = ab, the product of a and
b to describe the mediation effect. The total effect is the summation of direct effect and
mediation effect, and it could be expressed as ab+ c′. We use logistic regression and linear
regression respectively to establish the model for binary and continuous response variable,
respectively.

There are p1 and q1 variables in M and Y , respectively. Then, η and η’ are (p1+q1) *1
vectors, and β is a (p1+q1)*(p1+q1) vector. Suppose we have p2 and p3 variables in X and
I, respectively. ξ is a (p2+p3+2) *1 vector, and γ is a (p1+q1)*(p2+p3+2) vector.

We further need to assume an underlying missingness mechanism as defined by Rubin
(1976) and have been extensively discussed in missing data literature. We refer to Rubin
(1976) and others for in-depth definitions. Here we consider three mechanisms: missing
completely at random (MCAR) which means that missingness probabilities are independent
of any observed data; missing at random (MAR) which means that missingness probabilities
may depend on observed data but not on variables subject to missing data and, finally,
missing not at random (MNAR) means that probabilities of missingness depend on the
missing values and hence they need to be modeled. We mostly investigate performance
under MCAR and MAR.

2.3 Joint and conditional imputation models

There are generally two widely commonly-used approaches in choosing parametric imputa-
tion model: joint (Schafer (1999); Little & Rubin (1988)) and conditional (or sequantail or
variable-by-variable) (Raghunathan et al. (2001); van Buuren (2007)); Yucel et al. (2018)).
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Joint modeling (JM) starts from the assumption that a set of variables is assumed to form
a joint model such as multivariate normal distribution (Schafer (1997)). The imputations are
basically random samples from the underlying posterior predictive distribution of missing
data, which is essentially intractable. Computational implementations such as PROC MI
and R package “missing” use data augmentation to bypass the issue of intractability.

JM can be quite impractical when it is applied to multivariate data with large number
of categorical variables with missing values and/or with bounds/skip patterns or high level
interactions. In such instances, fully conditional specification (FCS) emerged to be practical
even though it samples from possibly incoherent imputation model with the underlying joint
model Yucel et al. (2018)). In FCS, each variable is modeled at a time conditional on other
variables (van Buuren (2007)). One of the major differences between JM and FCS is that
FCS models each variable conditional on others and it leads to sampling from the implied
posterior predictive distribution for that variable. As a result, these conditional posterior
distributions can be inconsistent with the joint distributions. This aspect is the major focal
point of our work.

3 Analytic Comparison of Joint versus Variable-by-variable
Imputation model

Previous studies suggested two imputation strategies have different characteristics in terms
of preserving associations between incomplete and complete variables Mistler & Enders
(2017). To investigate inconsistencies between two imputation approaches from a mediation
analysis perspective, we consider a simple scenario with three variables one of which is
incompletely observed.

3.1 Population Joint Distribution

Consider three variables Y , X1, and X2 distributed as multivariate normal distribution: YX1

X2

 ∼ N3(µ,Σ) (3)

where the covariace matrices are as follows:

µ =

 µYµX1

µX2

 (4)

Σ =

 σ2
Y σY X1 σY X2

σX1Y σ2
X1

σX1X2

σX2Y σX2X1 σ2
X2

 (5)

3.2 Fully conditional specification

In our particular scenario, parametric FCS would employs a linear models as a base to
impute missing values in Y .

We consider the trivariate imputation problem from previous content. FCS imputes the
incomplete variables in a sequence. Expressed in scalar notation, the conditional distribu-
tion that generates Y imputations is

Y
(t)
mis ∼ N(α

(t−1)
Y + β

(t−1)
Y |X1

X1i + β
(t−1)
Y |X2

X2i, σ
2
ε(Y )) (6)

where Y
(t)
mis represents the tth drawn missing value from its posterior predictive distribution

whose parameters are fixed at the previous iteration: α
(t−1)
Y , β

(t−1)
Y |X1

and β
(t−1)
Y |X2

fixed at the
previous iteration.

