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Abstract
In studying machine learning classifiers, researchers often assume that training and testing
data are sampled at random from the same distribution. One way this assumption fails in
practice is that training samples are biased, yielding training data drawn from a conditional
distribution p(x, y | s = 1) rather than the true distribution p(x, y). In this paper, we consider
the case of a call center where we are only able to collect the label y when a customer
contacts us. This leads to a biased sampling model which depends on x only when y = 1.
This sampling model is applicable to survey statistics and particularly data generated by
voter surveys. By identifying a formal model for the sampling bias, we prove a generalization
bound on the empirical risk of the optimal classifier fs trained on the sampling distribution
and characterize the tightness of this bound by the level of dependency between s and y
and the empirical risk of the optimal classifier f∗ on the full distribution.

Key Words: Sampling bias, generalization, statistical learning, machine learning, risk
minimization, biased sample, data science

1. Introduction

In a typical setup for machine learning classification, one considers features x and
labels y drawn from a distribution D(x, y). A model is then trained to estimate
p(y |x). However in many industrial settings, the data collection process is biased.
We model this effect by adding a binary variable s which determines the selection of
examples. Training data is drawn from D(x, y | s = 1) whereas testing data is drawn
from D(x, y, s). A natural question is if insights derived from biased training data
generalize to the larger population.

In [15], the authors discuss four ways that s can be related to x and y. The
two non-trivial cases (listed as 2 and 3 in Section 2 of [15]) are when the selection
variable s either depends only on the features x or only on the labels y. They examine
the case when y is conditionally independent of s given x and give a procedure for
reweighting examples which allows to train a classifier on biased data. Specifically,
they describe a weighting of examples such that the estimated loss of a classifier
on the weighted biased examples is equal to the estimated loss on unbiased data
(Theorem 1 [15]).

In this paper, we prove an upper bound on the optimal classifier of the sample
distribution that is similar in spirit to Theorem 1 of [15]. However, our assumptions
on the relationship between x, y, and s do not fit into any of their categories. We are
motivated by the selection bias encountered when collecting training data via call
centers and consider in particular the case of an internet service provider to ground
the following discussion. Here x represents measurable features of a customer’s service
(like WiFi telemetry) and y represents whether they are experiencing a problem with
that aspect of service (like slow WiFi speed). Although we can measure the state x
continuously, we only observe y when a customer contacts us. Thus, our training
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data to predict y given x is biased by the binary variable s which indicates whether
the customer called.

1.1 Background

We assume that x is sampled from a probability space X, which in practice is a
cartesian product with some continuous and categorical features. D(x, y, s) is a
distribution on the product space X×{0, 1}×{0, 1}. The variable s ∈ {0, 1} indicates
if a data point (x, y) has been sampled. We will use p to indicate the probability
density function, and the notation p(A,B) := p(A∩B) to denote the joint probability
distribution. For events A,B, and C, we say A and B are conditionally independent
given C if p(A,B|C) = p(A|C)p(B|C), which is equivalent to p(A|B,C) = p(A|C).

Let ` denote a loss function ` : R×R→ R and f : X → R a classifier. We define
the `-risk on D as

ED`(f(x), y) :=
∑

x,y,s∈D
`(f(x, y))p(x, y, s) =

∑
x,y∈D

`(f(x, y))p(x, y),

and note we have abused notation and written the integral as a sum. When we
consider the risk over the sampled distribution D(x, y|s = 1), we will write

ED[`(f(x), y)|s = 1] :=
∑

x,y∈D
`(f(x, y))p(x, y|s = 1).

The risk minimizer of ` on D is defined to be f∗ := argminfED`(f(x), y).

1.1.1 Problem Statement

The following two conditions characterize the setting under study:

1. x and s are conditionally independent given y = 0.1

2. For any x, p(s = 1|x, y = 1) ≥ p(s = 1|x, y = 0).

The conditions defined above do not fit into the classes described in [15]. Customer
call in data provides an example where our assumptions reasonably may hold, but
stronger assumptions as in [15] certainly do not.

For example, we argue that although x is not independent of s given y,x is
conditionally independent of s given y = 0. When a customer contacts a call center,
there are multiple scenarios that may have caused the interaction. For example, the
customer may have a question about their bill or they may be calling to troubleshoot
their WiFi. When the features x are specifically related to the service measured by
y, if we know that the customer has no problem with their WiFi service (y = 0) then
x has no bearing on whether the customer calls. On the other hand, given a set of
features x, a customer who calls is more likely to be experiencing problems than one
who does not call. Thus y = 1 is not independent of s given x.

