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Abstract 
This paper illustrates different information visualization techniques (data visualization) 
applied to a classical composers’ database. In particular we present composers network 
graphs, heat maps and multidimensional scaling maps (the latter two obtained from a 
composer distance matrix), composers’ classification maps using support-vector machine 
and K-Nearest Neighbors algorithms, and dendrograms. All visualization techniques have 
been developed using Python programming and libraries. The ultimate objective is to 
enhance basic music education and interest in classical music by presenting information 
quickly and clearly, taking advantage of the human visual system’s ability to see patterns 
and trends. 
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1. Introduction  
 
This paper illustrates different information visualization techniques (data visualization) 
applied to a classical composers’ database, The Classical Music Navigator, hereafter 
referred to as CMN, a website created by Charles H. Smith (2000), and available at 
http://people.wku.edu/charles.smith/music/. In particular we present composers network 
graphs, heat maps and multidimensional scaling maps (the latter two obtained from a 
composer distance matrix), composers’ classification maps using support-vector machine 
and K-Nearest Neighbors algorithms, and dendrograms. All visualization techniques have 
been developed using Python programming and libraries. The ultimate objective is to 
enhance basic music education and interest in classical music by presenting information 
quickly and clearly, taking advantage of the human visual system’s ability to see patterns 
and trends. 
 
Khulusi et al. (2020) have recently surveyed a large amount of the literature that focuses 
on the unique link between musicology and visualization by classifying 129 related works 
according to the visualized data types and analysing which visualization techniques were 
applied for certain research inquiries. The survey covers visualization of musical scores, 
visualization of musical sound, visualization of musical collections (including 
classification, recognition, annotation, and the retrieval of music), visualization of 
musicians (including composers and singers, but also instrument makers, etc.), their 
biographical information and similarities, and visualization of instruments (including how 
instruments operate).  The intersection of musicology and visualization brings a diversity 
of innovative applications designed for a variety of purposes. As Khulusi et al. (2020) 
explain, on the one hand, musicologists are served with interactive tools to analyze 
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musicological data, and on the other hand, applications are tailored for the broad public to 
communicate and to teach aspects of music in a more intuitive, playful manner.    
  
Smith (2000) created the CMN as a reference work and experiment in music education. To 
serve this music education objective, the CMN consists of five compilations of material: 
(1) an alphabetically-arranged, ‘Composers’ list containing basic data, major works, and 
influences of 500 individuals;  (2) a ‘Basic Library’ list of works culled from this composer 
list (and re-arranged by musical genre); (3) a ‘Geographical Roster’ in which the names of 
the 500 composers are listed under the names of the countries with which they were (/are) 
associated; (4) an alphabetically-arranged ‘Index of Forms and Styles’ listing the names of 
composers associated with each subject entry; and (5) a ‘Glossary,’ which defines terms 
used in the CMN.  One objective of the CMN website was, from the very onset linked, at 
least implicitly, to early efforts in music information retrieval (MIR).  For example, the 
CMN site explains that many introductions to the classical music world are in the business 
of inculcation through lists of ‘mandatory’ composers and compositions to explore. Yet, 
most people explore new subjects by starting with the familiar, and in the case of music, 
this may mean hearing a composer or a composition that one likes and then searching for 
more music of the same type. The site gives the following example: 
   

“Suppose you hear the Ravel G major piano concerto on the radio, and take an 
immediate liking to it. Our database will help you extend this interest to other 
music by making it possible for you to quickly identify: additional works by Ravel, 
other piano concerti, other works for piano in general, other concerti in general, 
composers allied to the same general period and style (Impressionism) as Ravel, 
other French composers, composers and styles that influenced Ravel, and 
composers influenced by Ravel.” 

 
Thus, the CMN anticipated the general idea of a recommender system that is now 
commonly and automatically implemented in Pandora, Spotify, Last.fm, YouTube and 
other music streaming platforms that have algorithms proposing what an auditor may want 
to listen next. These algorithms and their improvement are largely tributary to the field of 
MIR, which develops innovative content-, context- and user-based searching schemes, 
music recommendation systems, and novel interfaces to make the vast store of music 
available to all.1  
 
Perhaps one obstacle in the CMN original objective of music education is, at the onset, a 
lack of any supporting tools enhancing the human visual system’s ability to see pattern and 
trends. This paper explores some visual tools that can support the education mission of a 
music database such as the CMN (or any other music database for that matter). First, given 
the network of influences of composers assembled in the CMN, methods developed in 
network visualization (or standard graph theory) seem appropriate. Hence, Section 2 of the 
paper illustrates how to apply network visualization techniques to the CMN database.2  In 
Section 3 of the paper, we take on the challenge of detecting similarities across composers, 
an explicit objective of the CMN, and explain the methodology underlying the construction 
of composers’ similarity indices (based on a cosine similarity measure).  Even with a 
relatively small database of just 500 composers, this leads to 250,000 (500x500) bilateral 

                                                 
1 One of the earlier survey articles on MIR is Orio (2006). Schedl et al. (2014) provide a survey of 
more recent developments and applications.     
2 For papers that also present social networks in different ‘music worlds’, see Crossley et al. (2015). 
For a social network analysis of British composers from 1870, see McAndrew and Everett (2015).  
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indices of similarity.3 The sheer dimension of this information prevents easy reporting in 
an academic paper. But Section 3 shows how this information can be captured visually in 
one graph, using a heat map. Furthermore, this index of similarity is now accessible in the 
CMN website in the form of lists of 15 most similar composers to each subject composer.  
With open access to the composers’ similarity index, researchers may use it either in their 
own research, or as a benchmark for purposes of comparison to, say, similarity indices 
extracted from audio files, or with alternative data used in MIR research. In passing, this 
shows that context-based MIR (i.e., MIR based not on audio files but on more general 
information on composers including their ‘cultural’ context – and which underlies the CMN 
methodology and philosophy) – remains useful to capturing similarities across composers.4 
Section 4 pursues with Multidimensional Scaling (MDS), a technique that transforms the 
composers’ similarity/distance matrix (from Section 3) into visual (MDS) maps. It applies 
support-vector machine and K-Nearest Neighbors algorithms to classify composers into 
several classes. It also uses hierarchical clustering analysis to produce dendrograms of 
composers. The final section concludes and discusses issues related to music discovery, 
serendipity, semantic labeling of music and artificial intelligence in music. 

 
2. Composers’ visualization networks 

 
We begin with some definitions and terminology on networks taken from standard graph 
theory. We use the notations and some definitions from Jackson (2011). A network is 
represented as a graph on a set N of nodes (sometimes referred to as vertices), with a finite 
number of members n. A graph or network is a pair (N, g), where g is an n × n adjacency 
matrix on the set of nodes, where gi,j indicates the relationship between nodes i and j. Here 
I focus on cases where { }, 0,1i jg ∈ so that a relationship is either present (gi,j = 1) or absent 
(gi,j = 0).  A graph is undirected if g is required to be symmetric so that gi,j = gj,i, and is 
directed otherwise. Whether or not a network is directed or undirected depends on the 
application.  In the composer database where an influence from a composer i to a composer 
j exists then gi,j = 1, but if the influence is not reciprocal (j did not influence i) then gj,i = 0. 
The relationship between two nodes i and j, where gi,j = 1 is referred to as an edge (or 
sometimes link or tie) and in our case of directed network, a directed edge. 
 
A (directed) walk in a network (N, g) refers to a sequence of nodes, i1, i2, i3, . . . , iK−1, iK 
such that

1, 1
k ki ig

+
=  for each k from 1 to K. The length of the walk is the number of links 

in it, or K − 1.  A (directed) path in a network (N, g) is a walk in (N, g), i1, i2, i3, . . . , iK−1, 
iK, such that all the nodes are distinct. The geodesic distance between two nodes of a 
(directed) network is the length of a shortest (directed) path between them.   
 
The neighbors of a node i in a undirected network (N, g) are denoted 

{ }( ) , ( , ) ( , ) 1iN g j g i j g j i= = = .  The degree of a node i in the undirected network (N, 
g) is the number of neighbors that i has in the network, so that di(g) = Ni(g).  For directed 
networks we also introduce ‘in-degree’ and ‘out-degree’ definitions.  The out-degree of a 
node i is the number { }( ) , ( , ) 1out

id g j g i j= = , that is, the number of reported influences 

of i on all j. The ‘in-degree’ of a node i is the number { }( ) , ( , ) 1in
id g j g j i= = , that is, the 

                                                 
3 If we abstract away from computing the similarity of a composer with him/her-self, then we strictly 
have n*(n-1) = 500x499 = 249500 indices. 
4 For a recent text on audio/content-based MIR, see Müller (2015).  For a text that puts more 
emphasis on alternative ‘non-audio’/context-based MIR, see Knees and Schedl (2016).  
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number of reported influences of all j on i. We may possibly define the degree of i in the 
directed network as given by: ( ) ( ) ( )out in

i i id g d g d g= + .   
 
There are several algorithms that can be used to visualize a network through a pictorial 
representation of the nodes and edges of the network (N, g).  There can be very different 
layouts or representations of the network itself depending on the algorithms used.  As an 
illustration in Section 2, we use the ForceAtlas2 algorithm (Jacomy et al. (2014), a forced-
based layout whereby the algorithm modifies an initial (random) node placement by 
continuously moving the nodes according to a system of forces based on a metaphor of 
springs and electric charged particles. The ‘spring-electric’ layout uses the attraction 
formula of springs (between nodes connected with an edge) and the repulsion formula of 
electrically charged particles (between any nodes).  It uses the attraction force (or restoring 
force) formula of springs ( 1 2 1 2( , ) ( , )a aF i i k dist i i=  ): the more you stretch something, the 
harder it becomes to keep stretching.  Or as you stretch something out, there is a restoring 
force (of opposite sign) that you have to compete with.5  Thus, connected nodes with closer 
geometric distance dist() attract less (the restoring force is lower) than for more distant 
connected nodes.  It also uses the repulsion formula of electrically charged particles 
(electrons), 2

1 2 1 2( , ) ( ( , ))r rF i i k dist i i=  where dist() is the geometric distance between 
two nodes (charges) so that closer entities repulse more. Hence the spring-electric analogy 
suggests that closer entities/nodes attract less but repulse more. These forces create a 
movement that converges to a balanced state. 
 
The main difference between several force-based algorithms is in the actual value of the 
exponent associated with dist() in the attraction and repulsion (a, r) formulas (with a ‘-‘  
sign if dist is in the denominator). For example, the spring-layout analogy explained above 
is (a, r) = (1, -2), the Fruchterman and Rheingold algorithm is (2,-1) and the ForceAtlas2 
algorithm is (1, -1) where in this case the attraction force is the one given above, 6 while 

the degree-dependent repulsion force is given by: 1 2
1 2

1 2

( 1)( 1)
( , )

( , )
i i

r r

d d
F i i k

dist i i
+ +

= where di 

is the degree of a node i as explained above. Hence the repulsion force is proportional to 
the degrees (plus 1) of the two nodes. The ForceAtlas2 algorithm tends to increase the 
repulsion between highly connected nodes and to produce a lesser repulsion force between 
poorly connected nodes and highly connected ones, and an even lesser repulsion force 
between poorly connected nodes. This avoids the cluttering effect of some algorithms in 
which a forest of leaves (poorly connected nodes) surrounds the few highly connected 
nodes.7   
 

                                                 
5 The spring constant, ka, is associated with a negative sign if we are talking of the restoring force, 
because the restoring force is in the opposite direction to the extension.  If Fa is the force we apply, 
then the negative sign goes away.   
6  There is an alternative option (dissuade hubs) in ForceAtlas2 given by

11 2 1 2( , ) ( , ) ( 1)out
a a iF i i k dist i i d= +  whereby, if node i1 is an ‘hub’ (i.e., a node with a high out-

degree, i.e., many arrows or influences pointing to other nodes) then this option will tend to reduce 
the hub’s attraction toward other connected nodes (i2), pushing hubs towards the periphery while 
keeping ‘authorities’ (nodes with a high in-degree but low out-degree) in the center.   
7 The user can choose the value of kr which provides a scaling effect. The higher kr the larger the 
graph will be.     
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Figure 1 provides an illustration of the composers’ network. 8 A color code has been 
introduced so that nodes in blue represent composers from the Medieval and Renaissance 
periods; green represents Baroque; red is Classical; cyan is Romantic; and magenta 
represents composers of the 20th century. Of course, instead of the period, we can pick 
colors to illustrate other features of the composer such as, say, the country of origin. By 
displaying the number of influences of a composer (known as the out-degree as explained 
above) as the size of the nodes, the visualization also shows that there are a few nodes with 
a lot of influences.  These large nodes are known as ‘hubs’ – composers who have 
influenced many other composers in the network. To avoid cluttering, we only labelled the 
top-100 ranked composers. What is remarkable in Figure 1 is the accuracy of the 
composers’ localisation on the map where composers from the same period appear closer 
together reflecting a stronger intra period network of influences. To underline this fact, it 
is perhaps relevant to show in Figure 2 the little visual information we get with the 
Fruchterman-Rheingold algorithm which clutters all hubs in the centre of the graph and 
offers no hint of the existence of clusters by period.9   
 
It is sometimes said that these social network graphs all look similar.  However, Figures 1 
and 2 illustrate the importance of choosing the appropriate algorithm so as to provide useful 
visualization information to the user. This said, quantitative metrics remain essential to 
shed further information that would be quite difficult to extract from the initial CMN 
database of direct influences or even from the graph in Figure 1.10 The density of network 
is the ratio of actual edges in the network to all possible edges (an arrow between any two 
nodes).  Hence network density (a number between 0 and 1) gives a quick sense of how 
closely knit the network is. In our case, we have 500 nodes and 3724 edges, so that the 
composer network density is 0.0149.  Hence, this classical composer network is on the 
lower edge of the (0, 1) range, but still far from 0.  
 