 
598



The marginal distribution of the predictor variables is[
X1i

X2i

]
∼ N2

([
X̄1

X̄2

]
,

[
σ2
X1

σ2
X1X2

σ2
X2X1

σ2
X2

])
(7)

and the conditional distribution of Y given X1 and X2 is

Y |X1, X2 ∼ N
(
µY |X1, X2

, σ2
Y |X1, X2

)
(8)

where

µY |X1, X2
= υY + γY |X1

∗ (X1i − X̄1) + γY |X2
∗ (X2i − X̄2) (9)

σ2
Y |X1, X2

= σ2
Y − γ2Y |X1

∗ σ2
X1
− γ2Y |X2

∗ σ2
X2
− 2γY |X1

γY |X2
σX1X2

(10)

The procedure to develop FCS was similar with Mistler & Enders (2017). Comparing
the number of parameters required by the FCS model (Equation 9 and 10) to JM model
(Equation 4 and 5) indicates that JM is more restrictive than FCS. In FCS, it requires
a total of 8 parameters (1 intercept, 2 regression coefficients, 2 means, 2 variance and 1
covariance) to govern the model.

From equation 9 to 10, we found that FCS contains different regression coefficients
and intercept to preserve the relation between Y , X1 and X2. As mentioned previously,
mediation analysis is constructed based on several regression models. We have logistic
regression of X1 on X2, and linear regression of X1 and X2 on Y. Thus, in the situation
of imputing missing variables in mediation, FCS is more appropriate for models that are
embedded in regressions (e.g. mediation model).

3.3 Mediator estimate comparison

We have developed the distribution of dependent and independent variables under different
multiple imputation methods in the process. In this section, we theoretically prove the
consistency of different multiple imputation methods. We will develop the estimate of me-
diation effect based on conditional distribution of each variable in the process of imputation.

In general setting of joint modeling, suppose we have YX1

X2

 ∼ N3(µ,Σ) (11)

where the mean and covariace matrices are as follows:

µ =

 µYµX1

µX2

 (12)

Σ =

 σ2
Y σY X1 σY X2

σX1Y σ2
X1

σX1X2

σX2Y σX2X1 σ2
X2

 (13)

We developed the conditional distribution of Y given X1 and X2, we have

µY |X1,X2
= µY +

1

σ2
X1
σ2
X2
− σ2

X1X2

[
σY X1 σY X2

] [ σ2
X2

−σX1X2

−σX1X2
σ2
X1

] [
X1 − µX1

X2 − µX2

]
(14)

After mathematical matrix manipulation, we then have

µY |X1,X2
= µY +

1

σ2
X1
σ2
X2
− σ2

X1X2

{(σ2
X2
σY X1 − σY X2σX1X2)X1 + (σ2

X1
σY X2−

σY X1σX1X2)X2 − µX1(σ2
X2
σY X1 − σyX2σX1X2

)− µX2(σ2
X1
σY X2 − σyX1σX1X2

)} (15)
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From the equation above, we could regard µY |X1,X2
as a function of X1 and X2. The

coefficients in the formula represent the linear relationship between these variables. Our
ultimate goal is to estimate the mediation effect based on this formula. The relation of X1

and X2 is shown below,

µX1|X2
= µX1 +

σX1X2

σ2
X2

(X2 − µX2) (16)

δ̂conditional = âb̂ =
σ2
X2
σY X1

− σY X2
σX1X2

σ2
X1
σ2
X2
− σ2

X1X2

∗
σX1X2

σ2
X2

(17)

By mediation analysis, we have the following relationship between Y and X1 in the for-
mula 18, 19 and 20. As mediation analysis is based on regression, the estimate of mediation
effect is the multiplication of regression coefficient. The coefficients in the joint modeling
provide a sufficient evidence to compare the accuracy of estimation. We will do the same
thing for FCS and estimate the mediation effect based on the parameters from FCS.

Ŷ = a1 + bX̂1 + cX̂2 (18)

where

b̂ =
(
∑
X2

2i)(
∑
X1iYi)− (

∑
X1iX2i)(

∑
X2iYi)

(
∑
X2

1i)(
∑
X2

2i)− (
∑
X1iX2i)2

(19)

ĉ =
(
∑
X2

1i)(
∑
X2iYi)− (

∑
X2iX1i)(

∑
X1iYi)

(
∑
X2

2i)(
∑
X2

1i)− (
∑
X1iX2i)2

(20)

We have â, the regression coefficient of X2 on X1, is estimated as follows.

