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Abstract 
Survey researchers have proposed three general approaches to estimation from 
nonprobability samples: quasi-randomization, superpopulation modeling, and doubly 
robust (Valliant, 2020). Through case studies and Monte Carlo simulations, the authors 
have evaluated some commonly used estimation methods associated with these approaches 
(Ganesh et al., 2017; Yang, et al. 2018, 2019; Mulrow, et al. 2020). Our empirical 
evaluations show that these methods tend to produce comparable point estimates, but 
estimates under two of these methods, Propensity Weighting (quasi-randomization) and 
Small Area Modeling (doubly robust), exhibit superior properties in terms of bias 
reduction, mean squared error, and confidence interval coverage. Focusing on these two 
methods, we expand our earlier simulations to explore variance estimation methods. Like 
our earlier evaluations, the simulation data was generated to mimic the coverage bias 
exhibited by opt-in online samples for some key characteristics. Our objective is to explore 
practical variance estimation solutions to guide practitioners who use nonprobability 
samples but may not have the resources to carry out elaborate variance estimation 
procedures. Our approach is to simulate Jackknife variances under Propensity Weighting 
and Small Area Modeling and compare with naïve variances or design variances where we 
assume that the combined probability and nonprobability sample is a probability sample. 
 
Key Words: nonprobability sample, variance estimation, propensity, small area 
estimation 
  

1. Introduction 

 
Probability sampling remains the gold standard for survey research. However, as survey 
costs continue to rise, there has been growing demand for methods that use nonprobability 
samples and methods that combine probability and nonprobability samples in order to 
improve the cost efficiency of survey estimation (Baker et al., 2013).  
 
While nonprobability samples provide a lower cost alternative to probability samples, 
estimates based on nonprobability samples may be biased due to unknown coverage and 
selection biases. Since there is no known sample design, model-based approaches are 
required for inferences from nonprobability samples to reduce potential bias. Survey 
researchers have proposed three general approaches to estimation from nonprobability 
samples: quasi-randomization, superpopulation modeling, and doubly robust (e.g., Elliott 
and Valliant, 2017; Valliant, 2020). 
 
Through case studies and Monte Carlo simulations, the authors have evaluated some 
estimation methods under these approaches (Ganesh et al., 2017; Yang, et al. 2018, 2019; 
Mulrow, et al. 2020). Our previous evaluations show that these methods produce 
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comparable point estimates, but two of these methods, Propensity Weighting (quasi-
randomization) and Small Area Modeling (doubly robust), exhibit superior properties in 
terms of bias reduction, mean squared error, and confidence interval coverage.  In this 
paper, we expand our earlier simulations to explore variance estimation under Propensity 
Weighting and Small Area Modeling. As in prior studies, our simulation data file was 
generated to mimic the coverage bias exhibited by opt-in nonprobability samples for some 
key characteristics. Our objective is to explore practical variance estimation solutions to 
guide practitioners who use nonprobability samples but may not have the resources to 
implement proper variance estimation procedures. Assuming the combined sample is a 
probability sample is likely to lead to severe under reporting of variances. In contrast, with 
some extra computation effort, a replication method like jackknife can implicitly account 
for the variation due to the fact that the nonprobability sample weights are estimated. Our 
approach therefore is to simulate jackknife variances under Propensity Weighting and 
Small Area Modeling and compare with naïve variances or design variances where one 
assumes that the combined probability and nonprobability sample is a probability sample. 
The goal is to report more realistic sampling variances when combining probability and 
nonprobability samples even though jackknife replication in itself is not necessarily a 
solution because it may still underestimate the true mean squared error (MSE).   
 