Our second assumption says that customers with a problem (y = 1) are more
likely to call than customers without a problem (y = 0) regardless of the value of x.
This assumption is intuitive and is not unique to the call center use case. For example,
we might study surveys where y represents whether the participant intends to vote
for a particular candidate, s represents whether the participant sends back their

1We note that this case does not necessitate that s and x are also conditionally independent
given y = 1.
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response, and x represents the demographics of the participant. At the discretion
of the researcher, it may be reasonable to assume that a participant is more likely
to respond to the survey if they intend to vote for the candidate. This amounts to
making our second assumption.

Under these conditions, we will prove an upper bound on the generalization
of the optimal classifier fs trained on the call-in data, using characteristics of the
sampling distribution and the optimal classifier f∗ on the full distribution. Thus,
even without adjusting the training data (as in [15]), we are able to train a classifier
on the biased data which generalizes to the full distribution, and we characterize the
penalty paid using the empirical risk for the biased data. We also provide further
sufficient conditions under which fs minimizes the risk on the full distribution.

1.2 Related Work

1.2.1 Sampling Bias and Label Noise

Theoretical approaches in modern machine learning to correct sampling bias stem from
the study of cost-sensitive learning (e.g., [7, 16]). As discussed in the introduction,
[15] originally identified sufficient conditions under which learning can occur under
sampling bias using theoretical methods, which is a strong influence on this work. In
particular, the sample weighting approaches identified in [15] have been extended to
other fields such as the study of covariate shift [14], where they weight training set
examples to mirror the testing set.

Our work builds on the literature by choosing a model for the sampling bias
which is motivated by the call center use case. Given this model, we demonstrate that
biased data is sufficient for training purposes in a practical setting. The techniques
used to investigate the optimal classifier are reminiscent of the label noise literature,
particularly [12, 8, 9, 12]. These studies typically compare the risk minimizer on the
noise distribution to the risk minimizer on the true distribution. In our case, we are
looking at the risk minimizer on the sampled distribution and compare it to the true
distribution.

1.2.2 Connection to PU Learning

The underlying assumptions in our approach are similar to results found in PU
Learning (for a review, see [2]). In PU Learning, the data contains only positive and
unlabeled examples. In [6], they assume that the labeled data is “selected completely
at random" (SCAR), where a subset of the positive class is labeled (s = 1) uniformly
at random. They assume that s and x are conditionally independent given y and
moreover that p(s = 1|x, y = 0) = 0.

The SCAR assumptions are strictly stronger than our assumptions. Note that
when p(s = 1|x, y = 0) = 0 then trivially we have p(s = 1|x, y = 1) ≥ p(s = 1|x, y =
0). This illustrates a connection between the two problems and more generally the
connection between PU Learning and supervised learning with sampling bias. PU
learning can be employed in the call center use case if we ignore negative labels. For
example, [3, 10] weight individual samples where [4, 5] identify special convex and
non-convex loss functions for PU Learning. However, we prove that the addition of
negatively labeled samples simplifies the training procedure in practice as opposed
to PU Learning approaches. Without introducing bias through choosing a sampling
scheme, Lemma 2.2 allows the practitioner not only to use a smaller sample but to
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train via typical supervised learning and loss functions. Thus she also avoids crafting
sampling weights which may add additional sources of error during training.

2. Risk Minimization Under Asymmetric Bias

2.1 Technical Lemmas

We first present two technical lemmas. We must make the following assumptions:

Assumption 2.1. Assume x and s are conditionally independent given y = 0.

Assumption 2.2. For any x, p(s = 1|x, y = 1) ≥ p(s = 1|x, y = 0).

Lemma 2.1. Under Assumptions 2.1 and 2.2, for all x

p(s = 1|x) ≥ p(s = 1|y = 0) (1)

and
p(y = 1|x, s = 1) ≥ p(y = 1|x). (2)

Proof. We have

p(s = 1|x) = p(s = 1|x, y = 0)p(y = 0|x) + p(s = 1|x, y = 1)p(y = 1|x)

= p(s = 1|y = 0)p(y = 0|x) + p(s = 1|x, y = 1)p(y = 1|x)

≥ p(s = 1|y = 0)p(y = 0|x) + p(s = 1|y = 0)p(y = 1|x)

= p(s = 1|y = 0).

