
Detecting changes in self-exciting Point Processes through trend reversal

Anuja Das* Moinak Bhaduri†

Abstract
Point processes, often of the Poisson type, offer a framework to model random events evolving in

continuous time, and the self-exciting subclass tackles cases where the occurrence of one inflates or
deflates the occurrence probability of another in an immediate neighbourhood. Examples include
an earthquake and its aftershocks, a sequence of landslides, a tweet and its re-tweets, and several
others. There exist combinations of underlying intensities, especially close similarities between the
pre- and post-change flow that make the detection and estimation of changes in the first or second
generation sub-process quite hard. Through extensive simulations and real applications, this work
examines how a newly developed statistic, formed through switching the usual flow of time, aids
the detection exercise. Improvements over established competitors have been quantified, optimal
intensity classes have been characterized, and generalizations have been described.

Key Words: point processes, self-exciting process, Hawkes process, trend permutation, change-
point detection

1. Introduction

Point processes throng the modelling of random tessellations at a pace both unprecedented
and justified. Such patterns evolve over time, space, their combinations, or more compli-
cated topologies, and frequently signal complex dependencies. Instances cover the times at
which COVID-19 patients arrive at a health clinic, the distribution of stars in our galaxy, and
several others in between. In stark contrast to simpler alternatives like the homogeneous
Poisson process, where the numbers of shocks over disjoint compact supports are assumed
to be independent a priori, of interest in this work is a specific subclass termed Hawkes
processes, through which those numbers are allowed to be connected, enabling both realis-
tic modelling and a firmer understanding of the observed trajectory. The following section
offers the necessary grasp of certain stochastic structures.

Change point detection, on the other hand, remains an exercise of intrigue confronting
modern statistical inference, where one questions whether a stable arrival flow has deviated
somehow, and estimates any point of departure, objectively and precisely. Mathematical
tractability often compels uncomplicated constructs - change estimations only in means, or
variances, for instance. This brief communication is poised to scrutinize the applicability
of certain techniques proffered by the second author (in the context of deterministic Pois-
soninan intensities) in conditions when the driving intensity is dictated by the data, and
thus, is random.

Section 2 surveys the relevant literature and organises some mathematical conventions,
the next reports simulation-based findings that illustrate how the proposed technique tri-
umphs over its established competitors, and section 4 implements the analyses on data sets
of varied flavours and intricacies.
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2. Theory and methods

2.1 Hawkes process

A continuous time stochastic process {N(t)}t≥0 is routinely deployed to model a bunch of
ordered arrival points t1 < t2 < ... < tn < ... representing the global occurrence times of
some random phenomenon of interest. {N(t)}t≥0 is also referred to as a counting process
with the understanding thatN(t) at a given time t, will count the number of observations in
(0, t]. Please notice the (almost sure) strict ordering in the arrival times, ensuring a simple
point process, the type we are examining now, as opposed to an explosive one. Additionally,
a function λ(.), termed the intensity, given through

λ(t) = lim
h→0

P{N(t, t+ h] ≥ 1}
h

, t ≥ 0, (1)

is taken to exist, quantifying the instantaneous probability of observing at least one shock.
A λ(.) free of time leads to a stationary point process. An increasing λ(.) leads to a dete-
riorating process (where shocks occur more and more frequently as time goes on), while a
decreasing λ(.) implies an improving sequence (with shocks happening less and less fre-
quently). Regularity conditions on λ(.) lead to the independent increment property and
ultimately, to a Poisson process, i.e., when N(t) ∼ Pois(

∫ t
0 λ(x)dx), with probability cal-

culations done through

P [N(t) = n] = exp(−
∫ t

0
λ(x)dx)

{
∫ t
0 λ(x)dx}n

n!
, n = 0, 1, 2, 3.... (2)