Another structural metric of a network is the concept of triadic closure. It supposes that if 
two people know the same person, they are likely to know each other.  Adapted to the 
composer network, if composers j and k have been influenced by i, then perhaps k was also 
influenced by j (or j by k). Or if i and j have influenced k, then perhaps i has also influenced 
j (or j has influenced i).  One way of measuring triadic closure is through the concept of 
transitivity, the ratio of all existing triangles (between three composers) over all potential 
triangles. Thus, like density, transitivity expresses how interconnected a network is, and is 
represented by a number between 0 and 1. In our case, we obtain a value of 0.0537. Because 
the graph is not very dense, there are fewer potential triangles, which may result in a 
slightly higher number than the one obtained for density (0.0149).  A third structural 
measure of interest is the shortest path measurement which calculates the shortest possible 
series of nodes and edges that stand between any two nodes. In absence of direct influence 
of composer i on k, but if i has influenced j and j has influenced k, then the shortest path 
length between i and k is 2. A short-path of length 2 may lead to conjecture about whether 
                                                 
8 Figures 1 to 6 have been generated using the Python library NetworkX and dependencies. With 
the exception of Figure 2, all figures also use the ForceAtlas2 algorithm implemented for NetworkX 
by Bhargav Chippada (2017).   
9 This results from the fact that a-r (= 2) in ForceAtlas2 is less than a-r (= 3) in Fruchterman and 
Rheingold. Visual clusters denote structural densities (the ratio of actual edges on potential edges) 
when a-r is low, that is when the attraction force depends less on distance and when the repulsion 
force depends more on it. We introduce more formally the notion of a network density in the next 
paragraph. 
10 Ladd et al. (2017) discuss some of these metrics and explore in details how to compute them using 
Python NetworkX library.  
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or not an ‘indirect’ or residual musical influence of i exists on the music of k, which might 
be of interest to a musicologist.  We can obtain the shortest path metric for any two 
composers i and j in the database. For example, the shortest path between Lasso 
(Renaissance) and Debussy (transition from late romantic to early modern) is represented 
by the series of nodes: [' Lasso', ' Charpentier, M-A', ' Couperin, F', ' Debussy'] (path length 
= 3). The shortest path between Monteverdi (end of Renaissance, early Baroque) and Glass 
(20th century) is: [' Monteverdi', ' Schutz', ' Bach, JS', ' Debussy', ' Glass'] (path length = 4). 
The shortest path between Byrd (Renaissance) and Gorecki (20th century) is: [' Byrd', ' 
Purcell', ' Handel', ' Beethoven', ' Gorecki'] (path length = 4).  Interestingly, although we 
might expect shorter shortest paths among contemporaneous composers, this is not 
necessarily the case. For example, the shortest path between Elgar (born 1857) and 
Debussy (born 1862) is [' Elgar', ' Walton', ' Britten', ' Shostakovich', ' Gershwin', ' Ravel', 
' Debussy'] and the shortest path between Vaughan Williams (born 1872) and Debussy is 
[' Vaughan Williams', ' Holst', ' Britten', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'], 
in both cases a path length of six steps. Of course, in a directed network, we must also 
expect that no shortest path exist between composers born much later than Debussy and 
Debussy (even if Debussy has influenced the much younger composer).  In this case, we 
could more appropriately compute all direct and indirect influences (all shortest paths) of 
Debussy on any composer j. In appendix 1, we list all shortest paths between any 
composers i and Debussy. A path length of 1 is a direct influence on Debussy as recorded 
in the CMN.  Note that the longest shortest paths are 7 steps and there are four of them.  
Six degrees of separation, the idea that all people are six or fewer connections away from 
each other is therefore nearly fulfilled for Debussy.11        
 
Beyond some structural measures of the composers’ network, we can also discuss which 
nodes are the most important in the network through measures of centrality, in particular, 
degree, betweenness centrality and eigenvector centrality. ‘Degree’ is the most common 
way of finding important nodes.  Table 1 sorts composers by their out-degree. Recall that 
the out-degree of a node represents the number of composers the node (the subject 
composer) has influenced. It is thus a measure of how influential a composer has been in 
the history of classical music. Table 1 reports only the 20 most influential composers.  
Results in Table 1 are not surprising. We have one Baroque composer (JS Bach), three 
classical (Beethoven, WA Mozart, J Haydn), 10 Romantic (of which Wagner, Brahms, 
Liszt) and six modern (of which Stravinsky, Schoenberg and Bartok), all of them known 
to have had a large and sustained influence on many composers during their life and 
beyond. Table 2 provides the in-degree of a composer, that is, the number of composers 
who influenced him/her, transforming the latter into a ‘sink’ of influences. Of course, there 
are different types of sinks. A composer i who has been influenced by many other 
composers may be seen as prestigious or knowledgeable (‘Authorities’) and some 
(younger?) composers may seek to be influenced by i for that very reason.  But sinks may 
also reflect information overload or noise and interference due to the contradictory 
messages from different sources and in this case (younger?) composers might not want to 
seek influence from them. Composers with a high in-degree who also have a high out-
degree may be viewed as ‘communicators’ or ‘facilitators’ of the network (e.g., Debussy, 
JS Bach, WA Mozart, Ravel, Liszt, Wagner, and Stravinsky). They are influencers building 
on the shoulders of others. Composers with a high in-degree but a low out-degree are pure 
information sinks (they do not share or transfer the knowledge they may have learned from 
others). It may be because of ‘demand’, ‘supply’ or ‘time constraint’ effects. Some 
                                                 
11 Note however that out of the 499 composers (besides Debussy) in the database, there are 243 
composers for which there is no shortest path to Debussy.    
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composers, as said above, are a mediocre source of influence because they are viewed as 
too indiscriminate in their own sources of influence, resulting in a low demand for their 
influence. The supply effect may reflect voluntary isolationism and lack of interest in 
transmitting knowledge.  Finally, according to the time constraint effect, composers from 
a more recent period may not have had the time needed to become a source of influence. 
Observe for example in Table 2 that 11 of those 20 sinks of influences are from the 20th 
century period (e.g., Ligeti, Ginastera, Crumb, Penderecki) and among them Ligeti is an 
important sink of influences but has not yet influenced others (in-degree = 19, out-degree 
=1) because of the time constraint effect (or database limitation, e.g, no records on younger 
active composers). Perhaps Britten is an example of a sink seeking some isolationism and 
who did not bother to transmit knowledge (in-degree = 20, out-degree = 8) while Sullivan 
is another British example of a sink from the Romantic period (in-degree = 16, out-degree 
= 2) that had little influences and might have suffered from his reputation among the 
musical establishment of writing frivolous music. Composers with low in-degree but high 
out-degree are perhaps best described as outsiders and innovators, pushing for new 
developments without necessarily relying on many previous influences. Composers such 
as Haydn, Beethoven, Berlioz, Schumann and Schoenberg fit this description to some 
extent. Finally, some composers have low in-degree and low out-degree, composing out-
of-the-loop, at the periphery. Karl Stamitz (the elder son of Johann Stamitz) fits the 
description. He composed some orchestral works and chamber music that stylistically 
resembles that of Mozart and Haydn, visited many cities as a virtuoso on the violin and 
viola, but never managed to gain a permanent position with a European court or in one of 
the orchestras of his time. He finally moved to Jena, a city in central Germany, where there 
was neither a town band nor an orchestra.  The table below summarizes this discussion. 

 

Summary table 
 

High out-degree (diout) Low out-degree (diout) 

High 
in-
degree 
(diin) 

‘Authorities’ and highly influential 
composers: ‘Communicators’ 
e.g.:  
Debussy, JS Bach, WA Mozart, Ravel, 
Liszt, Wagner, Stravinsky 

Information Sinks 
e.g.:  
Britten (in-degree = 20, out-degree = 8) (supply 
effect) 
Sullivan (in-degree=16, out-degree =2)  (demand 
effect) 
Ligeti (in-degree = 19, out-degree =1) (Time-
constraint effect) 
  

Low in-
degree 
(diin) 

Outsiders and Innovators 
e.g.:  
Haydn, Beethoven, Berlioz, Schoenberg 

Out-of-the-loop, at the periphery 
e.g.:   
Karl Stamitz 

 
Two other measures of centrality (importance of a node) are betweenness centrality and 
eigenvector centrality.  Betweenness centrality tries to capture nodes that are important not 
because they have many out-degrees or in-degrees, but because they stand between groups, 
giving the network connectivity and cohesion. If a composer happens to often be on 
shortest paths (as defined above) between any two composers, they will score high on 
betweenness centrality.  (In the list of shortest paths between any i and Debussy in 
Appendix 1, we can see some composers who appear more frequently.) Observe in Table 
3 that composers with high betweenness-centrality are present in all major periods: 
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Renaissance: Sweelinck and Palestrina; Baroque: Schütz, Purcell, JS Bach and Handel; 
Classical: Mozart and Beethoven; Romantic: Chopin, Wagner, Liszt, Debussy, and 
Modern: Ravel, Schoenberg, Bartok, Stravinsky, Britten, Gershwin and Shostakovich. 
Finally, eigenvector centrality cares not only about the number of connections (influences) 
but also the ‘quality’ of these connections (i.e., whether your connections are also well 
connected).  Table 4 provide a list of such composers. All of them are from the Modern 
period, which reflects the advantage of coming chronologically later. Modern composers 
have the opportunity to cherry-pick among an increasingly large pool of influencers from 
several periods, an opportunity that a Renaissance or Baroque composer did not have. In 
Table 4, we see that Ligeti (1923-2006) has been influenced by a range of important and 
influential composers from late Renaissance to the modern period (Ockeghem, 
Monteverdi, JS Bach, R. Schumann, Liszt, Debussy, Stravinsky, Bartok, Kodaly, Berg, 
Webern, Boulez, Cage, Reich, Riley, Stockhausen, Nancarrow, and Varèse).   
 
A characteristic of the composers’ network studied above is that it connects composers of 
very different periods, ranging from Medieval to Modern composers. Yet ‘social’ networks 
are often used to study connections between people alive during one single period. Half 
the CMN database is made up of composers born in 1862 and after (249 composers out of 
500).  Hence, we still have a decent size ‘social’ network when concentrating on this period 
alone. The choice of 1862 is somewhat arbitrary but justified here by the fact that Debussy 
was born in 1862 and, as discussed in Griffiths (1978) in his ‘Concise History of Modern 
Music: From Debussy to Boulez’, although he might be classified as ‘late Romantic’, he 
was instrumental in transforming classical music towards the modern idiom of the 20th 
century through his impressionist style.   
 
The 20th century music network is somewhat biased towards American and British 
composers (with respectively 77 and 29 composers), while there are 31 French composers, 
23 Germans/Austrians, 16 Italians, 16 Russians, 15 ‘Central’-Europeans (of which 6 
Hungarians, 5 Bohemians/Czech and 5 Polish), 12 North-Europeans composers (3 Danish, 
3 Swedish, 4 Finnish, 2 Estonians), 12 South-Americans (4 Mexicans, 3 Argentinians, 2 
Brazilians, 1 Paraguayan, 1 Venezuelan, and 1 Cuban), 8 Spanish, and 10 composers of 
other nationalities (2 Dutch, 2 Swiss, and one each from Belgium, Greece, Canada, 
Australia, Japan, and China).  Of course, some composers have had several citizenships 
over their lifetime and in this case, we selected just one citizenship depending on the 
biography and most relevant musical context of the composer (so as to be able to attribute 
a single colour by node in the network as explained shortly).12  The adjacency matrix is 
now of dimension 249x249.  Some ‘modern’ composers have been influenced by 
composers from earlier periods, but we disregard this fact to only take into account the 
network of composers within the ‘modern’ period. The number of nodes is 249 and the 
number of edges is 1325, hence the average in/out degree of a node is 5.3.  Density of the 
network is 0.02146 (higher than the full composers’ network) and the triadic closure is also 
higher at 0.03596.  Hence this ‘20th century/modern’ network is denser than the full 

                                                 
12 For examples, Varèse (1883-1965) was a French-born composer who spent the greater part of his 
career in the United States from 1915 onwards and took the American citizenship in 1927.  He is 
thus grouped here with American composers (in red).  Xenakis (1922-2001) was a Greek composer 
who moved to France in 1947 and become a naturalised citizen in 1965. On balance, he was 
generally more entwined with French than Greek cultural life and thus we group him with French 
composers (in blue).  Nancarrow (1912-1997) was born in the USA and became a Mexican 
citizenship in 1956 but he leaved in relative isolation in Mexico while his musical influences are 
American.  Thus we group him with Americans (in red).        
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network analyzed above. This reflects that there is, on average, more documented 
influences per composers of the 20th century than for the entire network. 
 
We have experimented with node features by color coding nodes according to citizenship 
(or regions of affinity) in Figure 3(a), by composer’s main style (explained shortly) in 
Figure 3(b). Figure 3(c) zooms Figure 3(b) in the middle of the graph to reduce the effect 
of names’ overlapping.  We also produced a setting with gender and race colour-coding in 
Figure 3(d).13 We use a pseudorandom number generator to obtain an initial placement of 
nodes (i.e., a placement that is statistically random but created in a deterministic manner). 
This ensures the same final ‘equilibrium’ placement of nodes across maps. Unlike 
composers from earlier periods, quite a few twentieth century composers are little-known 
to the public at large and Figures 3(a-d) may help discover (and hopefully listen to) some 
composers by exploring connections or influences pointing to them from the largest nodes 
(typically the most well-known composers in this period) whose size depends on the out-
degree (influence) of a composer.  
 
First, notice that Figures 3(a-b) illustrate the distinct paths adopted by 20th century 
composers as if there were ‘two centuries in one’. As Pauls (2014) puts it: “An outstanding 
feature of the twentieth-century has been the divergence of European ‘art’ music into two 
general areas which do not overlap to the same extent that they do in previous centuries. 
That is, the performing repertoire is at odds, sometimes dramatically so, with a competing 
canon of works considered to be of greater importance from an evolutionary historical point 
of view”.  The ‘two centuries in one’ feature can roughly be seen in Figure 3(a-b) where 
composers in the bottom (South) part of the map make up the bulk of the performing 
repertoire of this century classical music, pursuing (to some extent) the romantic style of 
the 19th century, and, more generally, pursuing the five pillars of the ‘Common Practice 
Period’ of Western classical music (1600-1900), Tonality, Vocabulary, Texture, Sonority, 
and Time.14  As we move towards the most Northern part of the map, however, we find 
composers who have completely changed the musical elements of the ‘Common Practice 
Period’ and are often viewed (loosely) as the ‘avant-garde’ of the music of their time. 
Magnuson (2008) offers an interesting discussion about which of the five pillars of the 

                                                 
13 We have also produced a setting with age groups. See Graphical Appendix, Figure A1, where age 
groups are color-coded as cyan for the late Romantic composers; magenta for those born 1870-1899; 
blue for those born 1900-1929; and red for those born in 1930 and after. Those age groups are 
relatively arbitrary but a 30-year length may be thought of as ‘generations’, and those groups as 
overlapping generations of composers active in late 19th century and in the 20th century. This setting 
seems to suggest that older age groups are localised in the West, South and East parts while younger 
generations (those who changed most pillars of the Common Practice Period) are closer to the center 
and towards the North/Northeast. This also matches the description in Figure 3(b).  
14  Magnuson (2008) describes the five pillars of the Common Practice Period as follows: 1. 
Tonality—The essential organisation around a single pitch, the tonic, which provides a home base 
to the ear; 2. Vocabulary—A diatonic pattern of seven stepwise pitches called major and minor 
scales; 3. Texture—Texture of the Common Practice Period is created with counterpoint, which is 
two or more simultaneous individual and independent lines, each of which confirms the pre-
eminence of tonic and utilizes the vocabulary of a major or minor scales. 4. Sonority—consonant 
sonority of the Common Practice Period is a group of three notes arranged in thirds (tertian triad). 
Dissonance can be used on occasion in the form of a group of four notes arranged in thirds (tertian 
tetrad); and 5. Time—The essential time organization of the Common Practice period is based on a 
consistent and unchanging beat. These beats organize into 2, 3, or 4 essential pulses per measure, 
with the first beat always the strongest.  Each beat can sub-divide into two parts (simple meters) or 
three parts (compound meters). 
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Common Practice Period have been basically maintained, generally modified, or 
completely modified in the different styles of 20th century classical music (e.g., 
impressionism, primitivism, neoclassicism, expressionism, serialism, indeterminism, 
minimalism, neo-romanticism, etc.).  He assumes that when a composer either generally 
modifies or completely changes more than one of these five elements, then, a new music 
(or Uncommon Practice) is created. Twentieth century styles are discussed shortly later.  
 