 

2. Propensity Weighting and Small Area Modeling 

 
Valliant (2020) provides a comprehensive review of the three approaches to nonprobability 
sample estimation, including the assumptions required for each to produce approximately 
unbiased estimates and methods for variance estimation. Under Quasi-randomization, one 
estimates the pseudo inclusion probabilities for the nonprobability sample and then carry 
out design-based estimation using the pseudo weights as if they are design weights. Under 
Superpopulation Modeling, one develops statistical models for the survey response 
variables and use these models to project the sample to the population. Finally, Doubly 
Robust is a combination of Quasi-randomization and Superpopulation Modeling. Doubly 
Robust estimators are expected to be approximately unbiased and consistent if the pseudo 
inclusion probability distribution, the superpopulation model, or both are correctly 
specified (Cao et al., 2009; Elliott and Valliant, 2020; Kang and Schafer, 2007; Kim and 
Haziza, 2014). In this section, we briefly review our earlier evaluations and then describe 
in detail how sample weights for the combined probability and nonprobability sample are 
generated under Propensity Weighting and Small Area Modeling. 
 
2.1 Earlier Evaluation Results 

 
Our earlier evaluations through case studies and simulations compared the following 
estimation methods for combining a probability and a nonprobability sample:  
 

i. Calibration: Calibrate combined sample weights to reproduce known  
population benchmarks 

ii. Superpopulation Modeling: Use a linear superpopulation model 1  to derive 
sample weights and population estimates 

                                                
1 Our evaluations use a linear model. More generally, superpopulation modeling is not limited to 
linear models. 
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iii. Propensity Weighting: Model the inclusion probabilities and weights for the  
nonprobability sample and combine with probability sample weights 

iv. Statistical Matching: Statistically match the nonprobability and probability 
samples to derive sample weights 

v. Small Area Modeling: Use domain-level small area estimation models to derive 
calibration targets for key survey response variables 

 
Descriptions of these methods may be found in Elliott and Valliant (2017), Bethlehem 
(2015), D'Orazio et al (2006), and Ganesh et al (2017). In our application, each of these 
methods produces a set of final weights for the combined probability and nonprobability 
sample as the final outcome. Of these methods, Small Area Modeling, Propensity 
Weighting, and Statistical Matching rely on the availability of a probability sample, while 
Calibration and Superpopulation Modeling do not.2  
 
Our earlier empirical evaluations demonstrate that: (1) Calibration and Superpopulation 
lead to similar results as they tend to rely on the same set of covariates that are available 
from census data (e.g., American Community Survey, Current Population Survey); (2) 
Propensity Weighting consistently outperforms the other methods presumably because it 
is able to use more covariates than the other methods; (3) Small Area Modeling provides 
the most bias reduction for the modeled response variables, both overall and for 
subpopulations, especially for response variables that exhibit large biases in the 
nonprobability sample; and (4) Statistical Matching gives promising results but more 
evaluations were needed.3 

Our current evaluations focus on variance estimation under Propensity Weighting and 
Small Area Modeling, the two methods that produce better estimates based on our earlier 
comparisons. Below we provide more details of how the combined sample weights are 
developed under these two methods. 
 
2.2 Propensity Weighting 

 
Propensity Weighting requires the presence of a probability sample, called a reference 
sample, selected from the target population. The reference sample weights are regular 
probability sample weights scaled to sum to the target population total. Meanwhile, each 
nonprobability sample unit is assigned a weight of 1. Here are the steps for developing the 
combined sample weights under Propensity Weighting: 
 

i. Generate probability sample weights using standard weighting procedures. This 
typically involves computing sampling or base weights to account for the 
selection probabilities under the sample design, and weighting adjustments for 
unknown eligibility, survey nonresponse, and frame coverage. The final 
probability sample weights are calibrated to known distributions of the target 
population for a set of demographic variables typically through raking ratio 
adjustments to census benchmarks. The demographic variables could vary 
across studies but usually include age, gender, education, race/ethnicity, 
geography, and the like.  