A detailed description can be had from Rigdon and Basu [11], for instance. Our change
point detection proposals, elaborated in Bhaduri (2018) [3] survey processes of the above
kind, with purely deterministic choices of λ(.). Such a choice, however, assumes the (con-
ditional) intensity is independent of the history - a condition relaxed through a stochastic
choice of λ(.). A random, data-dependent intensity enables one event to influence another
following, an apt requirement to model such events like earthquakes where one major shock
inflates the occurrence probabilities of several aftershocks over a close neighbourhood. We
opt for

λY (t) = λ0(t) +

N(t)∑
i=1+max(0,N(t)−r)

ω(t− ti). (3)

This choice leads to a Hawkes process (Hawkes (1971) [12]) where the intensity is com-
posed of one (typically) data independent baseline λ0(.), modelling the rate of occurrence
of the “major” events, and a data-dependent memory kernel ω(.), modeling how much of
an influence one shock has on the “minor” aftershocks to follow. Hawkes (1971) [12] chose
the exponential memory of the form ω(u) := α exp(−βu), where β > 0 controls the rate
of “forgetting the past”. We stick to the exponential choice with α < β to ensure stability.
Hawkes processes of this type have been used to analyse the arrival times of spam emails
(Prince and Heard (2020) [14]), modelling intensity bursts in financial data sets [15], and
various others.

Time independent choices of λ0(.) and ω(.) lead to a stationary Hawkes process. For
our analyses, to create a non-stationary version, we have corrupted both the baseline inten-
sity and the memory kernel in our simulation studies (section 3 below) at pre-determined
locations and measured the performance of our proposals against established competitors.
Figure 1 demonstrates the differences between the environments implied by deterministic
and stochastic intensities. A prominent jump in the deterministic step intensity from 1 to
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Figure 1: Data reaction to changes under deterministic (left panel) and random (right panel)
intensities

4 at t = 100 leads to an obvious heavier crowding on the arrival times while changes (in
the baseline λ0(t) from 1 to 2 at t = 50 and in the memory kernel ω(t) from 0.8 to 2.8 at
t = 75) in the stochastic intensity lead to less discernible changes in the data leading to a
more complex change detection exercise.

2.2 Change detection

2.2.1 Known tools

For a thorough discussion on change detection in a longitudinal context, we direct interested
readers to some of our previous work: Bhaduri (2018) [3], Zhan et al. (2019), [18], Bhaduri
and Ho (2018) [8],Bhaduri and Zhan (2018) [7], Ho and Bhaduri (2017) [5], Bhaduri, Zhan
and Chiu (2017) [9], Bhaduri et al. (2017) [10], Ho et al. (2016) [4], Ho and Bhaduri
(2015) [17], Tan, Bhaduri, and Ho (2014) [16]. These articles elaborate on the batch and
sequential detection scenarios and each one of the CPM-based options to follow. For our
current short communication, we briefly touch upon Hawkins et al. (2003)’s [13] general
approach. Given a bunch of discrete-time variables Xis, change-locations τis may update
the underlying probability distributions as:

Xi ∼


F0 if i ≤ τ1
F1 if τ1 < i ≤ τ2
F2 if τ2 < i ≤ τ3
...

A detection problem, therefore, comprises of choosing one of

H0 : Xi ∼ F0(x; θ0), i = 1, 2, .., n (4)

H1 : Xi ∼
{
F0(x; θ0), i = 1, 2, ..., k
F1(x; θ1), i = k + 1, k + 2, ..n

(5)
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Table 1: Choices for the two-sample Dk,n statistics under the CPM framework (Hawkins
et al. (2003))

Competitor Construction Choice

CPM-Exp (Ross (2014)) Mk,n = −2log(L0
L1

) Dk,n = Mk,n

CPM-Adjusted Exp (Ross (2014)) Mc
k,n =

Mk,n
E(Mk,n)

Dk,n = Mc
k,n

CPM-Mann-Whitney (Hawkins, Deng (2010)) Uk,n =
∑k

i=1

∑n

j=k+1
sgn(Xi −Xj) Dk,n = Uk,n (scaled)