Second, observe in Figure 3(a) that the placement of nodes remains dependent on 
‘citizenship’ despite so-called 20th century globalisation. Without going into much detail, 
we see Russian composers (in cyan) in the South-East of the map (e.g., Rachmaninov, 
Medtner, Miaskovsky, Glière, Glasunov, Khachaturian, A. Tcherepnin, Shchedrin, 
Prokofiev, and slightly further to the North, Stravinsky and Shostakovich).  In the East we 
encounter North-Europeans (Swedish, Norwegian, Danish, to which we add Finnish and 
Estonian) in deepskyblue (e.g., Stenhammar, Sibelius, Nielsen, Holmboe, Norgard, 
Sallinen, Larsson, Tubin, and in direction of the center, Kokkonen, Part, Rautavaara, etc.). 
We see British composers (in hotpink) positioned in the South/South-East (Butterworth, 
Vaughan-Williams, Holst, and, starting from Holst and moving in the Northward direction, 
Howells, Finzi, Moeran, Rutter, Bax, Alwyn, Walton, Berkeley, Tippett, Rubbra, and 
further to the center, Britten and Warlock. Also starting from Holst we see a strand of 
British composers in the Westward direction: Delius, Clarke, Ireland, Bridge, Bliss). In the 
South-West we see a series of Spanish composers (in yellowgreen) (Granados, Falla, 
Monpou, Turina, Rodrigo) and Italian composers (in magenta), Giordano, Mascagni, 
Respighi, Castelnuovo-Tedesco, and further West, Wolf-Ferrari, Cilea, Pizzetti. In the 
West/South-West, we see French composers (Vierne, Langlais, Dupré, Tournemire, 
Duruflé, Pierné, Lily Boulanger, and further East, Debussy, Dukas, etc.) In the East we 
encounter German composers (in yellowgreen) (e.g., Pfitzner, R. Strauss, and further East 
Reger, Karg-Elert and Orff, and Austrian composers in darkgreen (e.g., Zemlinsky, 
Schreker, Schoenberg, Berg, Webern). American composers firmly occupy the center and 
the Northeast side of the map.  Note that this clustering of composers by citizenship might, 
but does not necessarily, imply a geographical clustering (after all composers have 
migrated without necessarily adopting a new citizenship!).  It may however be interesting 
to see whether the historical unfolding of the twentieth century music is concomitant to 
geographical shifts in cultural centers. 
 
An overemphasis on nationality cannot capture the rich network of the 20th century 
composers (and their music).  Figure 3(b) present the main styles of music of 20th century 
composers. Associating a unique or main style/color to one composer is often a very 
restrictive and misleading assumption as many composers explored different styles over 
their lifetime. The CMN provides a list of styles for most composers. When only one style 
was provided, this style was attributed to the composer. When more than one style was 
provided, an additional research was done by reviewing the bios of composers in several 
sources such as Wikipedia and other composers websites to ascertain which style seemed 
to dominate (in terms of number of years or overall influence) during the composer 
lifetime. We however, fully appreciate the limit of this approach and Section 3 will deal 
more appropriately with this issue. But for the time being we deliberately take this short-
cut to explore main styles over the 20th century.  According to Magnuson (2008), music of 
the 20th Century is unique in its pluralism. “Composers began to explore a more personal 
and individual approach to music creation, forming their own microcosms or ‘small 
universes’. No longer bound to the rules formed by one musical approach, they customized 
sound to suit their own views and preferences.” For Magnuson, there were three important 
small universes or microcosms near the turn of the 20th century: Impressionism (Debussy, 
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Ravel in the South-West in Figure 3(b)), Primitivism (Stravinsky, Bartok in the East and 
Center), and Expressionism (Schoenberg, Berg, Webern—in the Northwest). 
Impressionism (as represented by Debussy and Ravel and other composers in blue in the 
South/Southwest)15was a reaction to the state of music at the end of the 19th century, that 
is, late Romantic composers who lived well into the 20th century and who essentially belong 
to the Common Practice Period even if they made some concessions to the new century. 
These essentially Romantic composers are located in the East/Southeast and 
West/Southwest parts of Figure 3(b) and are represented in deepskyblue: (e.g., R. Strauss, 
Reger, Rachmaninov, Glazunov, Vaughan Williams, Sibelius, Nielsen, etc.).  
 
Expressionism followed the path of the common practice period but completely mutated 
its basic pillars of tonality, vocabulary, texture, sonority and time. Besides Schoenberg, 
Berg and Webern, other composers pursued expressionism.  These composers gravitate not 
far away from Schoenberg, Berg and Webern in Figure 3(b), e.g., Krenek, Wolpe, Henze, 
Husa, Kraft, Gerhard, Toch, KA Hartmann, Carter. Expressionism itself led to Serialism 
(some representative composers, at least during a part of their life, are given in pink, e.g. 
Dallapiccola, Davidovsky, Riegger, Sessions, Eisler, Skalkottas, Petrassi, Finney, Babbitt, 
Rochberg, Walker, Perle, Schuller, Musgrave, Druckman, Birtwistle, Davies, R.R. 
Bennett, Wuorinen, Tower, Zwilich).   
 
Primitivism positioned itself somewhere between Impressionism and Expressionism, and 
eventually led to 1) Neo-Classicism (composers in dark green in Figure 3(b)16, essentially 
grouped in the East part of the graph, and to 2) the revival of Nationalism as a source of 
inspiration, a trend that began with Glinka and Dvorak in the 19th century (composers in 
gray in Figure 3(b))17.  Note that nationalist composers are spread all around the South part 
of the map. This reflects both the idea that Nationalism is the continuation of a 19th century 
trend and that the network of influences of nationalists might be driven by their citizenship.      
 
Other styles as represented by the Avant-Garde (in saddlebrown) and Experimentalists (in 
sandybrown) in the Nord-East of the Figure 3(b) pursued the exploration of the 
‘Uncommon Practice’ of the 20th century music.  As mentioned by Magnuson (2008), new 
technology created Electronicism (Varèse, Luening, Babbitt, Maderna, Berio, 
Stockhausen, Druckman, Davidovsky, Wuorinen) while in the second half of the 20th 
century there has been an unprecedented attention to new elements of Texturalism – the 
relationships of timbre, density of pitch and rhythm being given a new primordial status 
relative to melody and harmony (e.g., Varèse, Carter, Lutoslawski, Ginastera, Ligeti, 
Xenakis, Stockhausen, Penderecki). Reactions to these styles created 

                                                 
15  Some other composers associated in part with impressionism in Figure 3(b) are Koechlin, 
Roussel, Schmitt, L. Boulanger, Falla, Mompou, Griffes, Clarke, Carpenter, Karg-Elert, 
Szymanowski, Malipiero, and Casella. 
16 Besides Stravinsky and Bartok, some composers who have been associated (at least partly) with 
the neoclassical current are: Hindemith, Prokofiev, Satie, Ibert, Piston, Schulhoff, Martin, Martinu, 
Orff, Thomson, Tansman, A. Tcherepnin, Chavez, Copland, Weill, Berkeley,  Lambert, Tippett, 
Badings, Holmboe, Francaix, Britten, I. Fine, Persichetti, Foss, Pinkham, Leighton, Harbison, 
including a group of French composers (Poulenc, Tailleferre, Milhaud, Auric) representing four 
members of ‘Les six’ a group of composers often seen as a reaction against both the musical style 
of Wagner and the impressionist music of Debussy and Ravel. 
17 Composers who have been associated with nationalism at some point of their life are, for example, 
Vaughan Williams, Holst, Grainger, Rubbra, Kodaly, Ives, Canteloube, Ponce, Turina, Barrios, 
Butterworth,  Villa-Lobos, Moreno Torroba, Moeran, Warlock, Lara, Harris, Revueltas, Rodrigo, 
Finzi, Guarnieri, Ginastera, Lauro, etc. 
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Indeterminism/Chance/Aleatory music (Cage, Xenakis, Feldman, Stockhausen), a reaction 
against the total control that is the basis for integral Serialism. Minimalism (Riley, Reich, 
Glass, Adams –in cyan in Figure 3(b)) opposed the ideas of atonality itself and reintroduced 
the vocabulary and sonority of the Common Practice Period. Neo-Romanticism (pre-1950: 
Walton, Tippett, Shostakovich, Barber, Britten, and post-1950: Rochberg, Henze, 
Penderecki, Corigliano) opposed these things too, but also represents a complicated 
relationship between today’s composer (and listener) and the music of the past (as opposed 
to the late Romantic composers, mentioned above, who belong to the Common Practice 
Period). Popular music, Jazz, exotic influences and the criss-crossing of styles led to 
Eclecticism—choosing diverse elements from many different sources. This is the essence 
of the 20th century but certain composers are put in this group as they simply cannot be 
placed into neat categories due to their originality and individuality (Scriabin, Ives, 
Ruggles, Cowell, Partch, Messiaen, Hovhaness, Cage, Berio, Crumb, Gorecki, P.M. 
Davies).18  
 
Switching back to Figure 3(a) to emphasize again nationalities, we encounter in the upper 
east side of the graph composers who have completely changed the rules of the Common 
Practice Period and created a canon of musical works sometimes considered to be of greater 
importance from an evolutionary historical point of view.  American composers in red 
(Ives, Cowell, Partch, Cage, Lou Harrison, Wolff, Feldman, Varèse, Riley, Glass, Adams, 
Reich, Ruggles, Crawford, Wuorinen, Babbitt, Luening, Carter, Rochberg, Session, and 
Copland). We also see a series of Italian composers in Magenta (Nono, Berio, Maderna, 
Dallapiccola, Scelsi, Petrassi) proposing a music far away from the music of Italians 
pictured on the South of the graph. Opposed to the late-romantic German representatives 
in the East side, we see here a series of decisively ‘modern-sounding’ German composers 
(Stockhausen, Rihm, Eisler, Wolpe, Henze, Blacher K.A. Hartmann and Ernst Toch). A 
few other notable composers on this side of the graph are Birtwistle, Tavener, Nyman, P.M. 
Davies (English), Messiaen, Jolivet, Xenakis and Boulez (French), Schnittke, Gubaidulina 
(Russians), Ligeti and Kurtag (Hungarian), Kagel (Argentinian), Takemitsu (Japanese), 
Dun Tan (Chinese), L. Andriessen (Dutch), Penderecki, Gorecki, and Lutoslawski (Polish).   
 
In Figure 3(d), colour-coding by gender (blue for Men, fuchsia for Women), and by race 
(gold for African-US/European composers) shows how much white/male-dominant the 
20th century composers network remains. All in all, there are 12 women (out of 249 
composers) born on or after 1862 in the CMN database (Beach, L. Boulanger, Clarke, 
Crawford, Gubaidulina, Larsen, Monk, Musgrave, Oliveros, Tailleferre, Tower, and 
Zwilich) and just four women (out of 251) born before 1862 (Chaminade, Hildegard, 
Mendelssohn-Hensel, and C. Schumann).  As for race, the CMN has a category African-
American/-European composers that includes Samuel Coleridge-Taylor (English), Scott 
Joplin (American), William Grant Still (American), and George Walker (American), all 
four born after 1862, and thus included here in the group of ‘20th century’ composers.19 
There are also Latin-American composers in the database (colour coded in the figure in 
green), such as Leo Brouwer (Afro-Cuban) and Agustin Barrios (partly of Guarani origin 
form Paraguay). Other Latin-American composers who often used native and folk music 

                                                 
18 Note that more recent developments are not captured in this graph.  For newer developments, we 
refer the reader to Rutherford-Johnson (2017) who describes the state of music after the fall of the 
Berlin Wall and discusses how much diverse and fragmented contemporary music has become since 
1989.     
19 Louis Moreau Gottschalk is another mixed race composer (having a French Créole mother).  He 
was born before 1862 and therefore is not in Figure 3(d). 
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of their country are, from Mexico: Carlos Chavez, Silvestre Revueltas, Agustin Lara, and 
Manuel Ponce; From Brazil: M. Camargo Guarnieri and Heitor Villa-Lobos; from 
Argentina: Alberto Ginastera and Astor Piazzolla; from Venezuela: Antonio Lauro.  
Although there are Japanese (Toru Takemitsu) and Chinese (Tan Dun) composers in the 
database, we do not identify them in Figure 3(d).    
 
The composer selection criteria for inclusion in the CMN were objective criteria, not 
subjective preferences and the CMN was not designed as an advocacy instrument. The 
particular 500 composers selected scored highest on a combination of eleven (unweighted) 
variables such as length of composer entry in the Grove’s Dictionary of Music and other 
catalogs, total number of recordings referring to each composer, and total number of 
recordings over the past five years only, holdings of sheet music (scores) and other items 
in 50000 libraries in the U.S and worldwide (through searches in the OCLC WorldCat 
database).  See details in the CMN website section on Statistics. Hence, the CMN aimed at 
reflecting composer’s status at the time it was put together. This said any list of 500 
composers (when lists of ten thousands composers exist) will always be open to criticism 
that ‘some other’ composers should have been included into the list. There is a relatively 
new discourse within music departments that the narrative of Western classical music has 
privileged white men of the ‘European’ tradition. In so far as the selection criteria above 
are based on items and catalogues that reflect this narrative, then the CMN probably 
corroborates this bias. Advocacy groups for diversity in music have developed databases 
reporting the names of thousands of female composers and their compositions (e.g., 
composerdiversity.com). If these new lists eventually have a large impact on recordings, 
length of composer entries in dictionaries, etc., then the CMN will eventually get out of 
date as the relative status of composers changes and rapid increase in interest for ‘new’ or 
for ‘rediscovered’ composers arises.  In this case an update of the CMN will be required. 
Florence Price (1887-1953), the first African-American woman to be recognized as a 
symphonic composer and the first to have a composition played by a major orchestra, is 
perhaps one of those ‘rediscovered’ composers who could eventually made the list of an 
updated CMN, but so would Francesca Caccini (1587-1640),  Barbara Strozzi (1619-1677), 
Isabella Leonarda (1620-1704), Antonio Cesti (1623-1669), Ferdinand Ries (1784-1838), 
Louise Farrenc (1804-1875), Allan Pettersson (1911-1980), Mieczyslaw Weinberg (1919-
1996), Galina Ustvolskaya (1919- 2006), Alexander Goehr (1932-), Helmut Lachenmann 
(1935-), Brian Ferneyhough (1943-), Gérard Grisey (1946-1998), Christopher Rouse 
(1949-2019), Kalevi Aho (1949-), Kaija Saariaho (1952-), Judith Weir (1954-), Magnus 
Lindberg (1958-), George Benjamin (1960-),  Jennifer Higdon (1962-), Eric Whitacre 
(1970-), Thomas Adès (1971-) and (possibly many) other male and female composers.    
 
As said before, given the criss-crossing of styles, colour-coding nodes/composers 
according to styles is at best an approximation.  A second route would be to use algorithms 
of ‘community detection’ and ‘cliques’. However, most of these algorithms have been built 
and used for undirected networks.  Instead of pursuing this route, we propose to extend and 
enrich our analysis by computing similarity indices across composers taking into account 
both the network of influences of composers and the ecological/musical characteristics that 
best describe these composers. Section 3 pursues this objective and offers further 
visualization schemes. 
 