â =

∑
(X1i − X̄1)(X2i − X̄2)∑

(X1i − X̄1)2
(21)

δ̂ = âb̂ =

∑
(X1i − X̄1)(X2i − X̄2)∑

(X1i − X̄1)2
∗

(
∑
X2

2i)(
∑
X1iYi)− (

∑
X1iX2i)(

∑
X2iYi)

(
∑
X2

1i)(
∑
X2

2i)− (
∑
X1iX2i)2

(22)

The conditional distribution of FCS is provided in formula 22. In order to compare the
accuracy and compatibility of FCS and JM, we will do the same thing for FCS and estimate
the mediation effect under the scenario of FCS. Then we have the following expectation of
X1i, X2i and Yi.

E(X1i) = αt−1X1
+ β

(t−1)
X1|X2

X2 + β
(t−1)
X1|Y Y (23)

E(X2i) = αt−1X2
+ β

(t−1)
X2|X1

X1 + β
(t−1)
X2|Y Y (24)

E(Yi) = αt−1Y + β
(t−1)
Y |X1

X1 + β
(t−1)
Y |X2

X2 (25)

Under the scenario of JM, we have

µYi|X1,X2
= (σ2

X2
σY X1

− σY X2
σX1X2

)X1i + (σ2
X1
σY X2

− σY X1
σX1X2

)X2i−
µX1(σ2

X2
σY X1 − σX2Y σX1X2)− µX2(σ2

X1
σY X2 − σX1X2σY X1)

µX1i|Y,X2
= (σ2

X2
σY X1

− σX1X2
σY X2

)Yi + (σ2
Y σX1X2

− σX1Y σY X2
)X2i−

µY (σ2
X2
σX1Y − σX2X1

σY X2
)− µX2

(σ2
Y σX1X2

− σY X2
σY X1

)

µX2i|Y,X1
= (σ2

X1
σY X2

− σX1X2
σY X1

)Yi + (σ2
Y σX1X2

− σX2Y σY X1
)X1i−

µY (σ2
X1
σX2Y − σX2X1σY X1)− µX1(σ2

Y σX1X2 − σY X1σY X2)

Then we used the formula above to make a comparison of the estimate of mediation
effect (δ̂) based on the draws from the simulated data in the simulation section. The result
and figure will be provided in next section.
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4 Simulation Assessment

Simulation studies were conducted in order to test the performance of different Multiple
Imputation (MI) methods on the mediation analysis. And the analytical comparison of
two methods are displayed in previous section. Before we conducted simulation, we utilized
Statewide Planning and Research Cooperative System (SPARCS) data to build up the
mediation analysis model and obtain the estimate of parameters in the model. Then we use
this established model to form a population with 10 million observations and sample from
it. We set up evaluation criterion in 4.2 to compare the accuracy of multiple imputation
methods, and we gauge the mediation effect based on section 3.3 by simulation.

4.1 Data Generation

We simulate

X =

[
x1
x2

]
(26)

from normal distribution x1 ∼ N(µ1, σ
2
1) and x2 ∼ N(µ2, σ

2
2). Using the established

mediation model, we set the variables to be temperature and dewpoint, and µ1, µ2, σ1, σ2
to the following values to mimic the sampled data closely. M in this simulation study is
assumed to be a binary variable, for example, power outage. Based on the logistic regression
and linear regression relation between variables, we simulate M and Y by the following form

logit(P (M = 1|x1, x2)) = a0 + a1 ∗ x1 + a2 ∗ x2 + a3 ∗ x1 ∗ x2, (27)

P (M = 1|x1, x2) =
1

1 + e−a0−a1∗x1−a2∗x2−a3∗x1∗x2
, (28)

y|M,x1, x2 = b0 + b1 ∗M + b2 ∗ x1 + b3 ∗ x2 + b4 ∗ x1 ∗ x2, (29)

I = x1 ∗ x2, (30)

all the coefficients (a0, a1, ..., etc.) above are estimated based on SPARCS data, and this
specification forms our population of size N=10,000,000. Then, we repetitively (1000 times)
samples of size n=1000 from the population.

We control the effect size of mediation effect by changing a1 and b1 to create no media-
tion, low mediation, medium mediation and high mediation scenarios by MacKinnon et al.
(2004). For example, when there is no mediation effect (i.e. a1 or b1 = 0, a1 ∗ b1 = 0,
b2 = 0.5), medium mediation effect (a1 = b1 = 0.39, a1 ∗ b1 = 0.1521, b2 = 0.5), and large
mediation effect (a1 = b1 = 0.59, a1 ∗ b1 = 0.3481, b2 = 0.5). Also, the estimate of medi-
ation effect (a1 = α1, b1 = β1, a1 ∗ b1=α1*β1, b2=β2) based on real data is tested in the
simulation. The percentage of missing data is set at 10%, 20%, and 30%. We will test the
performance based on three different missing data mechanisms: MCAR, MAR, and MNAR
(Rubin (1976)).