                                                
2 As a general estimation methodology, calibration often uses probability samples. 
3 The authors have since completed further evaluations of Statistical Matching and results are to be 
reported in a separate publication, Mulrow et al., 2020. 
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ii. Concatenate the probability sample and the nonprobability sample and create a 

dichotomous variable R, coded 1 for nonprobability sample units and 0 for 
probability sample units; 

iii. Fit a weighted logistic regression model with R as the response variable where 
the probability sample units are weighted by their regular weights and 
nonprobability sample units assume a weight of 1; 

iv. Compute the nonprobability sample weights as the inverse of the inclusion 
probabilities predicted from the logistic regression model; 

v. Calibrate the nonprobability sample weights to the same set of population 
benchmarks used to calibrate the probability sample; 

vi. Combine the probability and nonprobability sample weights through a 
combination factor that is proportional to the relative size of the probability and 
nonprobability samples. 

 
Predictor variables in the logistic regression model include demographic (e.g., age, gender, 
race and ethnicity, marital status), socioeconomic (e.g., education, income, employment), 
webographic4, as well as response variables collected from the survey. The final model is 
validated through cross validation and by examining model diagnostic statistics.  
 
The predicted inclusion probabilities may be sensitive to misspecification of the underlying 
logistic regression model (Kang and Schafer, 2007, Cao et al., 2009). One may choose to 
form weighting strata based on the size of the estimated inclusion probabilities and use a 
common inclusion probability for each stratum, like forming weighting classes from 
predicted response propensities for nonresponse weighting adjustments (Little, 1986, 
Valliant et al., 2018). For this investigation, we used the inverse of individual propensities 
as the weights for the nonprobability sample units. 
 
2.3 Small Area Modeling 

 
To address the issue of potential estimation bias associated with the nonprobability sample, 
researchers at NORC developed a hybrid calibration weighting method that combines 
probability and nonprobability samples using small area estimation modeling (Rao, 2003). 
The resulting weights are calibrated to both standard demographic benchmarks and 
domain-level estimates for key survey response variables estimated from small area 
models. Relative to other estimation methods we evaluated, Small Area Modeling 
generates the most substantial bias reduction across a range of case studies and simulations 
(Ganesh et al., 2017; Yang et al., 2018, 2019). The implementation of Small Area Modeling 
involves four major stages, as discussed in the subsections below. 
 

2.3.1 Develop Probability Sample Weights 

 
The same probability sample weighting procedures as described in 2.2 are used. 
  
2.3.2 Develop Nonprobability Sample Weights 

 

                                                
4 Webographic variables are those that are believed to differentiate the online population from the 
general population.  
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As there is no known “design” to nonprobability samples, units in the nonprobability 
sample are given an initial base weight of one. The final nonprobability sample weights 
may be developed through Calibration, Propensity Weighting, Statistical Matching, or 
some other methods. The nonprobability sample weights are calibrated to the same known 
distributions of the population as those used to calibrate the probability sample weights. 
 
2.3.3 Small Area Modeling 

 

Small area estimation models are developed to derive domain-level predicted values for 
some key response variables, and these predicted values are used as additional raking 
targets to produce the weights under Small Area Modeling. To start the modeling process, 
we identify a set of (2 to 4) key response variables from the survey, e.g., using a machine 
learning approach. Ideally, these key variables are associated with the largest bias in the 
nonprobability sample and also are highly correlated with other survey response variables. 

 
We then define a set of (20 to 40) domains in the data, where each domain represents a 
specific and meaningful subgroup for data analysis and reporting. For example, a set of 
domains may be defined using race, gender, age and educational attainment, and one of 
which may be African-American males age 18 to 34 with a college degree. The choice of 
domains should ensure “sufficient” sample size for the probability and non-probability 
samples per domain, align with analysis and reporting domains, and also capture the 
variation across domains with respect to substantive survey response variables.  