3. Composer similarity indices and heat maps 
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In order to build similarity indices between composers, two basic sets of information given 
in the CMN have been used.20 First, we extracted 298 ‘ecological’ categories from the 
‘Index of Forms and Styles’ web page so that each of the 500 composers are associated 
with a subset of these ecological categories (i.e., characteristics such as time period, 
geographical location, school association, instrumentation emphases, etc.).21 An 8-page list 
of all ecological categories is available in Smith and Georges (2015). Second, we have used 
the list of ‘musical influences’ given in the main ‘Composers’ list page. In particular, for 
each specific subject composer we extracted ‘personal musical’ influences (i.e., other 
composers) who the literature suggests influenced the subject composer. 22  We also 
extracted 42 more general ‘style’ influences (e.g., African music, Native American music, 
Spanish music, Indian music, folk music (by specific regions), popular music (by specific 
regions), Gypsy music, world music, jazz, ragtime, blues, electronic, gamelan music, 
nature sounds, birdsong, etc.) also provided in the ‘musical influences’ list of the CMN 
‘Composers’ page.23  
 
Once this information was gathered for the 500 main composers of the database, we then 
constructed bilateral similarity indices based on an approach akin to biosystematic analyzes 
of biotas or species relations, by means of pairwise comparison of presence-absence data. 
In essence, we inferred similarities among composers by assuming that if two composers 
share many of the same musical influences and ecological categories, their music will 
likely have some similarity. On the other hand, if two composers have very distinct sets of 
musical influences and ecological categories, then their music is likely to have little 
similarity.  
 
Technically, for any pair of composers (i,j) for i,j ∈C (among the n x n possible pairs with 
n=500 composers included in the set C of the CMN composers page), we have a set Ai of 
all attributes k (musical, that is personal and style influences, and ecological categories) 
that apply to composer i, and a set Aj of all attributes k that apply to composer j. We are 
interested in capturing whether an attribute k applies to both i and j, to i but not j, to j but 
not i, and to neither i nor j. Thus, for any pair (i,j), ,A A CAi j i j=  is the set of attributes 

that are related to both i and j; ,A A A Ai i j i j− = −  is the set of attributes that are related 

to i but not j; ,A A A Aj i j j i− = −  is the set of attributes that are linked to j but not i 

                                                 
20 The general method described here has been explored and progressively refined in several papers 
such as Smith and Georges (2014, 2015) and Georges (2017). 
21  See the ‘Index of Forms & Styles of music’ in the CMN.  For example, the ecological 
characteristics associated with Debussy are represented by the following elements:{ballets 1900 on, 
cello chamber music, chamber music 1825 to 1925, ‘Dance’ in composition title, etudes, flute 
unaccompanied, flute chamber music, harp chamber music, harp orchestral music, Impressionist 
style, nocturnes, operas 1900 on, orchestra incidental music, orchestra symphonic poems, 
orchestration, Paris composers 1800 on, piano unaccompanied 1775 to 1900, piano unaccompanied 
1900 on, piano chamber music general, quartets for strings, song cycles and collections, songs 1800 
to 1900, songs 1900 on, suites, trios for other combinations, viola unaccompanied or chamber music, 
violin chamber music 1850 on}.  
22 See the ‘composers’ page of the CMN. For example, the set of composers who had a documented 
positive influence on Debussy is:{J.S. Bach, Wagner, Chopin, Tchaikovsky, Liszt, R. Schumann, 
Ravel, Fauré, Grieg, Rimsky-Korsakov, Mussorgsky, Franck, Gounod, Massenet, Satie, Borodin, 
Rameau, Albéniz, F. Couperin, Joplin, Delibes, Chausson, Lalo, Chabrier, Dukas, Alkan}. 
23 In the example of Debussy: {Asian music, gamelan music, Renaissance Period music}. 
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and , , ,DA A Ai j i j j i= − −  is the set of attributes that apply to either i or j but not both. 

From this we can produce a table for any pair (i,j) that counts the attributes in each of the 
three sets ,CAi j , ,Ai j− , ,Aj i− , resulting in corresponding counts, a, b, and c.  Given 

all existing attributes in the database, nk, we can also count the attributes that belong to 
neither i nor j as nk – a – b – c = d.  From this we can compute similarity indices for all 
pairs of composers (i, j) on the basis of well-known formulas. The centralised cosine 
similarity measure that we have used is based on earlier literature in scientometrics and 
bibliographic couplings.  The formula is:  
(1)   ))()()(()(, dbcadcbabcadCSC ji ++++−= . 
See Appendix 2 for the derivation of the formula in Eq. (1) and how this is connected to 
Pearson correlation coefficient, r, taken between two Boolean vectors of attributes k 
describing a pair of composers (i,j) where the Boolean vector representing a composer i is 
a series (of length nk) of 1’s and 0’s when an attribute belongs or not to a composer.  
 
It can be shown that values of the centralised cosine measure range from -1.0 to 1.0.  A 
value of 1.0 indicates that two composers are identical. A value of -1.0 indicates that two 
composers are complete opposite. A value of 0 shows that two composers are independent 
(unassociated). A nonzero value of the centralised cosine measure might be due to 
randomness or actual association between composers. As shown in Smith et al. (2015), 
unlike in the case of the ordinary cosine measure, there is a proper statistical significance 
test.24 Under the assumption that the size of the attribute database nk is large enough, the 
distribution of the centralised cosine measure (under the assumption of independence) is 
approximately normal, with mean 0 and variance 1/nk where nk is the size of the database 
at hand, that is the number of attributes k characterising all composers in the database.25 
Therefore, the distribution of the centralised cosine measure can be converted into a 
standard normal distribution using the Z-score/statistics:  
(2)    1 / ( )k kZ CSC n Z ABS CSC n= ⇒ = , 
where ABS is the absolute value.26 
 
This methodology permits us to build a 500x500 matrix of similarity across composers. 
Let us call this similarity matrix Scomb where the subscript ‘comb’ refers to the fact that we 

                                                 
24 This test is originally proposed by Giller (2012) who summarizes the statistical properties of 
statistics computed from independent random bitstreams and derives the moments of the 
asymptotically normal approximation to the sampling distribution of the cosine similarity of 
independent random bitstreams.  He proposes a new statistic, the support adjusted cosine similarity 
(where the support is the count of the non-zero bits divided by the length of the bitstream) and notes 
the parallel between the support adjusted cosine similarity and the Pearson correlation coefficient. 
25 nk = 500 if we just focus on personal musical influences, 542 if we also include more general style 
influences, 298 if we only include ecological characteristics, and 840 if we include all attributes (all 
possible music influences and ecological characteristics).  
26 We take the absolute value ABS, because square root of 1 is 1± . Given Eq. 2, the Z-statistic is 

at its critical significant value at 5% when Z = ( )kABS CSC n×  = 1.96. The value for nk is 840 

when all ecological characteristics, styles and personal musical influences are taken into account. 
Thus, the critical values are 1.96 / 840cCSC = ± =± 0.067626.  If CSCi,j > CSCc = 0.067626, 
then CSC is considered statistically different from zero so that there is a statistically significant 
association between composers i and j.    
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combined all attributes k (musical influences and ecological categories) when computing 
the similarities across pairs of composers (i,j).  Figure 4 represents the information obtained 
from Scomb under the form of a heat map.27 Composers have been classified chronologically, 
from Hildegard (born in 1098) until Tan (born in 1957).  Along the diagonal, composers 
are compared to themselves. This comparison receives a similarity score of 1 and this 
translates into a black color code in Figure 4. Moving off the diagonal implies comparing 
different composers. Dark blue implies high similarity, while a light yellowish color 
suggests that the two composers are unassociated (independent) and any whiter shading 
implies negative values (opposition between composers). In general, the further away we 
move from the diagonal and the more independent the composers’ pairs is. We also clearly 
see intra-period similarities and inter-periods dissimilarities or independence.  For 
example, Renaissance composers tend to be relatively similar (or closer) among 
themselves, but their music is largely independent from other periods. Note that the 
database includes many more modern composers than earlier periods’ composers, which is 
translated on the map as seemingly larger ‘areas’ of darker color for later periods (intra-
period similarity).      
 
Of course, we can also build other similarity matrices by restricting attributes to one 
specific category. For example, we could limit our interest to attributes k that focus only 
on the 298 ecological categories, computing a 500x500 similarity matrix Secol which 
provides similarity indices across pairs of composers based on ecological categories only. 
Or we could limit our interest to attributes k that characterise personal musical influences 
and compute a 500x500 similarity matrix Sinfl, which would provide similarity indices 
across pairs of composers based on personal musical influences only. What we have now 
included in the CMN are similarity indices based on the similarity matrix Scomb, from which 
we searched, for each of the 500 subject composers, the top-15 most similar composers. 
Visually, in Figure 4, it is as if we searched for each composer the 15 darkest composers’ 
pairs.  In Table 5 we provide such a list for 20 major composers together with the CSC 
similarity value/score. The CMN now includes this information for all 500 composers. To 
these scores can be attached statistical significance levels as described above, but for the 
layperson the scores themselves are easier to appreciate: As now mentioned in the CMN, 
generally speaking, scores above .60 represent composer similarities that are likely to be 
fairly obvious, scores of about .45 to .60 signify a considerable similarity, .30 to .45 some 
similarity (for example, of time period or an emphasis on guitar), and below .30 less 
obvious connections (though many of these may be statistically significant in the greater 
sense). 
 
It must be re-emphasized that the similarities scores arranged here represent appraisals of 
correlations between pairings of composers’ recorded ‘attributes’, k (i.e., personal and style 
influences and ecological characteristics). The CMN is constructed such that famous 
composers have many more recorded attributes than lesser-known (or lesser-studied) 
composers. Hence, the chance of observing ‘matches’ between famous similar composers 
( ,A A CAi j i j= ) is larger than the chance of observing matches between famous and 

less-well known, yet similar, composers, which is also larger than the chance of observing 
matches between two lesser-known similar composers. J.S. Bach, for example, has many 
more recorded attributes in the CMN database than does Johann Ludwig Krebs, a relatively 
minor figure greatly influenced by Bach. The result is that Bach shows up as the eighth 
most similar composer in the Krebs entry, but Krebs does not appear in the Bach list of the 
                                                 
27 The heat map has been produced using Python Seaborn library and dependencies. 
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15 most similar composers (because of the extent of ‘un-matches’, that is, attributes that 
belong to Bach but not to the lesser-studied Krebs). Nevertheless, the lists do pass, at least 
largely, an eye test. 
 

4. Multidimentional Scaling (MDS), classification algorithms, and hierarchical 
clustering 

  
Multidimensional Scaling (MDS) is a technique that generates a map displaying the 
relative positions of a number of objects based on a given set of pairwise distances between 
these objects. The following example may help to understand the essence of MDS. Given 
a geographical map of the American continent and a scale, one can compute the aerial 
distances between cities. If instead the initial data is a set of pairwise distances between 
North and South American cities, one can attempt to recover the geographical map of the 
American continent (within about a symmetry and/or rotation).  MDS is a methodology 
that uses algorithms to implement this idea. Although MDS can generate a two-
dimensional ‘flat map’ that could perhaps, or hopefully, be interpreted as latitude and 
longitude in the geographical example, the technique per se can be used to generate more 
than two dimensions from a given distance matrix. A third dimension here could be 
interpreted as relative position along the curved surface of the earth.   
 
We can apply the MDS methodology to the 500x500 matrix of pairwise distances across 
composers, Scomb. In this case, the MDS algorithm aims to position each of the 500 
composers in an N-dimensional space (i.e., assigning coordinates) such that the initially 
computed bilateral distances di,j, between composers are preserved as well as possible, 
according to an optimisation procedure.28 Choosing N=2 optimizes composers location in 
a two-dimensional scatterplot. In this case, given the distance di,j between composers i and 
j, the algorithm generates the coordinates (xi, yi) and (xj, yj).  The MDS algorithm typically 
computes coordinates (x,y) so as to minimize a loss function called ‘stress’, which is a sum 
of squared errors between the actual distance across any two composers, di,j, and the 
predicted distance di,j * computed by the algorithm: 

   ( )2* 2
, , ,Stress i j i j i ji j i j

d d d
< <

= −∑ ∑ ,  

and where the predicted distances depend on the number of dimensions kept and the 
algorithm that is used. Stress values near zero are the best. 29,30   
 
                                                 
28 Our initial composers’ proximity matrix does not represent pairwise distances across composers, 
di,j, but pairwise similarities, si,j. Typically similarity indices are converted into distance indices using 

the formula: , , , , ,2 2(1 )i j i i j j i j i jd s s s s= + − = − .  As si,j is given by the CSC formula in 

Eq.(1) that is shown (in Appendix 2) to be equivalent to Pearson coefficient on Boolean vectors, we 
could alternatively have used the Pearson distance metric (1- si,).  In both case di,j falls between 0 
and 2.   
29 There exist several types of MDS algorithms, and they differ mostly in the loss function they use. 
They are at least two dichotomies that allow to structure some possibilities.  1. Distance scaling 
(Kruskal-Shepard MDS) versus inner product scaling (classical Torgerson-Gower MDS).  2. Metric 
scaling (using the actual values of the dissimilarities) versus nonmetric/ordinal scaling (interpreting 
dissimilarities in terms of the ordination of the data).  See Buja et al. (2008) for details.  Here we 
use distance metric scaling.   
30 Following Kruskal (1964), a value of 0 is a perfect goodness-of-fit, 0.05 is good, 0.1 is fair and 
0.2 is poor.  More recent articles caution against using this advice since acceptable values of stress 
depends on the quality of the distance matrix and the number of objects in that matrix. 
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Figure 5 shows the MDS map that we have computed in Python.31  A general objective of 
this section is to gauge whether the MDS map places composers according to our general 
expectations. In order to assess the placement of composers, we tagged composers within 
10 periods (Medieval, Renaissance, Baroque, Pre-Classical, Classical, Post-Classical, 
Early Romantic, Middle Romantic, and late Romantic, and Modern), essentially using their 
birthdate as a criterion of decision. We then color coded the dot representing each composer 
on the MDS map for a quick visual check of the placement of composers by periods in 
which the composer belongs. In essence we see that the map unfolds the history of classical 
music, starting with Medieval and Renaissance composers in the East, and, as we move 
counter-clockwise as centuries pass by, progressing towards Baroque, Classical, Romantic 
and eventually modern composers. Note that the date of birth of composers is never used 
directly in our methodology to assess the similarity of composers. Of course this does not 
mean that there is no time dimension in our data set. Clearly, data on the personal musical 
influences of a subject composer will also include some contemporary composers, and the 
ecological data have also general references to periods. 
 
Although the first visual check seems to confirm that composers’ placement on the map is 
adequate, we want to produce a more convenient visual check with a painted contour 
around composers belonging to the same period while producing a map that is esthetically 
more pleasant than Figure 5. In order to realize this slightly more ‘artistic’ map in Python, 
we decided to use classification algorithms such as support vector machines or K-nearest 
neighbors. Typically, a classification algorithm tries to determine the class to which the 
object of the analysis belongs to. In the case of music composers, we could have a trained 
data set of composers and their features (characteristics) from which the algorithm would 
extract classes. Perhaps to better visualise the approach, suppose that a large number of 
composers could be represented by just two features and plotted in a two-dimensional 
graph, then the support vector machine algorithm would try to draw a line between two or 
more classes of composers in the best possible manner.32 Then, using a test data set (new 
composers not included in the trained data set) the algorithm would be used to predict the 
probability for a new composer to belong to a specific class or group on the basis on his/her 
features (i.e., his/her positioning on the two-dimensional graph). There are several 
classification algorithms, both using supervised learning (SVM, K-Nearest Neighbors) and 
unsupervised learning (K-means clustering).  Weiss (2017) and Weiss et al. (2018) apply 
several methods using audio features to characterise and then classify composers.   
  
