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Abstract
Near-infrared (NIR) spectroscopy is an analytical technique used to determine chemical and phys-

ical features of a sample. The sample is illuminated with near-infrared light and its properties, such
as absorbance or reflectance, are measured at different wavelengths within the near-infrared region
of the electromagnetic spectrum. A calibration model is then adopted to use information from the
obtained spectral data to predict the chemical or physical feature of interest. Given that hundreds
of wavelengths are commonly taken into consideration, it is fundamentally important to be able
to distinguish between informative wavelengths and those providing only irrelevant or redundant
information. Each wavelength corresponds to an independent variable to be included in the cali-
bration model, so we are interested in identifying an appropriate feature selection approach. Rather
than considering the commonly-used filter, wrapper or embedded methods, such as the Chi-squared
test, Lasso regression or step-wise selection, in this paper we focus on a different family of feature
selection techniques, namely interval selection methods. These methods are often used to select
groups of consecutive wavelengths in the field of NIR spectroscopy due to the continuous nature of
spectral data. As such it makes more sense for practitioners to select small informative regions of
spectral points rather than a single point.

In this paper, we propose a new interval selection technique called Permutation and Lasso-based
Interval Selection (PLIS), based on the adoption of Lasso Regression and permutation tests. The
performance of this solution is then evaluated by means of a simulation study and a toy example
coming from a real industrial problem.
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1. Introduction

Near-infrared (NIR) spectroscopy is an analytical technique widely used in food and phar-
maceutical industries to determine chemical and physical properties of a product, to identify
a component concentration, or for quality control [1]. It uses the near-infrared region of
the electromagnetic spectrum, ranging from 750 nm to 2500 nm [2]. Using this technique
the sample is illuminated by NIR radiation that can be absorbed, transmitted or reflected.
NIR spectra are then collected, showing the amount of interaction between the light and the
sample as a function of the wavelength. When several samples are analyzed and the related
properties of interest are measured, the gathered spectral data are commonly pre-processed
and used to train a calibration model which can be adopted to predict properties of new
samples.

Suppose we are measuring the absorbance of a sample at several wavelengths. Each
wavelength corresponds to an independent variable that will be used by the calibration
model to predict the variable of interest [3–5]. Commonly the model will have to deal with
hundreds of potentially highly correlated variables, among which only a few are really in-
formative. For this reason, several authors have suggested that appropriate feature selection
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techniques should be used to improve the predictive performances of the calibration model
[3,4,6] by removing redundant or uninformative variables.

Additionally, having to deal with a high number of wavelengths means that simpler
regression methods, such as linear regression, cannot be adopted because the sample size
N is generally much lower than the number of variables V . To have N ≥ V would
mean gathering NIR spectra from hundreds of samples. Although in NIR spectroscopy
this problem is commonly solved by adopting Partial Least Squares (PLS) regression [7,8],
i.e. a method performing a dimensionality reduction and making it possible to address
problems whereN << V , the use of feature selection techniques should not be overlooked.

Feature selection methods are commonly grouped into essentially three categories - fil-
ter methods, wrapper methods and embedded methods [9,10]. However, an additional cate-
gory is considered particularly in the field of NIR spectroscopy: interval selection methods.
These techniques are intended to select small regions of wavelengths, i.e. groups of adja-
cent variables, rather than single variables. Practitioners in this field are more interested in
identifying regions of informative wavelengths because of the continuous nature of spectra
and the high correlation between variables measured at consecutive wavelengths. Indeed
several interval selection methods have been proposed in the literature, such as interval PLS
(iPLS) [11], interval VISSA (iVISSA) [12], and interval Random Frog (iRF) [13].

The aim of this paper is to introduce a new interval selection technique, namely Permu-
tation and Lasso-based Interval Selection (PLIS), based on the use of Lasso regression and
permutation techniques, and to use this technique to explore the impact of interval selection
on the predictive performances of calibration models. A simulation study is conducted and
a toy example from a real industrial application is studied.

2. Permutation and Lasso-based Interval Selection (PLIS)

The key idea in Permutation and Lasso-based Interval Selection (PLIS) is to adopt a vari-
able clustering algorithm, namely ClustOfVar [14], to group wavelengths, and then apply
Lasso regression and permutation tests to select the most informative regions.