 

Now we are ready to fit domain-level small area models for each of the response variables 
identified earlier using weighted domain-level estimates as input and incorporating 
external data sources as potential predictors in the models. For this research, a Bivariate 
Fay-Herriot model (Rao, 2003; Fay and Herriot, 1979) is used to jointly model the domain-
level point estimates from the probability sample (yd

P)  and the nonprobability sample 
(yd

NP):  

yd
P = 𝐱d

′ 𝛃 + νd + εd
P 

yd
NP = b + αd

NP + 𝐱d
′ 𝛃 + νd + εd

NP 
 
where 
 

d is a domain (e.g. 18-34 year old, male, African American, college degree) 
𝐱d is a vector of covariates 
vd’s are domain level random effects 
b is a fixed effect bias term associated with the nonprobability sample estimate 
αd ’s are random effect bias terms associated with the nonprobability sample 
estimate 
εd

P, εd
NPare the sampling errors associated with yd

P and yd
NP, respectively 

 

Once the small area models are finalized, they are used to generate predicted values 
for each domain and for each response variable using an Empirical Best Linear 
Unbiased Predictor (EBLUP). 
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2.3.4 Hybrid Calibration 

 
The final stage, hybrid calibration weights are developed by raking the probability and 
nonprobability weights to known demographic control totals as well as predicted values 
derived from the small area models. Before this calibration, the original probability and 
nonprobability weights are combined through a combination factor that is proportional to 
the relative sample size. The final weights under Small Area Modeling reproduce the 
population benchmarks as well as the small area estimates for each domain and each of the 
key survey response variables. 
 
 

3. Monte Carlo Simulations 

 
To mimic the type of coverage bias typically exhibited in online opt-in nonprobability 
samples, we created two sampling frames, one a subset of the other, using survey completes 
from a large-scale national study about food allergies, as follows: 
 

i. Frame 1, the full population frame, consists of all 40,539 adult survey completes. 
Random samples selected from Frame 1 are considered probability samples. 

ii. Frame 2, a nonrandom subset of Frame 1, consists of 36,917 adult survey 
completes. To impart coverage bias to Frame 2, we sorted Frame 1 by some key 
response variables, and then selected 3,622 (9 percent) records for removal to 
create Frame 2. Random samples selected from Frame 2 are considered 
nonprobability samples with respect to the population as represented by Frame 
1.  

Both the probability and nonprobability frames/samples contain a large number of 
demographic, webographic, and survey response variables. Demographic variables 
include: age, gender, race/ethnicity, education, employment, marital status, household 
income, household size, home ownership, household telephone service, and more. 
Webographic variables include household internet access and early adoption of technology 
among others. Survey responses variables include self-reported and doctor-diagnosed food 
allergies, allergy reactions, experiences in allergy treatments, events coinciding with 
development or outgrowing a food allergy, and perceived risks associated with food 
allergies.  
 
The Monte Carlo simulations involve 2,500 simulation samples, each consisting of a 
probability sample of size 400 and a nonprobability sample of size 800 selected using 
SRSWOR from Frame1 and Frame 2, respectively. For each simulation sample, we 
generate the combined sample weights, weighted estimates, and other key statistics, as 
below: 

 
i. Combined sample weights under Propensity Weighting and Small Area 

Modeling are generated using the respective weighting procedures; 
ii. Weighted point estimates under each method are derived for response variables 

of interest;  
iii. Compute design (naïve) variances assuming that the respective combined 

sample weights are regular probability sample weights; 
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iv. Compute SRS variances assuming that the respective combined sample is a 
simple random sample; 

v. Compute estimated bias for each response variable as the difference between the 
known population value and the weighted sample mean.  

vi. Define jackknife replicates as follows: 
a. Divide each simulation sample into 50 random and equal-sized groups 

(jackknife group);  
b. Form 50 jackknife replicates within each simulation sample by deleting a 

jackknife group from each sample source at a time so that each jackknife 
replicate contains 392 cases from the probability sample and 784 cases from 
the nonprobability sample; 

vii. Produce jackknife variance estimates as follows: 
a. Ratio adjust the Propensity or Small Area Modeling weights per jackknife 

replicate to their original full sample weight total 
b. Compute weighted point estimates for each jackknife replicate 
c. Compute weighted point estimate for the full sample  
d. Compute jackknife variance estimates for each simulation sample as 