CPM-Mood (Ross et al. (2011)) M =
∑

Xi
((
∑n

i6=j I(Xi ≥ Xj))− n+1
2

)2 Dn = M (standardized)
CPM-Lepage (Ross et al. (2011)) L = U2 +M2 Dn = L

CPM-Kolmogorov-Smirnov (Ross, Adams (2012)) Mk,n = supx|F̂S1(x)− F̂S2(x)| Dk,n = Mk,n

CPM-Cramer-von-Mises (Ross, Adams (2012)) Mk,n =
∫∞
−∞ |F̂S1 − F̂S2 |dFt(x) Dk,n = Mk,n

Table 2: Other parametric options based on likelihood ratio tests, energy divergence, and
trend tests

Competitor Working

E-divergence (Matteson, James (2013, 2014)) D(X,Y ;α) =
∫
Rd
|φX(t)− φY (t)|2( 2πd/2Γ(1−α/2)

α2αΓ((d+α)/2)
|t|d+α)−1dt > C

Parametric (Chen, Gupta (2011)) Lk = −2log L0(λ̂)

L1(λ̂,
ˆ
λ
′
)
< C

Pettitt (Pettitt (1979)) KT = max1≤t≤T |
∑t

i=1

∑T

j=t+1
sgn(Xi −Xj)| > C

Buishand (Buishand (1982)) U = 1
n(n+1)

∑n−1

k=1
( Sk
Dx

)2, where Sk =
∑k

i=1
(Xi − X̄), Dx = sd(X)

With a given sample size n, some statistic Dk,n is constructed, that measures the “differ-
ence” between the pre- and post-chang blocks for an arbitrary choice of an initial change
estimate at k. These Dk,ns, in turn, lead to

Dk,n ⇒ Dn = max
k=2,3,..,n−1

Dk,n (6)

and a change is signaled through

φ(Dn) =

{
1 if Dn > hn
0 otherwise

(7)

where the threshold hn is estimated from the null-distribution of Dn, with the estimated
change location at

τ̂ = argmaxk=2,3,..,n−1Dk,n (8)

Different choices of Dk,n lead to different options, working well under different assump-
tions (changes, for instance, only in the mean or the variance structure, the trend, etc.).
Tables 1 and 2 lay them out while the references above provide details. While comparing
these options with our proposals below in a continuous time point process setting, we take
the X values as the inter-event times, which leads to a discrete time series.

2.2.2 Our proposal

Our approach (Bhaduri (2018) [3]) towards detecting changes offers an algorithm that can
operate on continuous time (i.e., the conversion to discrete-time Xs is not needed). Essen-
tially, a test involving a block of n neighbouring event times needs to be conducted. If this
test signals stationarity and if a similar test involving a block of n + 1 neighbouring event
times (the n-many from the previous stage and the immediate next) signals non-stationarity,
we estimate a change-point between the n-th and the n+ 1-th event times. More formally,
it runs thus:

• Set series of hypotheses: {H1, H2, ...Hm}, p-values: p1, p2, ...pm.
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Table 3: Test statistic proposals for multiple testing (Bhaduri (2018))
Proposal Critical regions Comments

Z = −2
∑n

i=1
log(ti/tn) Z ≤ χ2

1−α/2,2n−2 or Z ≥ χ2
α/2,2n−2 UMPU (Bain and Engelhardt (1991)) in power law

setting: λ(t) = β
θ

( t
θ
)β−1, t > 0

ZB = −2
∑n

i=1
log(1− ti/tn) ZB ≤ χ2

1−α/2,2n−2 or ZB ≥ χ2
α/2,2n−2 More powerful than Z in detecting increasing

step intensities (Ho (1993)). Under further analysis.
R := max(Z,ZB) R ≥ cαR Powerful under deterministic intensities (Bhaduri (2018)).
L := min(Z,ZB) L ≤ cαL Powerful under deterministic intensities (Bhaduri (2018)).

• Hi tests stationarity on the first i+ 1 events.