We use Assumption 2.1 in the second equality and Assumption 2.2 in the inequality
in line 3. Furthermore, since p(s = 1|x) ≥ p(s = 1|y = 0), we can apply Bayes law
to deduce

p(y = 1|s = 1,x) = 1− p(y = 0|x, s = 1)

= 1− p(s = 1|x, y = 0)p(y = 0|x)

p(s = 1|x)

= 1− p(s = 1|y = 0)p(y = 0|x)

p(s = 1|x)

≥ 1− p(y = 0|x)

= p(y = 1|x).

Next we will prove that minimizing the loss on the sampled data set corresponds to
minimizing the loss on the true data set up to a penalty depending on the underlying
distribution.

Lemma 2.2. Let ` be a nonnegative loss function and h a classification function.
Denote by α the constant p(y=0)p(s=1)

p(y=0,s=1) . Under Assumptions 2.1 and 2.2 we have

αEx,y∼D[`(h(x), y)|s = 1] ≥ Ex,y∼D`(h(x), y).
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Proof. When y = 0, we use Assumption 2.1 to compute

p(x, y = 0|s = 1) = p(x|y = 0, s = 1)p(y = 0|s = 1) (3)
= p(x|y = 0)p(y = 0|s = 1)

=
1

α
p(x, y = 0). (4)

When y = 1, we apply inequalities (1) and (2) to yield

p(x, y = 1|s = 1) = p(y|x, s = 1)p(x|s = 1)

≥ p(y = 1|x)p(x|s = 1)

= p(y = 1|x)p(x)
p(s = 1|x)

p(s = 1)

≥ p(y = 1|x)p(x)
p(s = 1|y = 0)

p(s = 1)

=
1

α
p(x, y = 1). (5)

By combining (4) and (5),

p(x, y|s = 1) ≥ 1

α
p(x, y).

Now we can bound the true loss

αEx,y∼D[`(h(x), y)|s = 1] = α
∑
x,y

`(h(x), y)p(x, y|s = 1)

≥
∑
x,y

`(h(x), y)p(x, y)

= Ex,y∼D`(h(x), y).

By averaging over x in (1) we can see that α ≥ 1. Thus we can only expect a
larger discrepancy between Ex,y∼D[`(h(x), y)|s = 1] and Ex,y∼D`(h(x), y) when y
and s are dependent.

Corollary 2.2.1. Let ` be a nonnegative loss function. Suppose D(x, y|s = 1)
is separable with respect to `, so that there exists a classification function h with
Ex,y∼D[`(h(x), y)|s = 1] = 0. Then h also separates D(x, y) so that

Ex,y∼D[`(h(x), y)] = 0.

Proof. Follows immediately by plugging the optimal h into the bound from Lemma
2.2.

Lemma 2.2 and Corollary 2.2.1 demonstrate that a model which is trained on
the biased data will also generalize to the full distribution, albeit with a penalty of α
on the loss. In the case when the distributions are separable, this penalty vanishes
and the optimal classifier is the same for the biased and unbiased data. However
even when the distribution is not separable, we would like some guarantee that the
optimal classifiers on the biased and unbiased data are not too different. That is the
subject of the next section.
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2.2 Upper Bound on the Optimal Classifier of the Sampled Distribution

Let f∗ denote the risk minimizer of ` for D, and fs the risk minimizer of ` for
D(x, y|s = 1). Our goal is to show under what conditions f s has risk bounded above
by the risk of f∗ on the full distribution D.

Theorem 2.3. Let ` be a bounded, nonnegative loss function and f∗, fs the risk
minimizers for D(x, y) and D(x, y|s = 1) respectively. Then under Assumptions 2.1
and 2.2, the following generalization bound holds:

Ex,y[`(f
s(x), y)] ≤ Ex,y[`(f

∗(x), y)]

+
p(y = 1)

p(s = 1)
Ex

[
`(f∗(x), 1)

(
p(s = 1|x, y = 1)− p(s = 1|y = 0)

)∣∣∣∣y = 1

]
.

Proof. First, we will work to calculate an upper bound for Ex,y[`(f
∗(x), y))|s = 1].

In particular,

Ex,y[`(f
∗(x), y))|s = 1] =

∑
x,y

`(f∗(x), y)p(x, y|s = 1)

=
∑
x

`(f∗(x), 0)p(x, y = 0|s = 1) + `(f∗(x), 1)p(x, y = 1|s = 1).