𝑣𝐽𝐾(𝜃̂) =
𝐺−1

𝐺
∑ (𝜃(𝑔) − 𝜃)2𝐺

𝑔=1  , where 𝜃(𝑔) is the estimate from replicate 
g and 𝜃 is the full sample estimate 

e. Compute Jackknife mean squared error (MSE) estimates for each 
simulation sample as 𝑣𝐽𝐾(𝜃̂) =

𝐺−1

𝐺
∑ (𝜃(𝑔) − 𝜃)2𝐺

𝑔=1  , where 𝜃(𝑔) is the 
estimate from replicate g and 𝜃 is the known population value 

Finally, all the statistics associated with each simulation is averaged over the 2500 
iterations. The simulation results and discussions in the next section are based on these 
averages.  

 
4. Simulation Results and Discussions 

 
Key simulation results include estimated variances, biases, mean squared errors, and 
confidence interval coverage associated with the weighted point estimates for a set of 13 
survey response variables under Propensity Weighting and Small Area Modeling. All these 
variables are measured as proportions and their population distributions are known. In 
particular, the known bias associated with the nonprobability sample ranges from .04 to 
8.74 percentage points for the 13 variables. Our evaluations are based on the simulated 
statistics for the combined sample as well as 18 subdomains.  
 
Figure 1 shows the regressions of design standard errors on SRS standard errors under 
Propensity Weighting (left) and Small Area Modeling (right). Each data point corresponds 
to a variable and domain combination. To compute design standard errors, we assume that 
the final weights under the two methods are regular probability sample weights; and to 
compute SRS standard errors, we assume that the samples are simple random samples. As 
expected, design standard errors track very closely with SRS standard errors. Note that the 
vertical scales are not the same for the two graphs: the Small Area regression line actually 
has a steeper slope (1.16 vs. 1.04), indicating that design standard errors are larger under 
Small Area Modeling than under Propensity Weighting. As we have also reported in earlier 
investigations, Propensity Weighting typically results in less weight variation than Small 
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Area Modeling even when predicted propensities are directly used to derive the pseudo 
weights (Yang et al., 2018, 2019). 

 

  

Figure 1: Regressions of design standard errors on SRS standard errors 
 

Design standard errors are likely to underestimate the underlying sampling variation of the 
sample statistics. Although no formal proof exists for combined probability and 
nonprobability samples, we expect replication variance estimators to produce more 
realistic variance estimates. The delete-a-group jackknife replication procedures 
implemented here implicitly reflect the estimated weights and weighting adjustments under 
each method. Figure 2 shows the regressions of Jackknife standard errors on design 
standard errors. With a slope of 1.02, Propensity Jackknife SEs are only slightly greater 
than the corresponding design SEs. On the other hand, Small Area Jackknife SEs are about 
twice as large as Small Area design SEs (slope=2.05). Using Small Area weights as design 
weights for variance estimation is likely to severely underestimate the true variance. 
 

 
Figure 2: Regressions of Jackknife standard errors on design standard errors 
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Figure 3 shows regressions of jackknife RMSE on jackknife SE under each method. Note 
that the horizontal scales are different between the two graphs. The design and jackknife 
standard errors may be small under Propensity Weighting, but their jackknife RMSEs are 
much larger than jackknife SEs (slope=5.76), suggesting that the total error contains a 
substantial bias component under Propensity Weighting. On the other hand, Small Area 
RMSEs are only about 90% larger than Small Area jackknife SEs (slope=1.9). Figure 2 
also shows that the residuals of the regression tend to be smaller for Propensity than for 
Small Area, which indicates that the correlation between jackknife RMSEs and SEs are 
high and that the bias is not only substantial but also consistent across analysis domains 
and response variables. On the other hand, the regression of jackknife RMSEs on jackknife 
SEs under Small Area is less linear, the residuals much larger, and there are also signs of 
heteroscedasticity across the domains and response variables. Large residuals are typically 
associated with variables that contain more bias in the nonprobability samples. Although 
Small Area Modeling is more effective in reducing bias for variables that are more biased, 
as discussed later, it is not able to remove all the bias for such variables. 