Normally, SVM should be applied, in our context, to a set of composers described by a 
series of features. Here, though, we will apply SVM directly to our MDS map, which 
characterises composers using two dimensions, the two axes of Figure 5. These two 
dimensions do not directly represent specific features of composers but instead coordinates 
ultimately derived from a distance matrix computed on the basis of personal musical 
influences and ecological/musical features of composers). The reason why we chose this 
strategy is that our interest is not in predicting to which class a new composer (not included 

                                                 
31 All MDS maps, in particular Figures 5 and 11, have been generated with Python library Scikit-
learn/Manifold.  Although Kruskal’ value is high at 0.35 for the two-dimension map in Figure 5, 
suggesting that adding a third dimension might improve the placement, we do not pursue this route 
here.  A ‘3D’ MDS map is shown in the Graphical Appendix (Figure A2). 
32 For SVM, the ‘best possible manner’ means, in essence, finding a separating line (a hyperplane) 
between any two groups of composers while producing the widest margin (distance between two 
parallel lines where each line touches at least a point/dot (a composer) in each class).  Support 
vectors are those points that lie on the two separating margins.   
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in the trained data set) belongs to. Instead, SVM is used as an algorithm that permits to 
draw painted contours around composers of a same group and to produce a map that is 
more ‘artistic’ than Figure 5 while providing a better or easier visual check of the placement 
of composers on the MDS map. On a further note, with classification algorithms we 
typically face a trade-off between fitting the training data set perfectly (high bias so that all 
composers initially tagged within a same music period will belong to the same class) and 
how accurately the algorithm can predict the class of a new data set (low variance and 
consistent predictions using different composers datasets). However, we insist again on the 
fact that our objective is artistic map drawing with contours for composers classes that 
perfectly match music periods to which composers have been initially tagged. Hence 
overfitting is our objective here. Finally, note from Figure 5 that we need to use non-linear 
SVM because it would be impossible to draw straight contour lines to separate each groups 
of composers.  In other words, we need to bend the lines to separate the classes. For this 
specific problem we decided to use a non-linear kernel, the radial basis function or 
Gaussian Kernel.33   
 
Figure 6 shows the results of applying non-linear SVM to the MDS map in Figure 5 while 
forcing overfitting so that we have a perfect matching between 10 classes identified by 
SVM (and represented with painted contours) and the ten sets of dots of a specific colour, 
each colour representing a music period wherein composers have been pre-identified.34 
Besides the overfitting (perfect matching), we also see, perhaps more clearly here than in 
Figure 5, that the MDS map does a good job of positioning composers according to their 
periods. As Magnuson (2008) mentions, the Common Practice Period (1600-1900) offered 
a unified view of music with ‘macrocosms’ to which composers belonged to, such as the 
Renaissance, Baroque, Classical or Romantic periods representing a somewhat unified 
view of music rules and practices for rather long periods of time. The MDS map is 
successful in identifying these macrocosms and the SVM algorithm, by drawing painted 
contours, provides an easy visual check.  In Figure 7 we re-did the same exercise and obtain 
similar results using K-Nearest neighbor algorithm, overfitting the data by imposing K=1.35 
 
However, still according to Magnuson (2008), music of the 20th century is unique in the 
flow of Western history in its pluralism.  As mentioned in Section 2, composers began to 
explore a more personal and individual approach to musical creation, forming their own 
microcosms, or small universes. In this perspective, we want to see the results of applying 
(and overfitting) the SVM algorithm to the data for 20th century composers, assuming that 
each composer might be categorised by a main style, that is, mutually exclusive categories 
such as Impressionist, Expressionist, Neo-classical, etc. (as was also done in Figure 3(b)). 
These categories are given in the legend of Figure 8 which also includes a category ‘Before’ 
representing all those composers from earlier periods, who belong without ambiguity to 
the Common Practice Period.  
 
                                                 
33 In machine learning, kernels are functions that transform data from non-linear spaces to linear 
ones. 
34 Figures 6 and Figures 8-14 have been constructed using Scikit-learn/SVM and dependencies. 
With the radial basis function kernel, two parameters can be chosen:  C (the penalty parameter of 
the error term) and Gamma (which defines how far the influence of a single data observation 
reaches). A high Gamma means that points closer to the decision boundary have a close reach, that 
is, the more the algorithm will try to fit the dataset exactly.  Here we have set both C = 10 and 
Gamma =10 to produce overfitting.    
35  Figure 7 has been constructed using Python library Scikit-learn/ KNeighborsClassifier and 
dependencies. 
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Unlike our previous results in Figure 6, we now see in Figure 8 that overfitting the data 
creates a very complex map with many ‘islands’ of seemingly isolated composers. If we 
believe that the MDS methodology used here is accurate (as our test above seems to 
suggest) in positioning any pair of composers according to their bilateral distance, so that 
composers closer on the map are more similar, then a conclusion can be drawn—
Categorizing classical composers of the 20th century is a rather complex task and 
identifying composers by one main/unique style to generate the contours/regions to which 
they belong using an overfitting classification algorithm provides little pedagogical 
guidance in terms of communicating music and trends of the 20th century.  Perhaps in this 
case, avoiding overfitting of the data is a better approach.  
 
Figure 9 shows the results of using a non-linear SVM algorithm while reducing overfitting 
of the data.36 As expected, with less over-fitting, we do not observe a perfect matching 
between painted contours and the sets of dots of a same colour.  In other words, in a single 
class or contour we can see dots of different colors, although one single color tends to 
dominate from which an appropriate classification is inferred for the whole contour). This 
map seems to produce a more suited framework to explain classical music and trends of 
the 20th century.  First, observe the three painting contours in pale blue, dark blue and 
grey/black.  From the dominating colour of dots inside these contours we infer that they 
‘essentially’, and respectively, represent Impressionists, Nationalists, and Neo-Romantic 
composers. Note that these three contours are located closer to the late Romantic 
composers on the map. This makes sense as the composers adopting these styles have kept 
unchanged several pillars of the Common Practice Period and therefore have several 
elements in common with late Romantic composers (see again Magnuson, 2008, for tables 
demonstrating this). On the other hand, contours painted in yellow (Neo-classical), orange 
(Expressionists and Serial) and red (Avant-Garde and Experimentalists) are positioned 
further away from late Romantic composers as they changed most if not all pillars of the 
Common Practice Period.  
 
Second, we can now attempt to rationalize, in music terms, the fact that composers 
associated with various colours for dots are in a same painted contour.  Many composers 
of the 20th century did not have a unique style that can easily identify them. On the other 
hand, the position assigned on the MDS map captures a richer aspect of the complexity of 
a composer style by taking into account the distance metric of Section 3 (based on personal 
musical influences and 298 ecological/musical categories which a composer might belong 
to).  A composer who we tagged with a specific style could be in a painted contour that 
mainly represents composers of another style because the composer effectively composed 
in both styles. For example, Gerald Finzi (1901-1956) is identified with a brown dot 
(Nationalist) in Figure 9 but is included in the upward greyish contour that is supposed to 
represent Neoromantic composers. This might suggest that he is a Nationalist with 
Neoromantic leanings (either through his personal musical influences or ecological 
characteristics). And this appears indeed to be the case according to the CMN website 
where ‘Nationalist (Neoromantic)’ is specified under the style/period category for this 
composer. Going over each 20th century composer to justify his/her position on the MDS 
map goes beyond the objective of this paper but musicologists could contribute to this issue 
by exploring further these results, leading to advances in ways we capture the distance 
between composers in Section 3. For example, the distance matrix could be built using 
only the ecological categories while abstracting away from the personal musical influences 
                                                 
36 In particular we reduce the values for the parameters of the non-linear SVM algorithm to C =7 
and Gamma =2. 
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of a composer (in terms of Section 3, using Secol instead of Scomb). This might improve the 
accuracy of the MDS map, putting composers who have very similar ecological/music 
niches even closer on the map. As pursued further in the conclusion, however, this might 
also reduce the ‘endogenous’ serendipity that the current map offers in terms of new 
composer discovery when going from one composer to another one in near vicinity.    
 
Figures A3 to A6 in the graphical appendix explore essentially the same issues as those 
discussed above, but they do place on the MDS map just 249 composers of the CMN 
database representing the modern (20th century) period (as discussed in Section 2) instead 
of placing all 500 composers representing several centuries of music. The analysis of these 
graphs is similar to what we have done in this section and is thus left to the reader. 
 
Finally, we conclude this section with the computation of a dendrogram for modern 
composers.  The agglomerative hierarchical clustering algorithm builds a cluster hierarchy 
displayed as a tree diagram called a dendrogram. In our case, the input for the algorithm is 
the 249x249 partition of the 500x500 matrix of composers’ similarity Scomb so as to focus 
on modern composers only. Typically, the algorithm applied to the composers’ similarity 
matrix begins with each composer in a separate cluster. In the very first step a two-
composer cluster is formed between the two most similar composers. Then, at each 
successive step, the two clusters that are most similar are joined into a new cluster. Several 
methods are available to compute distance between clusters of composers (as opposed to 
the distance between pairs of composers, which is the primary input), such as single 
linkage, complete linkage, simple average, centroid, median, group average (unweighted 
pair-group), Ward’s minimum variance, etc. Here we used Ward’s minimum variance 
method which minimizes the total within-cluster variance.  At each step, the pair of clusters 
with minimum between-cluster distance are merged. 
 
The dendrogram in Figure 11 is the result of this hierarchical clustering procedure and it 
identifies five clusters (and several sub-clusters) for the modern period.37 In Georges and 
Nguyen (2019) we computed dendrograms for the Baroque, Classical, and Romantic 
periods and then used the identified clusters and sub-clusters to manually draw them 
directly on several MDS maps, one for each music period. We do not pursue this at this 
moment for the modern period, but this could be yet another visual check to gauge whether 
the composer location on the MDS map in Figure 10 roughly corresponds to clusters and 
sub-clusters identified with the dendrogram in Figure 11.  
 

5. Conclusion 
 

This paper illustrates different information visualization techniques (data visualization) 
applied to a classical composers’ database. In particular we present composers network 
graphs, heat maps and multidimensional scaling maps (both obtained from a composer 
distance matrix), composers’ classification maps using support-vector machine and K-
Nearest Neighbors algorithms, and dendrograms. All visualizations have been developed 
using Python programming and libraries. The ultimate objective is to enhance basic music 
education and interest in classical music by presenting information quickly and clearly, 
taking advantage of the human visual system’s ability to see patterns and trends.   
 
In an age offering either inculcation through lists of ‘prescribed’ composers and 
compositions to explore, or music recommendation algorithms that automatically propose 
                                                 
37 Figure 11 has been constructed with Python library SciPy/cluster.hierarchy and dependencies.  
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what to listen to next, this paper shows an alternative path that might promote active instead 
of passive composer and music discovery (as with automatic recommender systems) in a 
way that is also less restricted than inculcation through prescribed lists. Furthermore, high 
accuracy (relevance) of automatic music recommender systems tends to generate the same 
type of music so that people get bored quickly. The much discussed concept of serendipity 
is the idea of a recommender system that can (pleasantly) surprise a listener. Measuring 
serendipity is not easy or straightforward. One cannot simply import it from a Python 
library (e.g., sklearn) unlike relevance metrics such as non-discounted cumulative gain 
(NDCG), mean average precision (MAP), recall, precision, etc.  We argue however that 
our current MDS maps endogenously includes a degree of serendipity: composers that are 
closer on the map are more similar not only because they share the same ecological/musical 
niches but also because they share the same personal musical influences. However, as 
argued in Georges (2017), composers who are similar in their personal musical influences 
may have nevertheless produced music that sounds different in that they belong to different 
ecological/musical niches (what is referred to in Georges, 2017, as adaptation or music 
speciation and evolution).  Listening to a composer that is in near vicinity to another better-
known composer in the current MDS map may, in that sense, lead to new discoveries with 
sustained serendipity.  Further research could possibly compare current MDS maps with 
maps computed on the basis of a distance matrix that excludes personal musical influences 
(i.e., excluding the information from influence networks), gaining relevance in terms of 
similarity accuracy at the cost of lower serendipity.   
 
Finally, the approach in this paper has a few disadvantages in terms of music discovery.  
First, a listener who decides to listen to a composer based on his/her location on a MDS 
map still faces the challenge of discovering his or her important compositions.  In this case, 
we argue that the CMN website remains an excellent source of information by proposing a 
list of important compositions for most of the 500 composers in the database. The overall 
approach would therefore promote active discovering of composers nurtered through a 
prescribed list of compositions.  Second, although discovering and listening to important 
compositions of 500 composers may be a lifelong process for most, it remains that there 
are thousands of composers not included in the CMN database.  Most notably, the CMN 
does not cover the most recent development in classical music. Without alternative 
databases covering these newer developments, the method applied in this paper cannot be 
pursued. In this case, inculcation or recommender algorithms remain the only alternatives 
for discovering new composers. Rutherford-Johnson (2017) in his Music after the Fall, 
offers a retrospective of modern composition and culture since 1989. The book also 
compiles several lists of composers and their compositions to listen to. On the other hand 
much research exists towards building algorithms that can suggest recommendations of 
new composers and music not included in a pre-existing database, in particular ‘semantic 
labeling’ of music that uses artificial intelligence on audio files.38 This highlights the very 
                                                 
38 ‘Semantic labeling’ of music applies artificial intelligence and uses supervised machine learning 
algorithms to build a model from two types of data, input and output (target) data. Audio features 
(input data) are first extracted from audio files of specific compositions through an automatic music 
transcription algorithm, while pre-defined tags or labels (output/target data) are assigned by music 
experts to the same set of compositions. (Tags’ or ‘labels’ are words that make sense to humans 
when describing music and are thus helpful when searching or browsing for music.) Hence, the 
‘training’ dataset contains examples of input-output pairs and the algorithm ‘learns’ relations 
between audio features and ‘tags’ or ‘labels’. Once the model has been trained, the algorithm 
(instead of music experts) can assign ‘outputs’ (tags or labels) to new inputs (audio features of 
compositions not included in the initial training data set) in what is referred to as a ‘test’ dataset. 
This procedure is thus useful for music recommendation of new compositions/composers, or to 
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relevance of a Music Information Retrieval research agenda based on audio files. Yet, 
computational analysis of music recordings is still a young field of research and, as 
mentioned by Weiss et al. (2018), ‘[e]xtracting score-like information from audio—
referred to as automatic music transcription—is a complex problem where state-of-the art 
systems do not show satisfactory performance in most scenarios.’ Weiss et al. (2018) also 
note that the audio processing algorithms needed to extract meaningful audio features are 
often error-prone and do not reach a high level of specificity regarding human analytical 
concepts. For example, notes specified by a musical score are hard to extract from a 
recording. Despite this caveat, automatic music transcription coupled with artificial 
intelligence and machine learning is both a challenging and exciting research area in terms 
of discovering new music. 