(6)

For the first term we use Assumption 2.1 to compute

p(x, y = 0|s = 1) =
1

α
p(x, y = 0) (7)

as in equations (3) through (4). We next bound the second term of (6). We add and
subtract

∑
x

1
α`(f

∗(x), 1)p(x, y = 1) to (6), yielding

Ex,y[`(f
∗(x), y))|s = 1]

=
1

α

∑
x,y

`(f∗(x), y)p(x, y)

+
∑
x

`(f∗(x), 1)

(
p(x, y = 1|s = 1)− 1

α
p(x, y = 1)

)
. (8)

The first term is 1
αEx,y[`(f

∗(x), y)]. We define

Γ(x) := p(x, y = 1|s = 1)− 1

α
p(x, y = 1)

=
p(x, y = 1)

p(s = 1)

(
p(s = 1|y = 1,x)− p(s = 1|y = 0)

)
. (9)

Rearranging some terms, we have

∑
x

`(f∗(x), y)Γ(x)

=
p(y = 1)

p(s = 1)
Ex

[
`(f∗(x), 1)

(
p(s = 1|x, y = 1)− p(s = 1|y = 0)

)∣∣∣∣y = 1

]
. (10)
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Now, we may apply Lemma 2.2 to (8) and deduce the inequality

Ex,y[`(f
s(x), 1)] ≤ αEx,y[`(f

s(x), y)|s = 1]

≤ αEx,y[`(f
∗(x), y)|s = 1]

≤ Ex,y[`(f
∗(x), y)]

+
p(y = 1)

p(s = 1)
Ex

[
`(f∗(x), 1)

(
p(s = 1|x, y = 1)− p(s = 1|y = 0)

)∣∣∣∣y = 1

]
. (11)

This theorem provides an oracle bound in the case of biased data. The bound
is not feasible to compute in practice, as it expects knowledge of both f∗ and the
full distribution. We see that the bound is controlled by the differences between
p(s = 1|x, y = 1) and p(s = 1|y = 0) and we have equality if they are equal for all x.
This demonstrates that models trained on the biased sample will generalize to the
full distribution if the bias is not too strong.

Now we present a corollary where we further simplify the bound (in a special
case) to make it more interpretable and to deduce insight about the bias’ impact.

Corollary 2.3.1. Let ` be the 0− 1 loss. Under the assumptions of Theorem 2.3,
we have the following bound:

Ex,y[`(f
s(x), y)] ≤ Ex,y[`(f

∗(x), y)]

+
p(y = 1)

p(s = 1)

(
p(f∗(x) = 0|y = 1)

(
p(s = 1|y = 1)− p(s = 1|y = 0)

)
+ Cov

[
f∗(x) = 0, p(s = 1|y = 1,x)

∣∣∣∣y = 1

])
.

Proof. Picking up from (11), we employ the identify on expectations,

E[XY ] = E[X]E[Y ]− Cov(X,Y )

to calculate

Ex

[
`(f∗(x), 1)

(
p(s = 1|x, y = 1)− p(s = 1|y = 0)

)∣∣∣∣y = 1

]
=Ex

[
`(f∗(x), 1)

∣∣∣∣y = 1

]
Ex

[
(p(s = 1|x, y = 1)− p(s = 1|y = 0)

)∣∣∣∣y = 1

]
+ Cov

[
`(f∗(x), 1), p(s = 1|x, y = 1)

∣∣∣∣y = 1

]
: = A+B. (12)

Notice by definition of the 0 − 1 loss, `(f∗(x), 1) := 1f∗(x)=0, and so we may
simplify A by calculating the expectations:

A = Ex

[
1f∗(x)=0

∣∣∣∣y = 1

]
(p(s = 1|y = 1)− p(s = 1|y = 0))

= p(f∗(x) = 0|y = 1) (p(s = 1|y = 1)− p(s = 1|y = 0)) . (13)

Similarly, the covariance term is equivalent to

B = Cov

[
f∗(x) = 0, p(s = 1|y = 1,x)

∣∣∣∣y = 1

]
. (14)
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In this case, we can see a clear connection between the underlying problem and the
guarantee on training. From the corollary, we can see there are three conditions that
must be met in order for training on the sampled data set to generalize well. First,
the covariance between f∗ and p(s = 1|x, y = 1) should be small. This is interesting
because f∗ depends on p(x, y) and not s; however, we expect s to also depend on
p(x, y). The degree in which these two relationships are similar can hinder the training
of fs. Next, either p(f∗(x) = 0|y = 1) ≈ 0 or p(s = 1|y = 1) ≈ p(s = 1|y = 0) for
generalization fs. The first case can occur when the problem is nearly separable, but
the latter case depends solely on the sampling process s.