• Order the p-values: p(1) < p(2) < ... < p(m).

• Set Si := {k : p(k) <
k
mα}

•

τ̂i :=

{
min{k : p(k) <

k
mα}, Si 6= ∅

∞, Si = ∅

Once the earliest significant test (if any) is detected, the algorithm may be restarted with
the detected change point as the fresh time origin to discover subsequent changes, if any.
The technique is, therefore, free of the “at-most-one-change-point (AMOC)” assumption
under which several parametric proposals work. Declaring significance through ordered p-
values is done cautiously since performing multiple correlated tests is known to inflate the
type-I error probability. We follow the false discovery rate control suggested by Benjamini
and Hochberg (1995) [6]. The actual testing is done through an array of novel statistics
offered by Bhaduri (2018) [3]. Their definitions and crucial properties are summarized in
Table 3. A deteriorating sequence inflates the value of ZB and deflates the value of Z.
Randomized versions of the two through the maximum and the minimum signal general
non-stationarities (i.e., both improvement and deterioration) through significantly large or
small values. The critical thresholds cRα and cLα are summarized in Bhaduri (2018) [3].

3. Simulation studies

As a preliminary test to identify which one of the four statistics shown in Table 3 has the
highest classification accuracy, we have conducted a power study summarized in Figure
2 where the immigrant intensity λ0(.) was taken to be time-inhomogeneous and the only
change was brought through the offspring kernel ω(.). The pre- and post-change β values
are placed along the x and the y axes, while the power of each test, the estimated probability
of correctly identifying a non-stationary sequence as a non-stationary sequence, is plotted
along the z axis. The power surface appeals to intuition. Along the diagonal, when the pre-
and the post-change recollections are reasonably identical, detection gets tougher, leading
to lower power. In contrast, along the edges and the corners, when the difference is stark,
the power rises. We found there is no one statistic that shows the uniformly best power
(although the minimum based L test occupies a larger region) and about the diagonal, there
exists an asymmetry in the power surfaces.

Next, we investigated, through Figures 3 through 5, the closeness of the change points
estimated by our sequential proposals and their competitors to the true ones through a more
massive simulation study conducted with 104 runs. Each dot signifies a global time (plotted
along the vertical axis) of change detection, and under each setting, we have conducted tests
on both failure truncated (i.e., when we wait for a specified number of shocks, regardless
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Figure 2: Power study among Z,ZB, R, and L showing asymmetry

of the time it takes to wait that long) and time truncated (i.e., when we wait for a specified
time, regardless of the number of events seen by then) cases. Figure 3 shows the average
run length comparisons under the assumption of no change. The heaviest crowding is
observed towards the end of the process. This, owing to how non-detections are expressed
(please see the previous section), confirms that all our proposals and most of the rest pick
up stationarity adequately. The next scenario, graphed in Figure 4 shows the results under a
true change in the memory kernel’s β value from 3.8 to 0.8 at time 100 (shown through the
broken horizontal line), with the baseline intensity held constant. Most of our sequential
proposals, especially L and R generate estimations that crowd around this true change
point. Another observation is that quite a few of our competitors estimate a change point
prior to the true change - clearly a false alarm. The sequential proposals are largely free of
such a problem. Finally, in Figure 5, we bring about changes in both the baseline intensity
(from 1 to 2) at time point 50 (shown through the heavy broken horizontal line) and the
memory kernel (from 3.8 to 0.8) at time points 75 or 100 (shown through the fainter broken
horizontal line). Again, we find it is our sequential proposals that demonstrate the strongest
and clearest clustering around these two true change points without sounding too many
false alarms.