In order to better gauge the effect of different missing data on the mediation effect, we
will only impose the missingness mechanism on Y. Firstly, we generate the data with missing
data mechanism, MCAR. Suppose rY and rM denote the missingness indicators for Y and
M. Also, rY and rM are simulated from Bernoulli distribution, i.e., rY , rM ∼ Ber(P )
where P=Pr(rY ) for rY and P=Pr(rM ) for rM . Under MCAR, these probabilities are
independent of any variables whether they are observed or not. In all simulations, we set
these probabilities to 0.1, 0.2 and 0.3.

When the missingness mechanism is MAR, then missingness probabilities are specified
as:

Pr(rM |x1, x2, ξM ) =
1

1 + e−(aM+bM∗x1+cM∗x2)
, (31)

Pr(rY |x1, x2,M, ξY ) =
1

1 + e−(aY +bY ∗x1+cY ∗x2+dY ∗M)
, (32)
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where ξM , ξY are true parameters governing the missingness mechanisms. As for the miss-
ingness mechanism MNAR, we have the probability of missingness is related to the incom-
pletely observed variable itself, the probability of missingness value probability is calculated
as follows:

Pr(rM |x1, x2,M, ξM ) =
1

1 + e−(aM+bM∗x1+cM∗x2+dM∗M)
, (33)

Pr(rY |x1, x2,M, Y, ξY ) =
1

1 + e−(aY +bY ∗x1+cY ∗x2+dY ∗M+eY ∗Y )
, (34)

4.2 Evaluation criterion

We utilize four different criteria to assess the consistency and accuracy for each method
under all conditions. As mention previously, the mediation analysis model and the simu-
lation work were established based on SPARCS data. Thus, the true mediation effect was
estimated based on the SPARCS data. We will use the obtained mediation effect as true
value to test the accuracy of different imputation methods. δ̂, l̂r, ûr are all obtained by
simulated data.

The first criterion to assess the performance is the coverage rate (CR):

CR =

∑
Ir(l̂r < δ < ûr)

1000
, (35)

where Ir is an indicator function such that

Ir =

{
1 δ ∈ (l̂r, ûr)

0 δ /∈ (l̂r, ûr).
(36)

∑
Ir(Îr < δ < ûr) represents the total number of sample mediation effect confidence

interval that cover the true population mediation mediation effect. Let l̂r and ûr denote
the lower and upper limits of the 95% confidence interval for the mediation effect at rth

sample, and they were estimated by simulation work. When we compare different methods
with regard to the coverage rate, the method with a higher value in coverage rate is better
than other methods.

Secondly, we estimate the bias under each of the MI approach. Let δ = a ∗ b denote the
true mediation effect, let δ̂=âr*b̂r,for r = 1, . . . , 1000, denote the mediation effect estimated
in our rth simulation experiment (i.e. rth sample of n = 2000 for our problem). The bias is
calculated as

ˆBias =
1

1000
∗

1000∑
r=1

|δ̂r − δ|, (37)

Bias in this case is estimated as a percentage of how much δ̂r is deviated from the δ.
When we are comparing bias for different methods, we could make the conclusion that the
method that has the smaller bias of the δ is better than other methods.

The third criterion we consider is average width of confidence interval (AW). AW is used
to calculate the distance between the average lower and upper confidence interval limits,
and it is defined as

AW =

∑1000
r=1 (ûr − l̂r)

1000
, (38)

when we detect that the method has a lower AW than others, we can conclude that the
method has a more consistent result than others.
The fourth criterion is mean square error (MSE). The formula of how to calculate MSE is
provided as follows

MSE =
1

1000
∗

1000∑
r=1

(δ̂ − δ)2, (39)
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when we compare different methods with regard to MSE, the method with a lower value
in MSE is better than other methods. We should consider these criterions together. A
method that has a low bias, small AW, high CR and low MSE has greater accuracy and
higher power.

Among four different criterions to assess the consistency and accuracy for each method
under all conditions, coverage rate is the most important criterion to show the performance
of imputation method under mediation analysis model.