2.2.1 Sufficient Conditions for Equality of f and f∗

Theorem 2.3 gives an upper bound on the risk, but under further assumptions we
can show that fs has equal risk to f∗ on the full distribution D. We will identify a
family of distributions with a parameter t where equality holds, and use this family
to generate numerical examples in the next section. This will show that for the 0-1
loss, the optimal classifier on the biased data is also optimal for the full distribution.
We will need the following assumptions:

Assumption 2.3. For all pairs x,x′, p(y = 1|x) ≤ p(y = 1|x′) implies p(s = 1|x) ≤
p(s = 1|x′).

Assumption 2.4. There exists an x such that p(s = 1|x) = p(s = 1|y = 0).

Assumption 2.3 is a stronger version of Assumption 2.2. It says that when x is
more indicative of a problem then it is more indicative of a call. Assumption 2.4 is a
technical assumption needed for the proof.

Lemma 2.4. Under Assumptions 2.1, 2.3, and 2.4 there exists a t ∈ R such that for
all x, p(y = 1|x) ≤ t implies p(s = 1|x) = p(s = 1|y = 0) and p(y = 1|x, s = 1) =
p(y = 1|x).

Proof. The value p(s = 1|y = 0) acts as the base sampling rate for our data. We
denote it by the constant η. Define X to be the set

X := {x|p(s = 1|x) = η}

and define
t := sup

x∈X
p(y = 1|x).

By Assumption, 2.4 X is nonempty, so t is well defined.
Now, we claim that t has the required properties. First, assume that x satisfies

p(y = 1|x) ≤ t. Then, by the definition of t, there exists x′ ∈ X such that p(y = 1|x) ≤
p(y = 1|x′). Applying our assumptions implies that p(s = 1|x) ≤ p(s = 1|x′) = η.
By Lemma 2.1, p(s = 1|x) ≥ η, so we must actually have p(s = 1|x) = η. We can
compute

p(y = 1|x, s = 1) = 1− ηp(y = 0|x)

p(s = 1|x)

= 1− ηp(y = 0|x)

η

= p(y = 1|x)

which completes the proof.
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Theorem 2.5. Let t be defined as in Lemma 2.4. Under the assumptions of Lemma
2.4, if t ≥ 1/2 then

ED`0,1(fs(x), y) = ED`0,1(f∗(x), y).

Proof. We consider the set S = {x : fs(x) 6= f∗(x)}. We will show S = ∅. First,
due to Lemma 2.1, p(y = 1|x, s = 1) ≥ p(y = 1|x). Thus, the only instances in
S must be when fs(x) = 1 and f∗(x) = 0. This implies any x ∈ S would satisfy
p(y = 1|x, s = 1) ≥ 1/2 while p(y = 1|x) < 1/2 due to the definition of the Bayes
optimal classifier. However, p(y = 1|x) < 1/2 ≤ t, so p(y = 1|x, s = 1) = p(y = 1|x).
Therefore, f∗(x) = fs(x) for all such x, implying S = ∅.

We can extend this theorem by applying the theory of classification-calibrated
losses ([1, 11, 13, 17]). Under suitable conditions these losses have minimizers that
also exhibit low risk in the 0-1 loss. In particular, the hinge loss has an analytical
solution which is equivalent to the Bayes classifier when p(y = 1|x) 6= 1

2 . This implies
the corollary:

Corollary 2.5.1. Under the assumptions of Theorem 2.5, it follows that

ED`Hinge(fs(x), y) = ED`Hinge(f∗(x), y).

3. Numerical Experiments

In this section, we provide an experimental validation of the upper bound derived in
Theorem 2.3 and investigate the relation of the optimal classifiers fs and f∗ defined
on the sampled and full distribution respectively. We use the construction outlined in
Theorem 2.5 to define a family of examples defined by a parameter t ∈ (0, 1) where
we expect the risk defined by f∗ and fs to be equal when t ≥ 1/2.