A natural question to ask at this stage is how will these estimators react to a large influx
of data? Asymptotic consistency of these types of estimators, as pointed out by Troung et
al. (2020) [19] can be examined through:

• i) P (|τ̂ | = K)

• ii) 1
T ||τ̂ − τ

∗||∞

where ||τ̂ − τ∗||∞ := max{maxt̂∈τ̂ mint∗∈τ∗ |t̂ − t∗|,maxt∗∈τ∗ mint̂∈τ̂ |t̂ − t∗|}, with
τ∗ representing the set of true change points, τ̂ representing the set of estimated change
points, and k representing the size of τ∗ (i.e., the true number of changes). A change
point algorithm is said to be asymptotically consistent if the first probability converges to
1 and the second norm converges to 0 as the terminal time of the process is pushed to∞.
The norm in (ii) represents the Hausdorff norm needed to quantify the “distance” between
two sets not necessarily of the same size. It isn’t hard to verify this distance penalizes
overestimation quite harshly.
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Figure 3: Change identification under stationarity: left panel - failure truncation, right
panel - time truncation

Figure 4: Change identification under β : 3.8 → 0.8: left panel - failure truncation, right
panel - time truncation

With our simulation cases, calculation of the long-run probabilities of the type (i) is
shown through Figure 6. We observe (especially in the time-truncated scenario) this asymp-
totic probability for most of our competitors drop fast (primarily due to their sounding too
many false alarms), while ours either hold steady or increase. This suggests with our se-
quential offerings, if one waits sufficiently long (either in terms of time or in terms of data),
the right number of change pints will be picked, i.e., one won’t over or underestimate with
a high chance.

4. Real data analyses

4.1 Financial announcements

The webpage at https://www.dailyfx.com/ keeps a record of financial announcements com-
ing out of forty one different countries. The announcements are classed into “low”, “medium”,
and “high” categories according to the impact they are likely to cause on the financial mar-
ket. Information on their actual clock times are also available. We have chosen to analyse
announcements coming out of the United States since the beginning of 2020. Figure 7
shows the change points guessed by our proposals.

We observe that detections are scaled with data volume. Understandably, the number
of estimated change points increase with a lowering of the impact category. It is crucial
to grasp, however, through the asymptotic consistency demonstrated through Figure 6, that
estimation is likely to represent a true change and not a false alarm.
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Figure 5: Change identification under λ0 : 1 → 2, β : 3.8 → 0.8: left panel - failure
truncation, right panel - time truncation

Figure 6: Checking asymptotic consistency with K = 2, left panel - failure truncation,
right panel - time truncation

4.2 Global terrorism

The Global Terrorism Database (GTD)TM is an unclassified collection of domestic and
international terror incidents that have occurred globally since 1970. The database records
a multitude of variables including the date, location, nature of the attack, and targeted
parties. There exists a lack of consensus regarding what formally constitutes terrorism; the
database, nonetheless, classes each attack into one of nine predefined categories. Examples
of these categories include armed assaults, bombing/ explosions, and assassinations. It is
crucial to note that the database also contains attacks that failed upon implementation but
does not include attacks where an attempt was never made. At the time of this writing, the
GTD consisted of 191,464 records ranging from January, 1970 to December, 2018. For the
purposes of our research, only records pertaining to the USA were used, and three of the
nine attack types were analysed. These were Armed Assaults, Bombing/ Explosion, and
Facility/ Infrastructure, comprising 272, 940, and 720 records, respectively. The estimated
change points from our proposals are graphed in Figure 8.

Moreover, the fifteen change point detection methods (the established eleven shown
through tables 1 and 2 and our proposals shown in table 3) are clustered in Figure 9 through
the proximities of their estimated change points. The Hausdorff metric described in section
3 has been used to implement the clustering. We find that in both categories of attacks,
there appear to be two distinct partitions, with our proposals being clustered together. Ad-
ditionally, the methods under infrastructure attacks are separated at a low height (around
20) compared to a higher height (around 60) for armed assaults. This confirms our findings
in Figure 8 where the methods agree and tend to overlap more often in the middle panel
than in the last.
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Figure 7: Change point detection, financial announcements data set
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Figure 8: Change point detection, global terrorism data set

A natural curiosity may lead one question the proximity values when different tech-
niques are applied to analyse armed assaults and infrastructure attacks. Figure 10 answers
that query. The colour gradient at the intersection of a row and a column indicates the
amount of discrepancy (measured again, through the Hausdorff metric) between change
point locations estimated through the “row” test applied on armed assaults and the “col-
umn” test applied on infrastructure attacks. Denser the colour, more different are the lo-
cations. Lighter the colour, more similar they are. The fact that these two specific attack
types progress roughly similarly appeals to intuition.