 
Figure 3: Regression of Jackknife RMSE on JK SE 

Figure 4 shows the regression of Small Area jackknife RMSEs on Propensity jackknife 
RMSEs.  Small Area RMSEs are on average smaller, or about 90% of the Propensity 
RMSEs (slope=.92). So, if we use RMSE as the ultimate standard, Small Area performs 
slightly better on average based on these simulations, although the difference is not large. 
An examination of the residuals show that the relative strength of the two methods also 
could vary across analysis domains and response variables. In general, no strong evidence 
thus far from these current simulations challenges our earlier conclusion that both 
Propensity Weighting and Small Area Modeling are viable estimation methods for 
combining probability and nonprobability samples.  
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Figure 4: Regression of Small Area jackknife RMSEs on Propensity jackknife RMSEs 
 
Turning to the examinations of estimated bias, Figure 5 shows the distribution of bias per 
domain for estimates based on the simulated probability samples only. As expected, both 
the average and the median of the simulated bias associated with the probability samples 
is about 0. Weighted estimates associated with some simulated samples are slightly biased, 
but even the outlier biases are extremely small. Therefore, any bias in the combined sample 
estimates is originated from the inclusion of the nonprobability sample. 
 

 
Figure 5: distribution of simulated bias for the probability sample 
 
Figure 6 shows the bias of combined sample estimates under Propensity Weighting and 
Small Area Modeling. As expected, combined sample estimates contain some level of bias 
under both Propensity and Small Area methods. These method may help to reduce bias but 
they generally cannot eliminate the bias introduced by the nonprobability sample. 
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Therefore, using pseudo weights as regular design weights in estimation could lead to 
erroneous inferences about the underlying population distribution of the response variable.  

Boxplots of biases are shown separately for modeled and non-modeled variables under 
Small Area Modeling. Based on the interquartile range, the boxplots show that estimated 
biases under Small Area Modeling tend to have smaller variance than those under 
Propensity Modeling. The boxplots also show that estimates of modeled variables contain 
more bias than estimates of non-modeled variables. Although a little counterintuitive given 
how hybrid calibration works under Small Area Modeling, this is actually not unexpected 
because response variables with the largest biases are typically chosen to be the model 
variables. With the more targeted bias reduction inherent in the Small Area Modeling 
method, variables with largest biases benefit most from this approach. Modeling variables 
with little bias in the nonprobability sample would be both ineffective and unnecessary. On 
the other hand, larger biases associated with modeled response variables demonstrate that, 
although Small Area Modeling achieves substantial bias reduction, significant bias may 
still remain in the final estimates. The amount of bias will depend on the degree to which 
(1) the initial combined sample weights are estimated accurately, and (2) the small area 
models are specified correctly.  
 

 
Figure 6: Bias under Propensity Weighting and Small Area Modeling 
 
Figure 7 shows the boxplots of 95 percent confidence interval coverage under Propensity 
Weighting, using the design standard errors and the jackknife standard errors. The coverage 
rate is the proportion of the confidence intervals, built around the weighted point estimates 
using the estimated standard errors, that contains the known population proportion for each 
variable and domain. Confidence interval coverage is similar between using Propensity 
design SEs and Propensity jackknife SEs, reflecting the earlier discovery that the design 
SEs and jackknife SEs track each other closely. In both cases, the median coverage rate is 
lower than 90%, the average around 70%, and even the maximum is below 95%. On the 
other end of the distribution, for a quarter of the domains/variables, the coverage rate is 
below 56%.  
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Figure 7: Confidence interval coverage under Propensity Weighting 
 
Figure 8 shows the boxplots of 95 percent confidence interval coverage under Small Area 
Modeling, again using the design standard errors and the jackknife standard errors but also 
separately for modeled and other variables. Similar patterns emerge here under Small Area 
Modeling, except that confidence interval coverage is much better for modeled variables 
than for other variables. This is especially true under jackknife SEs, where the median 
coverage rate is over 95%. For the non-modeled variables, on the other hand, the median 
coverage rate is about 75%, with a quarter of the intervals below 20%. 
 