We generate data satisfying Assumptions 2.1 and 2.2. Inspired by [9], we sample
x ∼ U(−1, 1)20 ⊂ R20 and define p(y = 1|x) = 1

2

(
x·w

maxx x·w + 1
)
∈ [0, 1] where

w := [1/210,−1/410] = [1/2, . . . , 1/2,−1/4, . . . ,−1/4] ∈ R20

and the notation 10 indicates repeating and · the inner product. We fix t, α > 0 then
define p(s = 1|x, y) = α + max({0, p(y = 1|x) − t}) when y = 1 and α otherwise.
Marginalizing over y gives p(s = 1|x) = α+ p(y = 1|x) max({0, p(y = 1|x)− t}). By
construction, the data is not separable and the Bayes risk is nonzero. In Figure 1,
we have provided a plot of p(y = 1|x) and p(y = 1|x, s = 1) to show the bias that
arises during sampling.

For our experiments, we trained a classifier f on the biased distribution and
evaluated on the full distribution. We also calculated the optimal loss values for
both the biased and full distributions, along with the upper bound from Theorem
2.3. The results of the experiment may be viewed in Table 1. We let α = .2 and
trained on an equal sized sample (n ≈ 20000) for the biased and true distribution.
The held out test set for each experiment was sampled from the true distribution
with n = 20000. As expected, the bound in Theorem 2.3 holds for all values of t
tested. Additionally, as t gets larger we can see f, fs, and f∗ converging to the same
loss values. As we expect from Theorem 2.5, we see for t ≥ 1/2 that the loss values
for the optimal classifiers trained on the biased and unbiased data are approximately
equal.
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Figure 1: This plot compares the distributions of y from the sample to the full
distribution. Here we sample x ∼ U(−1, 1)20 and then plot a histogram corresponding
to the calculated probability distribution. In this plot, t = .3 was used for all
calculations. We can see that the sampled distribution of y differs significantly from
the full distribution.

t Hinge (Upper Bound) Hinge (f∗ ) Hinge (f s) Hinge (f) Log Loss (Upper Bound) Log Loss (f∗) Log Loss (fs) Log Loss (f)

0.0 1.12 0.80 0.95 0.99 1.39 0.66 0.82 0.79
0.2 1.07 0.80 0.88 0.99 1.37 0.66 0.75 0.73
0.4 0.88 0.80 0.80 0.81 1.25 0.66 0.68 0.68
0.6 0.80 0.80 0.80 0.80 1.05 0.66 0.66 0.66
0.8 0.80 0.80 0.80 0.80 1.00 0.66 0.66 0.66

Table 1: Comparison of the loss values of f∗, fs and f trained on sampled data
for different t and the theoretical bound on the full distribution (denoted "Upper
Bound" in the table). One can see that not only that f is close to the performance
of f∗, but the upper bound from Theorem 2.3 holds as well.

4. Discussion

While most machine learning methods assume that the training and test sets are
sampled from the same distribution, this assumption is often violated in practice.
Motivated by data collected from call centers, we identify sufficient conditions for
learning from biased data. Our analysis extends to all the common loss functions
and distributions used in classification and regression tasks. Somewhat surprisingly,
our analysis shows that in this case no adjustments need to be made to the biased
data for models to generalize; however, depending on the underlying bias, one may
not achieve the minimal risk on the full distribution. This is in contrast to Theorem
1 in [15] where weights must be obtained for each example, likely by training a
second model. Our experiments validate our findings and demonstrate that learning
is possible even when the training and test distributions are far from equal.

However we do pay a penalty for having biased data, as shown in the formula for
the upper bound. The terms have intuitive interpretations as a measurement of the
dependence between the events y = 0 and s = 1 and the performance of the optimal
classifier f∗ on the full distribution. Thus, as expected, it is never an advantage to
train with biased data. In Theorem 2.3 the best case occurs when the events y = 0
and s = 1 are independent, which coincides with the standard conditions for machine
learning.
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4.1 Application to Surveys

Our approach can be applicable to other settings. For example, consider models
to predict voter turnout based off of text message surveys sent to party members
obtained through voter registration data. Let y indicate whether they plan to vote
and x represent geographic and demographic factors. In this case, s is a measure of
engagement separate from x (i.e. they responded to the text message survey). In
this setting, p(y = 1|x) can be interpreted as the citizen’s enthusiasm about voting.
The goal is to accurately identify p(y = 1|x), but your only measurement of y is
through a response s = 1. It is reasonable to assume that if they do not plan to
vote (y = 0), then their demographics have no effect on their likelihood to respond
s = 1, hence x and s are conditionally independent given y = 0. Moreover, it is
reasonable to believe that voters are more likely to respond than non-voters. Thus,
the conditions of Theorem 2.3 hold in this case.
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