The adoption of ClustOfVar allows us to define clusters of variables without constraints
on the data type. The resulting clusters are as homogeneous as possible, using the def-
inition of homogeneous cluster provided by Chavent et al. [14], i.e. the variables of a
cluster are strongly related to a central quantitative synthetic variable. Indeed, given a
partition PK in K clusters Gk, ClustOfVar aims to maximize the homogeneity criterion
HPK =

∑K
k=1H(Gk) =

∑K
k=1

[∑
xj∈Gk

ρ2vk,xj
+
∑

zj∈Gk
η2vk|zj

]
, where vk is the re-

lated synthetic variable, ρ2vk,xj
is the squared Pearson correlation coefficient between vk

and the quantitative variable xj , and η2vk|zj is the correlation ratio between vk and the qual-
itative variable zj . In other words, for each cluster Gk it aims to maximize the sum of
two quantities measuring the relationship between the synthetic variable and the quantita-
tive variables and the link between the synthetic variable and the qualitative variables. It
is worth noting that when data are strictly quantitative, as in the case of spectral data, the
second quantity is ignored.

Let us now define what a synthetic variable is. Given a clusterGk, the synthetic variable
vk is computed as vk = argmaxv

{∑
xj∈Gk

ρ2v,xj
+
∑

zj∈Gk
η2v|zj

}
, In other words, it is the

variable with the strongest link to all the other variables. The solution to this maximization
problem is provided by the first principal component of PCAMIX. This particular principal
component method is able to deal with mixed data [15]. Additionally, its empirical variance
V (vk) =

∑
xj∈Gk

ρ2xj ,vk
is equal to λk, the first eigenvalue of PCAMIX.

Chavent et al. [14] claim that this empirical variance is equal to H(Gk), so that the
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homogeneity criterion HPK can be written as HPK =
∑K

k=1 λk.
To maximize HPK , ClustOfVar adopts a hierarchical clustering algorithm. Given V

variables, this algorithm involves the following steps:

1. Create a partition PV in V clusters.

2. For i = 1, . . . , V − 2: aggregate the pair of clusters Gl and Gm with the smallest
dissimilarity D(Gl, Gm) = H(Gl)+H(Gm)−H(Gl ∪Gm), measuring the loss of
homogeneity after merging the two clusters, and a new partition PV−i is generated.

3. When i = V − 1, stop.

At the end of the procedure we are able to achieve the most homogeneous partition possible
in K clusters.

The first phase of PLIS essentially uses ClustOfVar considering a set of Q possible K
values, so that Q partitions Pq are provided. To identify the best partition, for each Pq we
apply Lasso regression on the related synthetic variables and retrieve the cross-validation
error using repeated 5-fold cross-validation. We then use these errors and apply a ranking
procedure based on permutation tests [16], i.e. highly flexible nonparametric tests that do
not require any strict assumption on the data, particularly in relation to underlying distribu-
tions and their size [17]. Let us briefly describe this ranking procedure. After performing
all possible comparisons between the Q partitions, Q(Q − 1) p-values are achieved and
gathered in a matrix pQ×Q where each cell (l,m), l 6= m contains the p-value related to
the comparison between Pl and Pm, while each cell (l, l) is equal to 1. The steps are:

1. Create a matrix s with sl,m = 1 if pl,m ≤ α/2 and sl,m = 0 if pl,m > α/2, where α
is the desired significance level.

2. Compute the vector
{
rlu = 1 + #

[
(Q −

∑Q
m=1 sl,m) > (Q −

∑Q
m=1 sz,m)

]
, z =

1, . . . , Q, z 6= l
}

, l = 1, . . . , Q, where # means number of times

3. Calculate the vector
{
rmd = 1 +

∑p
l=1 sl,m

}
, m = 1, . . . , Q,

4. Compute the vector r whose elements are
{
rl = 1 + #

[ (rlu+rld)
2 >

(rmu +rmd )
2

]
, m =

1, . . . , Q, l 6= m
}

, l = 1, . . . , Q.

The final partition PK is the one occupying the first place in the achieved ranking. From
this partition we then select only the k∗ clusters for which the corresponding synthetic
variables had a non-null coefficient in the previous Lasso regression model. In this way, we
manage to select groups of informative variables and address the interval selection problem.