                                                 
establish similarities between a new composition and earlier compositions included in an initial 
training data set. For an introduction to semantic labeling of music, see Chapter 4 of Knees and 
Schedl (2016). 
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Table 1: Composers sorted by out-degree (top-20) 
 

Name rank birth year death year country period period_agg degree out_degree in_degree betweenness eigenvector # of compositions importance 

Stravinsky 16 1882 1971 Russian-French-American Modern Modern 144 123 21 0.030017 0.037016 26 4 

Debussy 14 1862 1918 French Late_Romantic Romantic 144 118 26 0.040403 0.030889 22 3 

Bach, JS 1 1685 1750 German Baroque Baroque 129 107 22 0.055674 0.000008 40 4 

Wagner 6 1813 1883 German Early_Romantic Romantic 128 107 21 0.017367 0.001421 16 3 

Beethoven 3 1770 1827 German Post_Classical Classical 117 101 16 0.015748 0.000204 48 4 

Mozart,  WA 2 1756 1791 Austrian Classical Classical 115 93 22 0.029102 0.000117 63 5 

Liszt 12 1811 1886 Hungarian-French-German Early_Romantic Romantic 98 76 22 0.014843 0.001625 21 5 

Chopin 10 1810 1849 Polish-French Early_Romantic Romantic 91 75 16 0.009932 0.000745 21 3 

Schumann, R 13 1810 1856 German Early_Romantic Romantic 87 75 12 0.005357 0.000782 26 4 

Ravel 20 1875 1937 French Modern Modern 97 75 22 0.033069 0.052783 26 2 

Schoenberg 34 1874 1951 Austrian-American Modern Modern 90 74 16 0.018357 0.020069 18 3 

Bartók 25 1881 1945 Hungarian Modern Modern 85 66 19 0.018553 0.062088 25 4 

Brahms 5 1833 1897 German Middle_Romantic Romantic 76 59 17 0.010778 0.000888 37 4 

Strauss, R 18 1864 1949 German Late_Romantic Romantic 64 52 12 0.00783 0.002044 20 4 

Mendelssohn 17 1809 1847 German Early_Romantic Romantic 64 47 17 0.005396 0.000435 23 4 

Berg 72 1885 1935 Austrian Modern Modern 56 44 12 0.003838 0.033721 10 2 

Webern 75 1883 1945 Austrian Modern Modern 53 41 12 0.007119 0.015274 9 2 

Berlioz 29 1803 1869 French Early_Romantic Romantic 50 40 10 0.001762 0.000316 14 3 

Haydn, J 9 1732 1809 Austrian Classical Classical 53 39 14 0.00525 0.000093 34 5 

Schubert 4 1797 1828 Austrian Early_Romantic Romantic 52 38 14 0.003684 0.000337 35 5 

Note to Tables 1-4:  Several columns in these tables refer to information obtained from the CMN, including year of birth and death of a composer and 
country/citizenship.  Ranking: The primary ranking of the CMN is based on scores received by composers on a combination of eleven (unweighted) 
variables such as the length of each composer entry in the Grove's Dictionary of Music, the total number of recordings referring to each composer, etc. See 
Smith (2000).  # of Compositions: This refers to the number of ‘Notable Works’ given in the CMN for each composer. Importance: The CMN gives a 
proxy for the ‘Quantity of Work Produced’ by a composer.  For example, the CMN has categories such as: ‘immense’, ‘extensive’, ‘considerable’, 
‘modest’, and ‘small’. In Tables 1-4, these labels have been associated with a number such as 5, 4, 3, 2 and 1, respectively.  When the CMN does not report 
information for the ‘Quantity of Work Produced’ by a composer, then the number associated here is 0.  
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Table 2: Composers sorted by in-degree (top-20) 
 

Name rank birth year death year country period period_agg degree out_degree in_degree betweenness eigenvector # of musical compositions importance 

Debussy 14 1862 1918 French Late_Romantic Romantic 144 118 26 0.040403 0.030889 22 3 

Bach, JS 1 1685 1750 German Baroque Baroque 129 107 22 0.055674 0.000008 40 4 

Mozart,  WA 2 1756 1791 Austrian Classical Classical 115 93 22 0.029102 0.000117 63 5 

Liszt 12 1811 1886 Hungarian-French-German Early_Romantic Romantic 98 76 22 0.014843 0.001625 21 5 

Ravel 20 1875 1937 French Modern Modern 97 75 22 0.033069 0.052783 26 2 

Shostakovich 27 1906 1975 Russian Modern Modern 45 23 22 0.024103 0.101246 19 4 

Prokofiev 28 1891 1953 Russian Modern Modern 38 16 22 0.005542 0.033041 21 4 

Stravinsky 16 1882 1971 Russian-French-American Modern Modern 144 123 21 0.030017 0.037016 26 4 

Wagner 6 1813 1883 German Early_Romantic Romantic 128 107 21 0.017367 0.001421 16 3 

Britten 26 1913 1976 British Modern Modern 28 8 20 0.015405 0.150192 18 3 

Bartók 25 1881 1945 Hungarian Modern Modern 85 66 19 0.018553 0.062088 25 4 

Ligeti 95 1923 2006 Hungarian-Austrian Modern Modern 20 1 19 0.000225 0.173536 8 2 

Handel 8 1685 1759 German-British Baroque Baroque 51 33 18 0.022522 0 23 5 

Messiaen 63 1908 1992 French Modern Modern 40 22 18 0.004534 0.07876 11 3 

Elgar 45 1857 1934 British Late_Romantic Romantic 30 12 18 0.002544 0.003239 13 4 

Brahms 5 1833 1897 German Middle_Romantic Romantic 76 59 17 0.010778 0.000888 37 4 

Mendelssohn 17 1809 1847 German Early_Romantic Romantic 64 47 17 0.005396 0.000435 23 4 

Penderecki 147 1933 2020 Polish Modern Modern 21 4 17 0.000602 0.197536 6 2 

Crumb 163 1929 -- American Modern Modern 19 2 17 0.000249 0.13741 5 2 

Ginastera 120 1916 1983 Argentinian Modern Modern 18 1 17 0.000232 0.197447 8 3 
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Table 3: Composers sorted by betweenness centrality (top-20) 
 

Name rank birth year death year country period period_agg degree out_degree in_degree betweenness eigenvector # of compositions importance 

Bach, JS 1 1685 1750 German Baroque Baroque 129 107 22 0.055674 0.000008 40 4 

Debussy 14 1862 1918 French Late_Romantic Romantic 144 118 26 0.040403 0.030889 22 3 

Ravel 20 1875 1937 French Modern Modern 97 75 22 0.033069 0.052783 26 2 

Stravinsky 16 1882 1971 Russian-French-American Modern Modern 144 123 21 0.030017 0.037016 26 4 

Mozart,  WA 2 1756 1791 Austrian Classical Classical 115 93 22 0.029102 0.000117 63 5 

Gershwin 30 1898 1937 American Modern Modern 20 13 7 0.026019 0.066307 8 3 

Shostakovich 27 1906 1975 Russian Modern Modern 45 23 22 0.024103 0.101246 19 4 

Handel 8 1685 1759 German-British Baroque Baroque 51 33 18 0.022522 0 23 5 

Bartók 25 1881 1945 Hungarian Modern Modern 85 66 19 0.018553 0.062088 25 4 

Schoenberg 34 1874 1951 Austrian-American Modern Modern 90 74 16 0.018357 0.020069 18 3 

Wagner 6 1813 1883 German Early_Romantic Romantic 128 107 21 0.017367 0.001421 16 3 

Sweelinck 192 1562 1621 Dutch Renaissance Renaissance 14 6 8 0.016239 0 0 4 

Beethoven 3 1770 1827 German Post_Classical Classical 117 101 16 0.015748 0.000204 48 4 

Britten 26 1913 1976 British Modern Modern 28 8 20 0.015405 0.150192 18 3 

Liszt 12 1811 1886 Hungarian-French-German Early_Romantic Romantic 98 76 22 0.014843 0.001625 21 5 

Palestrina 80 1525 1594 Italian Renaissance Renaissance 41 36 5 0.012841 0 9 4 

Brahms 5 1833 1897 German Middle_Romantic Romantic 76 59 17 0.010778 0.000888 37 4 

Purcell 40 1659 1695 British Baroque Baroque 19 6 13 0.010048 0 11 4 

Chopin 10 1810 1849 Polish-French Early_Romantic Romantic 91 75 16 0.009932 0.000745 21 3 

Schütz 89 1585 1672 German Baroque Baroque 20 11 9 0.008633 0 5 5 
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Table 4: Composers sorted by eigenvector centrality (top-20) 
 

Name rank birth year death year country period period_agg degree out_degree in_degree betweenness eigenvector # of musical compositions importance 

Górecki 287 1933 2010 Polish Modern Modern 14 0 14 0 0.201387 3 0 

Penderecki 147 1933 2020 Polish Modern Modern 21 4 17 0.000602 0.197536 6 2 

Ginastera 120 1916 1983 Argentinian Modern Modern 18 1 17 0.000232 0.197447 8 3 

Brouwer 281 1939 -- Cuban Modern Modern 9 0 9 0 0.181309 3 0 

Andriessen 360 1939 -- Dutch Modern Modern 12 0 12 0 0.17914 0 0 

Tan 454 1957 -- Chinese-American Modern Modern 11 0 11 0 0.178059 1 0 

Ligeti 95 1923 2006 Hungarian-Austrian Modern Modern 20 1 19 0.000225 0.173536 8 2 

Britten 26 1913 1976 British Modern Modern 28 8 20 0.015405 0.150192 18 3 

Bennett, RR 253 1936 2012 British Modern Modern 10 0 10 0 0.149939 0 0 

Kurtág 341 1926 -- Romanian-Hungarian Modern Modern 15 0 15 0 0.143342 1 0 

Crumb 163 1929 -- American Modern Modern 19 2 17 0.000249 0.13741 5 2 

Boulez 124 1925 2016 French Modern Modern 25 14 11 0.002293 0.13415 5 1 

Corigliano 230 1938 -- American Modern Modern 10 0 10 0 0.129607 3 0 

Cage 59 1912 1992 American Modern Modern 35 22 13 0.004594 0.12613 6 3 

Adams 191 1947 -- American Modern Modern 13 0 13 0 0.12326 6 2 

Birtwistle 244 1934 -- British Modern Modern 9 0 9 0 0.122441 0 0 

Bolcom 183 1938 -- American Modern Modern 9 0 9 0 0.122106 0 3 

Takemitsu 126 1930 1996 Japanese Modern Modern 10 1 9 0.000052 0.118251 4 3 

Carter 110 1908 2012 American Modern Modern 18 2 16 0.000385 0.11761 8 3 

Nyman 311 1944 -- British Modern Modern 11 0 11 0 0.115754 2 0 
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Figure 1: Composers’ influence network.  ForceAtlas2 algorithm 

 
Note:  Blue = Medieval and Renaissance; Green = Baroque; Red = Classical; Cyan = Romantic; Magenta = 20th century 
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Figure 2: Composers’ influence network.  The Fruchterman and Rheingold algorithm 

 
Note: Blue = Medieval and Renaissance; Green = Baroque; Red = Classical; Cyan = Romantic; Magenta = 20th century 
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Figure 3(a): 20th Century composers’ network.  Colour code by citizenship.  ForceAtlas2 algorithm 

 
Note:  ‘Red’: Americans; ‘Hotpink’: British; ‘Green’: Austrians; ‘Yellowgreen’: Germans; ‘Blue’: French; ‘Deepskyblue’: North-Europeans; ‘Cyan’: 
Russians; ‘Magenta’: Italians; ‘Gold’: South-Americans; ‘Yellow’: Spanish; ‘Darkorange’: Central-Europeans; ‘Teal’: Other Nationalities. 
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Figure 3(b): 20th Century composers’ network.  Colour code by style.  ForceAtlas2 algorithm 
 

 
Note: Late Romantic: deepskyblue; Light Classical: lightblue; Impressionist: blue; Nationalist: gray; Vernacularist: blueviolet; Expressionist: magenta; 
Serial: pink; Neoclassical: forestgreen; Avant-Garde:  saddlebrown; Experimentalist: sandybrown; Mystical: yellow; Eclectic: gold; Neoromantic: 
springgreen; Minimalist: cyan.  
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Figure 3(c): 20th Century composers’ network.  Colour code by style.  Zoom level 1.  ForceAtlas2 algorithm 

 

 
Note: Late Romantic: deepskyblue; Light Classical: lightblue; Impressionist: blue; Nationalist: gray; Vernacularist: blueviolet; Expressionist: magenta; 
Serial: pink; Neoclassical: forestgreen; Avant-Garde:  saddlebrown; Experimentalist: sandybrown; Mystical: yellow; Eclectic: gold; Neoromantic: 
springgreen; Minimalist: cyan. 
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Figure 3(d): 20th Century composers’ network.  Colour code by gender and race.  ForceAtlas2 algorithm 

 
Note 1: Blue for men, fuchsia for women, gold for African-American and African-European composers, green for some Latin-American composers. 
Women: L. Boulanger, Beach, Clarke, Larsen, Tailleferre, Tower, Zwilich, Gubaidulina, Musgrave, Crawford, Oliveros, and Monk.  
African-American/-European composers: Samuel Coleridge-Taylor (English), William Grant Still, Scott Joplin, and George Walker.  
Latin-American:  Leo Brouwer (Afro-Cuban); Agustin Barrios (Paraguay); Carlos Chavez, Silvestre Revueltas, Agustin Lara, and Manuel Ponce (Mexico); 
M. Camargo Guarnieri and Heitor Villa-Lobos (Brazil); Alberto Ginastera and Astor Piazzolla (Argentina); Antonio Lauro (Venezuela). 
Note 2: Lauro, Lara, and Barrios are too far off the center of the map to be shown here.  
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Figure 4: Heat map for 500 composers 
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Table 5: Most similar composers to the top 20 composers* (after the CMN site) 

 
COMPOSER 15 COMPOSERS MOST SIMILAR TO   
1. JS Bach Buxtehude .43; Pachelbel .43; Handel .42; Telemann .38; Böhm .37; F Couperin .34; Vivaldi .33; Biber .33; Bruhns .32; CPE Bach .32; Weiss .32; Scheidt .31; 

Leclair .31; Muffat .30; Fux .30      
2. Mozart J Haydn .46; Beethoven .39; JC Bach .38; Cimarosa .32; Salieri .32; Boccherini .29; Dittersdorf .29; Gluck .29; Schubert .27; Weber .26; Cherubini .24; CPE Bach 

.22; Paisiello .22; M Haydn .21; Brahms .20     
3. Beethoven Schubert .46; Hummel .45; J Haydn .43; Mendelssohn .43; Mozart .39; Dussek .34; Reicha .33; Brahms .33; Weber .32; Rossini .31; Spohr .31; M Haydn .30; 

Cherubini .30; Clementi .29; Field .29     
4. Schubert Rossini .47; Beethoven .46; Mendelssohn .43; Spohr .38; Berlioz .36; Reicha .33; Liszt .33; Weber .32; Carulli .31; Méhul .30; Hummel .30; Kuhlau .29; Giuliani .29; 

R Schumann .28; Mayr .27     
5. Brahms Dvorák .49; R Schumann .42; Bruch .41; Liszt .40; Fauré .39; Mendelssohn .39; Elgar .38; C Schumann .35; Grieg .34; Franck .34; Mahler .34; Goldmark .33; 

Rheinberger .33; Beethoven .33; Franz .32     
6. Wagner Nicolai .50; Smetana .45; Gounod .44; Meyerbeer .44; Verdi .43; Glinka .43; Berwald .42; Thomas .38; Donizetti .38; Berlioz .37; Goldmark .36; Alkan .36; Lortzing 

.36; Boieldieu .34; Weber .34     
7. Verdi Gounod .52; Donizetti .46; Wagner .43; Nicolai .41; Berlioz .40; Bruckner .36; Bellini .36; Boito .36; Meyerbeer .35; Mercadante .33; Glinka .33; Offenbach .32; Liszt 

.31; Elgar .31; Ponchielli .31     
8. Handel Vivaldi .46; JS Bach .42; Purcell .39; Telemann .36; Blow .36; Albinoni .33; Stradella .31; Geminiani .31; Zelenka .30; Bononcini .30; Pergolesi .29; Biber .29; A 

Scarlatti .28; Rameau .28; Leclair .28      
9. J Haydn Mozart .46; Beethoven .43; M Haydn .37; Dittersdorf .32; JC Bach .30; Boccherini .26; CPE Bach .26; Dussek .25; Hummel .24; Cimarosa .23; Handel .22; 