4.3 Tsunami

The National Centers for Environmental Information (NCEI) that sits under the National
Oceanic and Atmospheric Administration (NOAA) maintains a Global Historic Tsunami
Database with records dating back to 2,000 BC. Numerous variables describing each in-
cident are documented, including the date, location, primary magnitude, and focal depth.
Records have grown more thorough during the later years. Consequently, the database was
subset for the purpose of this analysis to only include tsunamis that occurred on or after
January 1, 1900. The original database consisted of 2,961 incidents which shrunk to 1,252
incidents after eliminating tsunamis that were observed prior to the 20th century. Fig 11
documents the estimated change points.

 
469



r

c
p
m

.m
o
o
d

c
p
m

.m
w

c
p
m

.c
v
m

c
p
m

.l
e
p
a
g
e

c
p
m

.k
s

c
p
m

.e
x
p
a
d
j

c
p
m

.e
x
p z

z
b

l

p
e
tt
it
t

e
d
iv

b
u
is

h

0
1
0

2
0

3
0

4
0

5
0

6
0

Cluster dendrogram for armed assaults

hclust (*, "complete")

haus_dist(arm)

H
e
ig

h
t

l

z

z
b

c
p
m

.e
x
p
a
d
j

c
p
m

.k
s

c
p
m

.m
w

c
p
m

.c
v
m

r

c
p
m

.m
o
o
d

c
p
m

.e
x
p

c
p
m

.l
e
p
a
g
e

p
a
ra

m

p
e
tt
it
t

b
u
is

h

0
5

1
0

1
5

2
0

Cluster dendrogram for infrastructure attacks

hclust (*, "complete")

haus_dist(infr)

H
e
ig

h
t

Figure 9: Clustering change point detection methods through Hausdorff distance

4.3.1 Bootstrapping

Through the armed assault example, we now proceed to describe a way of finding inter-
val estimates in addition to the point estimates shown through the vertical lines. Such an
exercise will quantify the volatility in our point guesses and aid us gauge the inherent uncer-
tainty. We use bootstrapping to accomplish such an end. Purely random bootstrap estimates
of the kind initially introduced by Efron (1971) [1], however, will not be applicable since
any underlying auto-correlation will be destroyed. Research into discrete-domain time se-
ries offers a remedy. Bootstrapping here is done in blocks of some ideal size and such
methods have been used by Ho and Bhaduri (2017) [5] and others to estimate standard er-
rors of certain statistics. In the current context, however, the presence of a continuous-time
point process necessitates a further modification. We follow Braun and Kulperger (1998)
[2]’s block resampling algorithm to generate point processes similar to the original one.
With an observed point pattern A, with terminal time T , the method runs thus:

• set an ideal number b of blocks.

• simulate U1, U2, ..., Ub uniforly and independently from (0, T − T
b ].

• for j = 1, 2, ..., b:

– define Aj := (Uj , Uj +
T
b ] ∩A

– define A∗j := Aj − Uj + (j−1)T
b

– define X∗j (.) := |A∗j ∩ .|

• the simulated point process X∗ is given by X∗ :=
∑b
i=1X

∗
j

Thus, points from b non-overlapping blocks of size T
b each are joined to create X∗, a point

process similar (in terms of properties, the number of shocks could be different) to the
original X , ensuring X∗ is a restriction on (0, T ].
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Figure 10: Change point detection similarities with (possibly) different tools applied on
different processes