Figure 2: Comparison of FCS and JM

4.3 Results and Summary

The simulation study provides two perspectives of analyzing the consistency of imputation
methods in mediation analysis model with missing values. In section 4.3.1, we built up values
for each variables based on its conditional distribution and made a theoretical comparison
between FCS and JM. In section 4.3.2, the results were acquired through imputation on
mediation analysis model by varying mediation effect.

4.3.1 Analytic comparison

We used the simulated data to estimate the mediation effect based on JM and FCS and
compared with the true value of the mediation effect according to section 3.3. The whole
process was repeated for 1000 times. The confidence interval for mediation effect was
estimated. In Figure 2, we have shown the comparison of mediation effect by FCS amd
JM with confidence interval. The confidence interval for the mediation effect generated by
JM is 0.028 (-0.002, 0.058). The confidence interval for mediation effect generated by FCS
imputation is -0.0025 (-0.0557, 0.0506). The true mediation effect we consider in this case
is 0.02, which is covered in both scenarios. However, we found that JM imputation does not
only have a narrower confidence interval for the estimate, it is also closer to the estimate.

4.3.2 Estimation and performance

In this simulation, we compared the performance of FCS and JM methods in regard of data
with missing values under mediation analysis model. From table 1 to table 4, we show the
different coverage rate for none mediation effect condition (a = b = 0, acme = ab = 0), low
mediation effect condition (a = b = 0.1, acme = ab = 0.01), medium mediation condition
(a = b = 0.39, acme = ab = 0.1521) and high mediation (a = b = 0.59, acme = ab = 0.3481)
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condition (MacKinnon et al. (2004)), respectively. The imputation methods applied to the
datasets with missing values are fully conditional specification and joint modeling; the
missing data rate are set at 10%, 20%, and 30%; the missingness pattern in the analysis
are missing completely at random (MCAR), missing at random (MAR) and missing not at
random (MNAR). We tested the coverage rate for conditions including before data deletion
(BD), complete case (CC) and imputed data (IMP).

Table 1: Coverage rate for none mediation effect (ACME=0)

Pattern Rate BD CC IMP

Fully conditional specification
mcar 0.1 0.91 0.89 0.95

0.2 0.92 0.94 0.94
0.3 0.91 0.95 0.88

mar 0.1 0.93 0.60 0.94
0.2 0.92 0.53 0.92
0.3 0.92 0.49 0.92

mnar 0.1 0.94 0.79 0.92
0.2 0.93 0.63 0.95
0.3 0.95 0.60 0.96

Joint modeling
mcar 0.1 0.86 0.89 0.98

0.2 0.96 0.85 0.95
0.3 0.97 0.85 0.95

mar 0.1 0.89 0.19 0.94
0.2 0.87 0.13 0.92
0.3 0.92 0.05 0.90

mnar 0.1 0.92 0.39 0.99
0.2 0.89 0.31 0.90
0.3 0.89 0.25 0.93

note. Pattern: missingness pattern type; Rate: missing data rate;
BD: before deletion; CC: complete case; IMP: imputed data.

In Table 1, we found that FCS and JM had similar performance in imputing missing
data with none mediation effect condition. We can see that the coverage rate is consistent
for both FCS and JM when missingness pattern is MCAR for different missing rate. As for
MAR, the coverage rate of acme will decrease dramatically as the missing rate increases.
On the contrary, when FSC and JM are applied to impute the missing values, we found
that the coverage rate will be close to BD group.

In Table 2, we found that FCS and JM had different performance in imputing missing
data with low mediation effect condition. In the condition of low mediation effect, We found
that the coverage rate result is similar to none mediation effect for FCS. However, when we
used JM to impute missing values, we found that the coverage rate was declining fast with
increasing missing rate. Especially, when we have 30% of data missing under MNAR, the
coverage rate is 53%.

In Table 3, we found that FCS and JM had similar performance in imputing missing
data with medium mediation effect condition. The coverage rate is extremely low (2%)
when we had 30% of data missing in the condition of MNAR. However, the imputed data
by FCS could provide a coverage rate of 87%, which is much greater than the complete case.
Also, the coverage rate also worked well for JM when we had medium mediation effect.