Clementi .21; Gluck .20; Schubert .20; Zelenka .19     
10. Chopin Alkan .46; Liszt .42; Field .39; Czerny .38; R Schumann .37; Wagner .32; Berwald .32; Glinka .31; Meyerbeer .29; Nicolai .29; Thomas .29; Busoni .29; Franck .28; 

Mendelssohn-Hensel .28; Mendelssohn .27     
11. Tchaikovsky Balakirev .54; Borodin .51; Rimsky-Korsakov .50; Rubinstein .46; Mussorgsky .46; Cui .41; Saint-Saëns .39; Arensky .38; Smetana .37; Elgar .36; Dvorák .36; 

Chabrier .33; Massenet .33; Raff .32; Dargomïzhsky .32     
12. Liszt Franck .48; Chopin .42; Mendelssohn .42; Alkan .42; Mahler .41; Brahms .40; Gounod .38; R Schumann .37; Raff .36; Wolf .35; Berlioz .35; Rheinberger .34; 

Balakirev .34; Bruckner .34; Reger .34     
13. R Schumann C Schumann .43; Brahms .42; Mendelssohn .40; Mendelssohn-Hensel .38; Liszt .37; Chopin .37; Gade .34; Berwald .34; Fauré .33; Alkan .33; Rubinstein .31; Raff 

.29; Mahler .29; Schubert .28; Bruch .27     
14. Debussy Ravel .52; Granados .41; Roussel .39; Fauré .39; Koechlin .39; Duparc .35; Chausson .33; Dukas .33; Schmitt .33; Falla .33; Chaminade .31; Rachmaninov .30; 

Borodin .30; Prokofiev .29; Ibert .29     
15. Puccini Leoncavallo .69; Giordano .64; Mascagni .63; Boito .48; Cilea .45; Ponchielli .43; G Charpentier .40; Wolf-Ferrari .37; Malipiero .30; Massenet .30; Mendelssohn-

Hensel .29; Smetana .28; Griffes .27; Pizzetti .27; Bizet .27     
16. Stravinsky Honegger .39; Prokofiev .37; Ravel .34; Shostakovich .33; Berg .31; Hindemith .31; Mompou .29; Glière .29; Dallapiccola .29; Harris .28; Kabalevsky .28; Varèse 

.28; Tippett .28; Janácek .28; Schoenberg .27      
17. Mendelssohn Beethoven .43; Schubert .43; Liszt .42; R Schumann .40; Brahms .39; Spohr .36; Berlioz .35; Berwald .34; Mendelssohn-Hensel .33; Rheinberger .33; Alkan .32; C 

Schumann .32; Loewe .31; Field .30; Clementi .30     
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18. R Strauss Mahler .46; Dvorák .42; Raff .37; Pfitzner .37; Schoenberg .37; Stenhammar .34; Reinecke .34; Wolf .33; Zemlinsky .31; Elgar .31; Cui .31; Reger .30; Smetana 
.30; Sinding .30; Grieg .29     

19. Mahler Wolf .63; Goldmark .46; R Strauss .46; Parry .44; Stenhammar .43; Gade .43; Raff .42; Liszt .41; Schoenberg .40; Stanford .39; Reger .39; Bruckner .38; 
Rheinberger .38; Pfitzner .37; Franz .36     

20. Ravel Debussy .52; Fauré .46; Prokofiev .40; Janácek .39; Poulenc .38; Schmitt .36; Koechlin .35; Moszkowski .35; Falla .35; Ibert .35; Granados .34; Roussel .34; 
Stravinsky .34; Chausson .33; Milhaud .33     
*Note: The number following each individual composer in each of the top-15 most similar lists is the centralised cosine similarity score obtained from Eq. (1). 
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Figure 5: Multidimensional scaling analysis (MDS) using bilateral distances between composers 
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Figure 6: Support vector machines on MDS map — 500 composers with emphasis on the ‘Macrocosm’ of the Common Practice Period 
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Figure 7: K-Nearest Neighbors on MDS map — 500 composers with emphasis on the ‘Macrocosm’ of the Common Practice Period 
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Figure 8: Support vector machines on MDS map — 500 composers with emphasis on 20th century composers and overfitting— 
The ‘microcosms’ of 20th century classical music 
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Figure 9: SVM on MDS map — 500 composers with emphasis on 20th century composers and less overfitting 
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Figure 10: SVM on MDS map — 500 composers with emphasis on 20th century composers – The ‘in between’ case 
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Figure 11: Dendrogram for 20th century composers 
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 Appendix. Shortest paths from any composers to Debussy 
 

1 step (direct influences on Debussy) 
[' Bach, JS', ' Debussy'] 
[' Wagner', ' Debussy'] 
[' Chopin', ' Debussy'] 

[' Tchaikovsky', ' Debussy'] 
[' Liszt', ' Debussy'] 

[' Schumann, R', ' Debussy'] 
[' Ravel', ' Debussy'] 
[' Faure', ' Debussy'] 
[' Grieg', ' Debussy'] 

[' Rimsky-Korsakov', ' Debussy'] 
[' Mussorgsky', ' Debussy'] 

[' Franck', ' Debussy'] 
[' Gounod', ' Debussy'] 

[' Massenet', ' Debussy'] 
[' Satie', ' Debussy'] 

[' Borodin', ' Debussy'] 
[' Rameau', ' Debussy'] 
[' Albeniz', ' Debussy'] 

[' Couperin, F', ' Debussy'] 
[' Joplin', ' Debussy'] 

[' Delibes', ' Debussy'] 
[' Chausson', ' Debussy'] 

[' Lalo', ' Debussy'] 
[' Chabrier', ' Debussy'] 
[' Dukas', ' Debussy'] 
[' Alkan', ' Debussy'] 

 
2 steps 

[' Mozart, WA', ' Wagner', ' Debussy'] 
[' Beethoven', ' Wagner', ' Debussy'] 

[' Schubert', ' Liszt', ' Debussy'] 
[' Brahms', ' Chausson', ' Debussy'] 
[' Verdi', ' Mussorgsky', ' Debussy'] 
[' Handel', ' Bach, JS', ' Debussy'] 

[' Puccini', ' Ravel', ' Debussy'] 
[' Stravinsky', ' Ravel', ' Debussy'] 

[' Mendelssohn', ' Wagner', ' Debussy'] 
[' Strauss, R', ' Ravel', ' Debussy'] 
[' Vivaldi', ' Bach, JS', ' Debussy'] 
[' Rossini', ' Wagner', ' Debussy'] 
[' Berlioz', ' Wagner', ' Debussy'] 
[' Gershwin', ' Ravel', ' Debussy'] 

[' Schoenberg', ' Ravel', ' Debussy'] 
[' Telemann', ' Bach, JS', ' Debussy'] 
[' Bizet', ' Tchaikovsky', ' Debussy'] 
[' Donizetti', ' Chopin', ' Debussy'] 
[' Saint-Saens', ' Ravel', ' Debussy'] 

[' Weber', ' Wagner', ' Debussy'] 
[' Bellini', ' Wagner', ' Debussy'] 

[' Scarlatti, D', ' Bach, JS', ' Debussy'] 
[' Gluck', ' Wagner', ' Debussy'] 

[' Paganini', ' Chopin', ' Debussy'] 
[' Palestrina', ' Bach, JS', ' Debussy'] 

[' Schutz', ' Bach, JS', ' Debussy'] 
[' Corelli', ' Bach, JS', ' Debussy'] 

[' Meyerbeer', ' Wagner', ' Debussy'] 
[' Buxtehude', ' Bach, JS', ' Debussy'] 
[' Glinka', ' Tchaikovsky', ' Debussy'] 
[' Pachelbel', ' Bach, JS', ' Debussy'] 

[' Lully', ' Bach, JS', ' Debussy'] 
[' Charpentier, M-A', ' Couperin, F', ' Debussy'] 

[' Frescobaldi', ' Bach, JS', ' Debussy'] 
[' Hummel', ' Chopin', ' Debussy'] 

[' Albinoni', ' Bach, JS', ' Debussy'] 
[' Schumann, C', ' Schumann, R', ' Debussy'] 

[' Spohr', ' Wagner', ' Debussy'] 
[' Sarasate', ' Albeniz', ' Debussy'] 
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[' Clementi', ' Chopin', ' Debussy'] 
[' Cherubini', ' Wagner', ' Debussy'] 

[' Rubinstein', ' Tchaikovsky', ' Debussy'] 
[' Gottschalk', ' Joplin', ' Debussy'] 

[' Roussel', ' Satie', ' Debussy'] 
[' Sweelinck', ' Bach, JS', ' Debussy'] 

[' Balakirev', ' Tchaikovsky', ' Debussy'] 
[' Thomas', ' Massenet', ' Debussy'] 

[' Marais', ' Couperin, F', ' Debussy'] 
[' Mendelssohn-Hensel', ' Gounod', ' Debussy'] 

[' Salieri', ' Liszt', ' Debussy'] 
[' Loewe', ' Wagner', ' Debussy'] 
[' Field', ' Chopin', ' Debussy'] 
[' Reicha', ' Liszt', ' Debussy'] 

[' Adam', ' Massenet', ' Debussy'] 
[' Gade', ' Grieg', ' Debussy'] 
[' Indy', ' Satie', ' Debussy'] 

[' Duparc', ' Chausson', ' Debussy'] 
[' Hasse', ' Bach, JS', ' Debussy'] 
[' Torelli', ' Bach, JS', ' Debussy'] 

[' Carissimi', ' Couperin, F', ' Debussy'] 
[' Lortzing', ' Wagner', ' Debussy'] 
[' Cavalli', ' Rameau', ' Debussy'] 

[' Zelenka', ' Bach, JS', ' Debussy'] 
[' Froberger', ' Bach, JS', ' Debussy'] 

[' Halevy', ' Wagner', ' Debussy'] 
[' Gretry', ' Franck', ' Debussy'] 
[' Czerny', ' Liszt', ' Debussy'] 

[' Raff', ' Tchaikovsky', ' Debussy'] 
[' Dargomizhsky', ' Rimsky-Korsakov', ' Debussy'] 

[' Reinecke', ' Grieg', ' Debussy'] 
[' Spontini', ' Wagner', ' Debussy'] 
[' Dussek', ' Chopin', ' Debussy'] 

[' Couperin, L', ' Couperin, F', ' Debussy'] 
[' Lalande', ' Couperin, F', ' Debussy'] 

[' Lotti', ' Bach, JS', ' Debussy'] 
[' Auber', ' Wagner', ' Debussy'] 

[' Bononcini', ' Rameau', ' Debussy'] 
[' Allegri', ' Liszt', ' Debussy'] 

[' Bohm', ' Bach, JS', ' Debussy'] 
[' Mehul', ' Wagner', ' Debussy'] 

[' Legrenzi', ' Bach, JS', ' Debussy'] 
[' Bruhns', ' Bach, JS', ' Debussy'] 

[' Hartmann, JPE', ' Grieg', ' Debussy'] 
 

3 steps 
[' Haydn, J', ' Mozart, WA', ' Wagner', ' Debussy'] 

[' Mahler', ' Schoenberg', ' Ravel', ' Debussy'] 
[' Dvorak', ' Schoenberg', ' Ravel', ' Debussy'] 

[' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 
[' Purcell', ' Handel', ' Bach, JS', ' Debussy'] 

[' Bruckner', ' Strauss, R', ' Ravel', ' Debussy'] 
[' Strauss, J_Jr', ' Strauss, R', ' Ravel', ' Debussy'] 
[' Monteverdi', ' Schutz', ' Bach, JS', ' Debussy'] 
[' Scriabin', ' Stravinsky', ' Ravel', ' Debussy'] 

[' Bach, CPE', ' Mozart, WA', ' Wagner', ' Debussy'] 
[' Wolf', ' Schoenberg', ' Ravel', ' Debussy'] 

[' Byrd', ' Sweelinck', ' Bach, JS', ' Debussy'] 
[' Berg', ' Gershwin', ' Ravel', ' Debussy'] 

[' Webern', ' Stravinsky', ' Ravel', ' Debussy'] 
[' Offenbach', ' Bizet', ' Tchaikovsky', ' Debussy'] 

[' Lasso', ' Charpentier, M-A', ' Couperin, F', ' Debussy'] 
[' Josquin', ' Palestrina', ' Bach, JS', ' Debussy'] 
[' Milhaud', ' Gershwin', ' Ravel', ' Debussy'] 
[' Reger', ' Schoenberg', ' Ravel', ' Debussy'] 
[' Mascagni', ' Puccini', ' Ravel', ' Debussy'] 

[' Scarlatti, A', ' Handel', ' Bach, JS', ' Debussy'] 
[' Dowland', ' Sweelinck', ' Bach, JS', ' Debussy'] 

[' Busoni', ' Schoenberg', ' Ravel', ' Debussy'] 
[' Lehar', ' Puccini', ' Ravel', ' Debussy'] 
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[' Boccherini', ' Mozart, WA', ' Wagner', ' Debussy'] 
[' Bach, JC', ' Mozart, WA', ' Wagner', ' Debussy'] 

[' Glazunov', ' Stravinsky', ' Ravel', ' Debussy'] 
[' Boito', ' Verdi', ' Mussorgsky', ' Debussy'] 

[' Pergolesi', ' Mozart, WA', ' Wagner', ' Debussy'] 
[' Gabrieli, G', ' Schutz', ' Bach, JS', ' Debussy'] 
[' Victoria', ' Palestrina', ' Bach, JS', ' Debussy'] 

[' Cowell', ' Gershwin', ' Ravel', ' Debussy'] 
[' Haydn, M', ' Mozart, WA', ' Wagner', ' Debussy'] 

[' Tartini', ' Mozart, WA', ' Wagner', ' Debussy'] 
[' Machaut', ' Stravinsky', ' Ravel', ' Debussy'] 
[' Ponchielli', ' Puccini', ' Ravel', ' Debussy'] 

[' Gesualdo', ' Stravinsky', ' Ravel', ' Debussy'] 
[' Zemlinsky', ' Schoenberg', ' Ravel', ' Debussy'] 

[' Cimarosa', ' Mozart, WA', ' Wagner', ' Debussy'] 
[' Praetorius, M', ' Schutz', ' Bach, JS', ' Debussy'] 
[' Scheidt', ' Buxtehude', ' Bach, JS', ' Debussy'] 

[' Paisiello', ' Mozart, WA', ' Wagner', ' Debussy'] 
[' Giuliani', ' Schubert', ' Liszt', ' Debussy'] 

[' Caldara', ' Handel', ' Bach, JS', ' Debussy'] 
[' Gabrieli, A', ' Pachelbel', ' Bach, JS', ' Debussy'] 

[' Galuppi', ' Salieri', ' Liszt', ' Debussy'] 
[' Locatelli', ' Paganini', ' Chopin', ' Debussy'] 
[' Fux', ' Mozart, WA', ' Wagner', ' Debussy'] 
[' Marenzio', ' Schutz', ' Bach, JS', ' Debussy'] 

[' Kuhlau', ' Hartmann, JPE', ' Grieg', ' Debussy'] 
[' Geminiani', ' Paganini', ' Chopin', ' Debussy'] 

[' Quantz', ' Hasse', ' Bach, JS', ' Debussy'] 
[' Mercadante', ' Verdi', ' Mussorgsky', ' Debussy'] 