The method works best with roughly stationary point processes. Still, for a visual
understanding, we choose the armed assault cases to replicate 100 resamples, each with
b = 15, apply our sequential testing approach with Z,ZB, R, L, along with the competi-
tors described in the previous section on each, and generate a bootstrapped change-point
distribution. For illustration purposes, we separately show the first three replications over
four runs in Figure 12. The black curve represents the observed process and the others
are simulated through the above algorithm. It is a reasonable expectation, confirmed for
instance, through the upper panel diagrams of Figure 12, that when the replicates are ex-
tremely similar to the original, the resulting change point estimates should also be close to
the ones from the actual. Table 4 reports the 95% bootstrapped intervals from each method.
We notice that the ones from our sequential proposals are consistently tighter than the rest,
while covering the most noticeable bend.

The bootstrapping approach outlined above is ideal in case we have dense unimodal
crowding of estimated change points. We note that in case of multimodal clustering, one
may adopt an approach motivated by the Bayesian highest posterior density credible sets
- finding out the narrowest interval that covers 95% of the estimated points as an estimate
of the most prominent change point and then applying a similar approach on 95% of the
remaining to estimate the next and so on.

5. Conclusions

Random tessellations are plentiful in natural and social sciences. Spatio-temporal mathe-
matical tools that narrate the evolution of earthquakes and hurricanes, often, with certain
variations, condense a friendship-network propagation over time quite effortlessly. Con-
ventional point processes of the stationary Poisson type frequently fall short to model such
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Figure 11: Change point detection, tsunami data set

Table 4: 95% bootstrapped intervals from different change-point options, bombing exam-
ple

Tool Interval
Z [153.694, 10066.385 ]
ZB [332.0148, 11622.5463]
R [441.3436, 11520.1330]
L [278.2487, 10375.6471]

CPM-Exp [300.0683, 15108.9024]
CPM-ExpAdj [313.1459, 15089.5402]

CPM-MW [221.695, 13925.299]
CPM-Mood [65.26729, 14764.16921]

CPM-Lepage [67.9426, 14205.0223]
CPM-KS [77.70617, 13770.44373]

CPM-CVM [78.35929, 14070.67880]
EDiv [3971.361, 14434.789]
Pettitt [2631.349, 8775.837]

Buishand [3650.69, 10076.39]
Parametric [359.6613, 17397.9730]

count patterns due to several reasons, primary among which is their inherent “without af-
tereffect” feature, which guarantees help from relevant history would be ignored. This
work studies more realistic Hawkes models where the occurrence probability of any shock
is influenced by its (potentially infinite) history. The underlying intensity process, in a
sense, is thus random in itself. Such a data-dependent intensity is known to generate a
branching process structure, where observations in the first generation come from some
deterministic intensity describing the ongoing exogenous (i.e., external) environment - the
arrivals, for instance, of COVID-19 patients from neighbouring countries, and those in the
second (offspring) generation come from some random intensity depicting the current en-
dogenous (i.e., internal) situation - the community spread for example, of the virus within
a given country. Detecting changes in these intensities remain crucial for incorporating
new measures or anticipating a larger influx of patients. This work popularizes a way of
estimating possible changes in both types of intensities through conducting a sequence of
hypothesis tests using variations of trend permutation statistics. Originally proposed by the
second author in the context of deterministic intensities, the technique, with minor mod-
ifications, is now demonstrated to work under more hostile stochastic processes, offering
reliable, distribution-free change-estimates without sounding too many false alarms, and
without restrictions of the “at most one change point” type. Comparisons with time series-
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Figure 12: Bootstrapping the armed assault point process, and subsequently, detecting
change-points, through R

 
473



based change detection methods document smaller estimation errors (viewed through Haus-
dorff distances), better inferential properties, including asymptotic consistency and tighter
bootstrapped estimation intervals. Real examples sampled from financial announcements,
global terrorism instances, and tsunami occurrences demonstrate their easy applicability
and graphic appeal. Model-based accurate forecasting tools are briefly described, with
data-dependent ones in the offing.
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