 
 
Figure 8: Confidence interval coverage under Small Area Modeling 
 
To summarize our main findings through these simulations: The combined probability and 
nonprobability sample estimates still contain some level of bias. Combined sample 
estimates under Small Area Modeling tend to have smaller bias but larger variance than 
those under Propensity Weighting. Larger variances under Small Area originates from the 
additional weight calibration to small area estimates that usually increases the variation of 
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the combined sample weights. Such increase could be substantial if the bias in the modeled 
response variables is large and therefore greater weighting adjustments are needed to 
reduce such bias. When estimated mean squared errors are used for comparisons, we found 
that estimates under Small Area Modeling tend to perform better although the difference 
is not very large. Under Small Area Modeling, the modeled variables typically have the 
largest biases and require the most adjustments to reduce biases. Small Area Modeling 
achieves the largest bias reduction for these modeled variables but it does not remove the 
bias. Confidence interval coverage rate under Propensity Weighting is low and never 
achieves the nominal 95% coverage rate, which may be an indication that Propensity 
Weighting tends to underestimate the sampling variance and ineffective in bias reduction. 
In contrast, with generally larger standard errors and smaller bias, confidence intervals 
have much better coverage under Small Area Modeling. 
 

 
5. Concluding Remarks 

 
Our earlier evaluations indicate that Propensity Weighting and Small Area Modeling 
present two viable alternatives for estimation from combined probability and 
nonprobability samples. This study extends our earlier work by exploring variance 
estimation under these two methods. Results from our evaluation of a third promising 
alternative, Statistical Matching, is being reported in a separate publication (Mulrow et al., 
2020).  
 
Estimates from nonprobability samples, along or in combination with probability samples, 
are most likely to be biased due to unknown coverage and selection biases. Removing such 
biases remains a challenge. In theory, the biases may be removed if the sample inclusion 
probability models or the superpopulation models are correctly specified. In reality, 
however, such models are unlikely to be exactly correct. In general, based on our 
simulation results, using the modeled sample weights as regular design weights will likely 
underestimate the variances and lead to erroneous inferences.  
 
For complex estimation based on combined probability and nonprobability samples, 
replication variance estimation methods may be used to implicitly to account for the extra 
sampling variation due to modeled nonprobability sample weights. For studies that lack 
sufficient resources, it might be prudent to report confidence intervals in addition to 
weighted point estimates, where the z-multiplier should be greater than 1.96 for the 95 
percent confidence interval when the modeled weights are considered design weights under 
regular design-based estimation. Our simulations suggest a multiplier that is about twice 
as large under Small Area Modeling. Different simulation data may lead to different results 
and more research is need in this area. Meanwhile, we acknowledge that jackknife variance 
estimation in itself cannot be a full solution as long as the combined estimates remain 
biased. Given that the true MSE is likely to be larger than the jackknife standard error, 
estimated errors should be interpreted with caution and transparency. 
 
In terms of future research, we intend to include Statistical Matching in our exploration of 
variance estimation methods. The current simulations feature a 2:1 nonprobability sample 
to probability sample size ratio. Future simulations will consider different sample size 
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ratios. Finally, to take advantage of the superior bias reduction abilities of the Small Area 
Modeling method, we will continue to explore hybrid methods to integrate Propensity 
Weighting and Statistical Matching with Small Area Modeling. 
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