3. Simulation study

To evaluate the performances of this new proposal we performed a simulation study. In this
study we adopted an R [18] package, namely hsdar, developed by Lehnert et al. (2018) [19]
with the aim of allowing users to analyze and simulate hyperspectral data. In particular, the
PROSPECT function allowed us to simulate reflectance spectra using the leaf reflectance
model introduced by Jacquemoud and Baret [20] which links reflectance to a structure
parameter, a pigment concentration, and water content. In particular, we took advantage of
a version of this model proposed by Féret et al. [21], which involves multiple important
pigments, such as chlorophyll, which have an impact on the optical properties of a leaf.

We considered 5 possible values of chlorophyll concentration (Cab), i.e. 10, 20, 30,
40 and 50 µg/cm2, and for each of them r spectra were simulated, adding noise to each
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spectrum by randomly generating an error term e for each wavelength, drawn from a Nor-
mal distribution with mean equal to 0 and standard deviation σ. It is worth noting that
only 201 wavelengths were chosen inside the default interval [400, 2500]nm. The differ-
ences between spectra are therefore due to two main sources: chlorophyll concentration
and noise. Given the strong relationship between the simulated reflectance and the chloro-
phyll concentration, we tried to build a calibration model to predict Cab beginning with
the simulated spectra. Before training the calibration model, we also applied PLIS to see
how the performances of the model change when using an informative subset of the 201
wavelengths rather then all of them.

Four different settings were therefore investigated:

• S1: r = 5 and σ = 0.005 (i.e. moderate sample size and low amount of noise)

• S2: r = 5 and σ = 0.01 (i.e. moderate sample size and moderate amount of noise)

• S3: r = 3 and σ = 0.005 (i.e. small sample size and low amount of noise)

• S4: r = 3 and σ = 0.01 (i.e. small sample size and moderate amount of noise)

In other words, we tried to vary the amount of noise and the sample size to see the impact
of these two aspects on the capability of the PLIS procedure to improve the prediction
error of the calibration model. 1000 simulation runs were performed. During each run,
simulated data were divided into training and test sets (using a 67/33 ratio) and a ridge
regression model and a Partial-Least Squares regression model were applied, firstly using
all the explanatory variables and then only the ones selected by PLIS. At the end, the related
Mean Absolute Prediction Errors (MAPEs) on the test set were retrieved and used for the
final evaluation of the proposed interval selection technique. Indeed, a well performing
interval selection method should allow us to substantially reduce the number of variables
(i.e. wavelengths), but also improve the predictive performances of the chosen calibration
model.

Looking at the first scenario (i.e. S1), it is possible to see how the adoption of PLIS
positively impacts the predictive performances of both considered calibration models (see
Figure 1). Using PLIS, the average MAPE moves from 24.66% to 22.87% when ridge
regression is adopted, while when PLS is applied, it goes from 14.33% to 10.46%. Addi-
tionally, on average, 112 wavelengths out of 201 were selected by our proposal, therefore
data dimensionality is substantially reduced.

Increasing the amount of noise (i.e. S2), the performances of the calibration models
appear to worsen. However, the use of PLIS still seems to improve their predictive perfor-
mances (see Figure 2). The average MAPEs when using ridge regression and PLS regres-
sion are equal to 26.20% and 15.80% respectively. On the other hand, when focusing on
the selected informative regions, the average MAPE values become 24.87% and 12.10%.
The average number of selected variables is also similar to the number achieved under S1,
i.e. 117.

Reducing the sample size, it appears that the observed MAPE values reasonably tend
to increase, but the impact of interval selection also looks different. Under S3, the achieved
MAPE values are: 26.17% when using ridge regression and no interval selection; 17.97%
when using PLS regression and no interval selection; 25.51% when using ridge regression
and PLIS; and 13.72% when using PLS regression and PLIS. In other words, it appears
that the predictive performances of the ridge regression model are only slightly improved
by the use of interval selection (see Figure 3). The phenomenon appears to be even more
evident under the fourth scenario (see Figure 4), where higher noise is present. Using PLIS
together with ridge regression, MAPE moves from 27.48% to 27.09%, while with PLS it

 
555



Figure 1: MAPE under S1.

Figure 2: MAPE under S2.
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goes from 18.92% to 14.88%. Additionally, for both S3 and S4 the average number of
selected variables increases (see Figure 5).

Figure 3: MAPE under S3.

Figure 4: MAPE under S4.