In Table 4, we compared the the performance of FCS and JM in the condition of high
mediation effect.We can see that the coverage rate is consistent for both FCS and JM when
missingness pattern is mcar for different missing rate. Under MAR and MNAR missingness
mechanism scenarios, we observed very poor coverage rate for the mediation effect. The
coverage rate for joint and variable-by-variable imputation models are still consistent, and
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Table 2: Coverage rate for low mediation effect (ACME=0.01)

Pattern Missing Rate BD CC IMP

Fully conditional specification
mcar 0.1 0.98 0.92 0.94

0.2 0.95 0.98 0.94
0.3 0.97 0.94 0.97

mar 0.1 0.87 0.14 0.97
0.2 0.95 0.08 0.95
0.3 0.97 0.02 0.65

mnar 0.1 0.93 0.23 0.95
0.2 0.95 0.16 0.89
0.3 0.95 0.10 0.87

Joint modeling
mcar 0.1 0.97 0.91 0.90

0.2 0.95 0.92 0.91
0.3 0.91 0.84 0.89

mar 0.1 0.99 0.38 0.97
0.2 0.91 0.60 0.83
0.3 0.95 0.22 0.84

mnar 0.1 0.98 0.14 0.85
0.2 0.97 0.10 0.59
0.3 0.95 0.02 0.53

note. Pattern: missingness pattern type; Rate: missing data rate; BD: before
deletion; CC: complete case; IMP: imputed data.

they outperform complete case data a lot.

5 Discussion

In the scenario of no mediation effect, low mediation effect, medium mediation effect and
high mediation effect, the results are generally consistent in coverage rate for imputation
models. Variable-by-variable model outperforms joint modeling when we have high miss-
ingness rate. In addition, we use conditional distribution method to estimate the mediation
effect, and find the mediation analysis model is not impacted by the specific choice of
imputation models.

The study has couples of limitations. The comparison of JM and FCS in this paper
is based on a simulation study. We tried to use simulation study to prove and verify our
original guess. However, simulation study may potentially introduce some uncertainties
to the data. Future researches could examine a complicated model of mediation analysis.
Secondly, variable types could be much more complicated than current considered scenarios.
In the mediation analysis, response variable, independent variables and mediators could be
ordinal, nominal and survival. So, there are still a lot of unknown scenarios. Thirdly, there
is multi-level mediation model available for analysis, and researchers may choose multi-level
data to develop the model, some future work will be discussed for addressing the missing
data problem in multi-level mediation analysis problem.
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Table 3: Coverage rate for medium mediation effect
(ACME=0.1521)

Pattern Rate BD CC IMP

Fully conditional specification
mcar 0.1 0.99 0.97 0.99

0.2 0.91 0.88 0.96
0.3 0.89 0.86 0.94

mar 0.1 0.89 0.23 0.75
0.2 0.97 0.14 0.64
0.3 0.98 0.02 0.63

mnar 0.1 0.98 0.15 0.93
0.2 0.91 0.80 0.90
0.3 0.97 0.02 0.87

Joint modeling
mcar 0.1 0.99 0.84 0.99

0.2 0.99 0.77 0.99
0.3 0.99 0.80 0.99

mar 0.1 0.99 0.51 0.97
0.2 0.89 0.33 0.94
0.3 0.91 0.08 0.89

mnar 0.1 0.97 0.67 0.97
0.2 0.95 0.33 0.98
0.3 0.99 0.13 0.89

note. Pattern: missingness pattern type; Rate: missing data rate;
BD: before deletion; CC: complete case; IMP: imputed data.

Table 4: Coverage rate for high mediation effect (ACME=0.3487)

Pattern Missing Rate BD CC IMP

Fully conditional specification
mcar 0.1 0.91 0.98 0.92

0.2 0.94 0.95 0.98
0.3 0.95 0.95 0.97

mar 0.1 0.87 0.69 0.81
0.2 0.98 0.33 0.69
0.3 0.87 0.09 0.66

mnar 0.1 0.90 0.56 0.89
0.2 0.90 0.53 0.74
0.3 0.93 0.11 0.71

Joint modeling
mcar 0.1 0.97 0.86 0.99

0.2 0.98 0.83 0.99
0.3 0.99 0.88 0.98

mar 0.1 0.98 0.65 0.93
0.2 0.95 0.56 0.70
0.3 0.98 0.32 0.62

mnar 0.1 0.95 0.46 0.84
0.2 0.98 0.26 0.80
0.3 0.98 0.19 0.76

note. Pattern: missingness pattern type; Rate: missing data rate; BD: before
deletion; CC: complete case; IMP: imputed data.
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