To sum up, when the total sample size is particularly low (i.e. 12 in our study) and
data are noisy, PLIS capability to substantially improve the performances of the calibration
model appears to depend on the nature of this model. However, the combined use of the
widely-used PLS regression and PLIS is a reasonably good solution under these circum-
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stances as well. Overall, the proposed interval selection procedure appears to be a useful
method for application in fields such as NIR spectroscopy, where spectral data are used
to predict a chemical or physical property of interest, to improve the predictive ability of
calibration models.

Figure 5: Selected variables under different scenarios.

4. A toy example

We then considered a toy example, exploiting data from a real industrial problem in which
Near-Infrared Spectroscopy was adopted.
The original problem involved several different products, each characterized by a specific
combination of 6 different chemical components. Each product was analyzed multiple
times, so that r spectra was recorded for each sample. The objective of the analysis was to
be able to predict the formula composition using an observed NIR spectrum.

Of the original Vorig wavelengths, only 86 were considered in our toy example. Ad-
ditionally, we did not use all r spectra for each combination of components, but only the
first one. 72 pre-treated spectra were thus available to be used to predict the amount of a
single chemical component Y1. We adopted PLIS to select the k∗ most informative inter-
vals of wavelengths and then considered two different possible calibration models: a ridge
regression model and a Partial-Least Squares regression model. The performances of these
models in predicting Y1 in an appropriate test set were used as evaluation criteria for the
proposed interval selection technique.

Firstly, out of the 72 spectra, only 54 were used for interval selection and calibration
model training. The remaining 18 were considered a test set. We thus applied a ridge
regression model and a Partial-Least Squares regression model on the whole dataset, con-
ducting a grid search to tune the regularization parameter λ, as required by the first method,
and the number of components, as required by PLS. The final considered values of these
parameters were the ones minimizing the Root Mean Squared Error achieved using 5-fold
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cross-validation. By evaluating the prediction error on the test set of the tuned models, we
saw that PLS regression appears to outperform ridge regression (see Table 1).

Before applying PLIS, we decided to try 17 possible values ofK within [2, . . . , 18] and
set α = 0.05. The interval selection procedure led us to select 10 clusters of variables for
a total of 38 different wavelengths. A substantial reduction in the number of wavelengths
to be considered in future applications would be possible using PLIS (see Figure 6). By
again applying ridge regression and PLS regression on the subset of selected variables, it
can be seen that the error metrics tend to substantially decrease with ridge regression (see
Table 1). When PLS regression is used, the performances are almost identical under the
two scenarios.

To sum up, from this toy example it emerges that the use of the proposed interval selec-
tion technique can benefit or at least preserve the predictive performances of the considered
calibration models and strongly reduce the computational burden in future applications.

Table 1: Prediction errors on the test set.

Interval selection Model RMSE MAE MAPE
No Ridge 0.0187 0.0156 56.6%
No PLS 0.0094 0.0067 24.0%
Yes Ridge 0.0093 0.0072 22.2%
Yes PLS 0.0093 0.0074 23.7%

Figure 6: Spectra and selected wavelengths.

5. Conclusions

In this paper we proposed a new interval selection technique, i.e. a new method for se-
lecting informative groups of variables. The method, called Permutation and Lasso-based
Interval Selection (PLIS), starts by using the ClustOfVar algorithm [14] to accurately define
a partition of V variables intoK clusters. Given a set of possible partitions, the optimal one
is identified taking advantage of Lasso regression and a permutation-based ranking proce-
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dure [16]. The informative clusters of variables are then extracted from this partition using
the coefficients of the previously trained Lasso regression model.

A simulation study was performed and a toy example was analyzed using PLIS. Both
studies demonstrated the usefulness of the proposed procedure. Focusing only on the vari-
ables selected by PLIS does indeed appear to provide us with better performing calibration
models in NIR spectroscopy problems. Additionally, PLIS appears to be able to greatly re-
duce the computational and operational burden by substantially reducing the number of re-
gions and single wavelengths at which optical properties such as absorbance or reflectance
need to be recorded.
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[21] J.-B. Féret, A. Gitelson, S. Noble, and S. Jacquemoud, “Prospect-d: Towards modeling leaf
optical properties through a complete lifecycle,” Remote Sensing of Environment, vol. 193,
pp. 204–215, 2017.

 
561