[' Schein', ' Schutz', ' Bach, JS', ' Debussy'] 
[' Bull', ' Sweelinck', ' Bach, JS', ' Debussy'] 
[' Hassler', ' Schutz', ' Bach, JS', ' Debussy'] 

[' Willaert', ' Palestrina', ' Bach, JS', ' Debussy'] 
[' Stradella', ' Handel', ' Bach, JS', ' Debussy'] 

[' Morales', ' Palestrina', ' Bach, JS', ' Debussy'] 
[' Cabezon', ' Sweelinck', ' Bach, JS', ' Debussy'] 
[' Caccini', ' Frescobaldi', ' Bach, JS', ' Debussy'] 

[' Schmitt', ' Stravinsky', ' Ravel', ' Debussy'] 
[' Viotti', ' Mozart, WA', ' Wagner', ' Debussy'] 

[' Rore', ' Palestrina', ' Bach, JS', ' Debussy'] 
[' Mayr', ' Rossini', ' Wagner', ' Debussy'] 

[' Sammartini, GB', ' Mozart, WA', ' Wagner', ' Debussy'] 
[' Danzi', ' Weber', ' Wagner', ' Debussy'] 

[' Muffat', ' Handel', ' Bach, JS', ' Debussy'] 
[' Jommelli', ' Mozart, WA', ' Wagner', ' Debussy'] 

[' Boieldieu', ' Weber', ' Wagner', ' Debussy'] 
[' Philips', ' Sweelinck', ' Bach, JS', ' Debussy'] 

[' Piccinni', ' Mozart, WA', ' Wagner', ' Debussy'] 
[' Stamitz, J', ' Mozart, WA', ' Wagner', ' Debussy'] 
[' Martini', ' Mozart, WA', ' Wagner', ' Debussy'] 

 
4 steps 

[' Bartok', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 
[' Britten', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 

[' Prokofiev', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 
[' Ives', ' Cowell', ' Gershwin', ' Ravel', ' Debussy'] 

[' Hindemith', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 
[' Villa-Lobos', ' Milhaud', ' Gershwin', ' Ravel', ' Debussy'] 
[' Weill', ' Zemlinsky', ' Schoenberg', ' Ravel', ' Debussy'] 
[' Smetana', ' Dvorak', ' Schoenberg', ' Ravel', ' Debussy'] 

[' Nielsen', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 
[' Delius', ' Schmitt', ' Stravinsky', ' Ravel', ' Debussy'] 

[' Dufay', ' Josquin', ' Palestrina', ' Bach, JS', ' Debussy'] 
[' Gibbons, O', ' Purcell', ' Handel', ' Bach, JS', ' Debussy'] 

[' Krenek', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 
[' Herbert', ' Dvorak', ' Schoenberg', ' Ravel', ' Debussy'] 

[' Tallis', ' Purcell', ' Handel', ' Bach, JS', ' Debussy'] 
[' Strauss, J_Sr', ' Strauss, J_Jr', ' Strauss, R', ' Ravel', ' Debussy'] 
[' Strauss, Jos', ' Strauss, J_Jr', ' Strauss, R', ' Ravel', ' Debussy'] 

[' Ockeghem', ' Josquin', ' Palestrina', ' Bach, JS', ' Debussy'] 
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[' Biber', ' Muffat', ' Handel', ' Bach, JS', ' Debussy'] 
[' Morley', ' Dowland', ' Sweelinck', ' Bach, JS', ' Debussy'] 

[' Blow', ' Purcell', ' Handel', ' Bach, JS', ' Debussy'] 
[' Isaac', ' Webern', ' Stravinsky', ' Ravel', ' Debussy'] 

[' Koechlin', ' Milhaud', ' Gershwin', ' Ravel', ' Debussy'] 
[' Tomkins', ' Philips', ' Sweelinck', ' Bach, JS', ' Debussy'] 
[' Flotow', ' Offenbach', ' Bizet', ' Tchaikovsky', ' Debussy'] 

[' Marcello', ' Martini', ' Mozart, WA', ' Wagner', ' Debussy'] 
[' Dittersdorf', ' Haydn, J', ' Mozart, WA', ' Wagner', ' Debussy'] 

[' Lyadov', ' Scriabin', ' Stravinsky', ' Ravel', ' Debussy'] 
[' Arensky', ' Scriabin', ' Stravinsky', ' Ravel', ' Debussy'] 

[' Locke', ' Purcell', ' Handel', ' Bach, JS', ' Debussy'] 
[' Schreker', ' Berg', ' Gershwin', ' Ravel', ' Debussy'] 
[' Lawes', ' Purcell', ' Handel', ' Bach, JS', ' Debussy'] 

[' Taneyev', ' Scriabin', ' Stravinsky', ' Ravel', ' Debussy'] 
[' Obrecht', ' Josquin', ' Palestrina', ' Bach, JS', ' Debussy'] 

[' Holborne', ' Dowland', ' Sweelinck', ' Bach, JS', ' Debussy'] 
[' Taverner', ' Byrd', ' Sweelinck', ' Bach, JS', ' Debussy'] 
[' Billings', ' Cowell', ' Gershwin', ' Ravel', ' Debussy'] 

[' Gombert', ' Morales', ' Palestrina', ' Bach, JS', ' Debussy'] 
[' Schmelzer', ' Fux', ' Mozart, WA', ' Wagner', ' Debussy'] 

[' Ruggles', ' Cowell', ' Gershwin', ' Ravel', ' Debussy'] 
[' Clemens', ' Byrd', ' Sweelinck', ' Bach, JS', ' Debussy'] 

 
5 steps 

[' Rachmaninov', ' Prokofiev', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 
[' Copland', ' Britten', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 

[' Sullivan', ' Herbert', ' Dvorak', ' Schoenberg', ' Ravel', ' Debussy'] 
[' Kodaly', ' Bartok', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 
[' Walton', ' Britten', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 
[' Holst', ' Britten', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 

[' Varese', ' Ruggles', ' Cowell', ' Gershwin', ' Ravel', ' Debussy'] 
[' Humperdinck', ' Weill', ' Zemlinsky', ' Schoenberg', ' Ravel', ' Debussy'] 

[' Bridge', ' Britten', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 
[' Gliere', ' Prokofiev', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 
[' Ireland', ' Britten', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 

[' Berwald', ' Nielsen', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 
[' Weelkes', ' Tomkins', ' Philips', ' Sweelinck', ' Bach, JS', ' Debussy'] 

[' Miaskovsky', ' Prokofiev', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 
[' Binchois', ' Dufay', ' Josquin', ' Palestrina', ' Bach, JS', ' Debussy'] 

[' Svendsen', ' Nielsen', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 
[' Chadwick', ' Ives', ' Cowell', ' Gershwin', ' Ravel', ' Debussy'] 

[' Sinding', ' Delius', ' Schmitt', ' Stravinsky', ' Ravel', ' Debussy'] 
[' Dunstable', ' Dufay', ' Josquin', ' Palestrina', ' Bach, JS', ' Debussy'] 

 
6 steps 

[' Sibelius', ' Walton', ' Britten', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 
[' Vaughan Williams', ' Holst', ' Britten', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 

[' Elgar', ' Walton', ' Britten', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 
[' Stanford', ' Holst', ' Britten', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 

[' Widor', ' Varese', ' Ruggles', ' Cowell', ' Gershwin', ' Ravel', ' Debussy'] 
[' Thomson', ' Copland', ' Britten', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 
[' Chavez', ' Copland', ' Britten', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 
[' Rheinberger', ' Chadwick', ' Ives', ' Cowell', ' Gershwin', ' Ravel', ' Debussy'] 

[' Medtner', ' Rachmaninov', ' Prokofiev', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 
 

7 steps 
[' Ponce', ' Chavez', ' Copland', ' Britten', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 

[' Parry', ' Vaughan Williams', ' Holst', ' Britten', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 
[' Butterworth', ' Vaughan Williams', ' Holst', ' Britten', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 

[' Goldmark', ' Sibelius', ' Walton', ' Britten', ' Shostakovich', ' Gershwin', ' Ravel', ' Debussy'] 
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Appendix 2:  The CSC similarity measure computed as the Pearson correlation 
coefficient r between Boolean vectors 

 
From discussion in Section 3, the centralised cosine similarity measure is: 
(A2.1)   ))()()(()(, dbcadcbabcadCSC ji ++++−=  
where a, b, c, d are counts of attributes for the pair of composers (i,j) as illustrated in the 
count table below. Attributes are the 298 ecological characteristics, plus 42 style influences 
and 500 personal musical influences.  So the total number of attributes is nk = 840.  We can 
also represent the issue with a set diagram as in Figure A2.1. Note that if we focused only 
on some attributes, say, the 298 ecological features, then nk = 298. 
 

Table A2.1: 2 by 2 frequency table for Presence/Absence of composer attributes using 
counts 

  
 Composer j 

Composer i 

 Presence Absence Total 
Presence a b a+b 
Absence c d c+d 

Total a+c b+d nk 

 
 

Figure A2.1: Set diagram (see text for explanation) 
 
 

 
 
Although the centralised cosine formula in Eq. (A2.1) is based on counts of 
presence/absence of attributes as Table A2.1 and Figure A2.1 underlie, we can obtain this 
formula, perhaps more conventionally, as follows. Consider each composer i as a 1kn ×
Boolean vector of 0’s and 1’s.  That is, if an attribute k among the nk possible attributes 
belongs to i, then the kth component of the vector corresponding to composer i is set equal 
to 1, otherwise it is set equal to 0. The centralised cosine similarity measure for a pair of 
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composers (i, j), each represented by their own Boolean vectors Bi and Bj, can then be 
computed as: 

(A2.2)    
( ) ( )
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where subscript k in Bk,i indicates the kth component (of value 1 or 0) of vector Bi. Assuming 

that ,1
(1 ) kn

i k ik k
B n B

=
= ∑ and ,1

(1 ) kn
j k jk k

B n B
=

= ∑ , the centralised cosine measure is 
the cosine measure computed on the centralised vectors, with respect to the mean (average) 
vectors. That is, without centralisation, we would have the ordinary cosine measure: 
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With centralisation, Eq. (A2.2) is, in fact, the formula for the Pearson correlation 
coefficient applied, here, on Boolean vectors.  We can establish the link between (A2.2) 
and (A2.1) as follows. Note that in terms of our notation in the presence-absence Table 
A2.1 (and given that Boolean vectors are made of 0’s and 1’s) we have that: 
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Rewriting Eq. (A2.2) as: 
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and substituting the notations above, we obtain after some algebraic simplifications, that: 
(A2.4) 
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Doing the same type of algebraic simplifications for the cosine measure in Eq. (A2.3), we 
obtain: 

(A2.5)    
))((, caba

aCOS ji
++

= . 
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The ordinary (non-centralised) cosine similarity measure (also known as the Salton’s 
measure) is a statistic familiar to bibliometrics and scientometrics. The idea was 
mathematically formalized by Sen and Gan (1983) and later extended by Glänzel and 
Czerwon (1996) who also applied the methodology. Egghe and Leydesdorff (2009) show 
that there is no pure functional relation between the Pearson correlation coefficient r (or 
CSC), and the ordinary cosine measure (COS). However, they establish that the cloud of 
points (COS, r)  can be described by a sheaf of increasing straight lines whose slope 
decreases, the higher the straight line is in the sheaf. Smith et al. (2015) show that there is 
a quadratic relation between the centralised cosine measure and the chi-square 
statistic/binomial index of dispersion (BID) (a traditional association measure) so that: 
(A2.6)  2

,, jiji nCSCBID =  = [ ]2( ) ( )( )( )( )n ad bc a b c d a c b d− + + + + . 
See Hayek (1994) for formulas of up to 46 coefficients on measures of association, 
including similarity coefficients (Simpson, Kulczynski, Dice, Jaccard, etc.), matching 
coefficients (Sokal-Sneath, Russell-Rao, Sneath, etc.) and traditional association measures 
(chi-square statistic/binomial index of dispersion, coefficient of mean square contingency, 
Phi coefficient, Pearce, etc.)  Smith and Georges (2014) compare some of these indices for 
the CMN database. 
 
Some intuition for the centralised cosine formula in Eq. (A2.4) may be provided as follows 
using Table A2.1.  If no association exists between composers i and j, the proportion of 
attributes of composer i in the overall database of attributes (nk) should be equal to 1) the 
proportion of attributes of i which are also attributes of j in the overall set of attributes of j 
and 2) the proportion of attributes of i which are not attributes of j in the overall set of 
attributes which do not belong to j. That is, 
(A2.6)    ( ) / / ( ) / ( )ka b n a a c b b d+ = + = + . 
Assuming for example that i = J.S. Bach and j = Mozart, we say that there is no association 
between Bach and Mozart in the case where, say, 5% of the total attributes (nk) in the 
database relate to Bach (a+b) (the first term) and then, when observing attributes of Mozart 
(a+c), we find that 5% of these attributes are also attributes of Bach (a) (the second term), 
and that 5% of those attributes that do not relate to Mozart (b+d) nevertheless relate to 
Bach (b) (the third term).  However, a positive association between Bach and Mozart is 
inferred if we find that the first, second and third terms have values of, say, 5%, 9%, and 
1%. 
 
We can rewrite Eq. (A2.6) as: ( ) / / ( ) / ( )ka b n a a c b b d+ = + = + , so that

( )( ) / ka a b a c n= + +  or: / (( ) / )(( ) / )k k ka n a b n a c n= + + ; that is, when two 
composers are independent (lack of association), the proportion or frequency of joint 
attributes (a/nk) is equivalent to the product of the proportions (a+b)/nk and (a+c)/nk (that 
is, the proportion of attributes in the database which relate to i and the proportion of 
attributes that relate to j). If the observed frequency is greater than the one expected under 
independence, then the two composers may be said to be positively associated. Thus, if 
composers i and j are associated, then: ncabaa /))(( ++≠ k, and the difference could be 
written as: 
(A2.7) ( )( ) / ( / )( ) / ( ) /k k k k kD a a b a c n a n n a b c bc n ad bc n= − + + = − − − − = − . 
This term D, or some variation of it, is found in the formula for calculating the centralised 
cosine as in Eq. (A2.4) or the chi-square statistic/binomial index of dispersion as in Eq. 
(A2.6).
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Graphical Appendix – Supplementary graphs 
 

Figure A1: 20th Century composers’ network.  Colour code by age groups.  ForceAtlas2 algorithm 

 
Note:  Cyan for the late Romantic composers; magenta for those born 1870-1899; blue for those born 1900-1929; and red for those born in 1930 and after. 
See Footnote 9 for further explanations. 
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Figure A2: MDS in a ‘3-dimension’ graph 
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Figure A3: MDS using bilateral distances between 20th century composers 
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Figure A4: SVM on MDS map for 20th century composers and overfitting.   The ‘microcosms’ of 20th century classical music 
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Figure A5: SVM on MDS map for 20th century composers and less overfitting 
 

 
 

Note: The graph misses minimalists and nationalists 
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Figure A6: SVM on MDS map for 20th century composers – The ‘in between’ case 
 

 
 

Note: The graphs shows zones with minimalists and nationalists 
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Figure A7: Clusters of 20th century composers (based on Figure 11 in text) 
 

 Cluster 1  Cluster 2  Cluster 3  Cluster 4  Cluster 5 
13  Granados  114  Chavez   163  Cage  149  Langlais  214  Shchedrin  

0  Debussy 115  Revueltas  199  Feldman  162  Alain  131  Khachaturian  
38  Ravel  109  Lara  224  Wolff  24  Tournemire  134  Kabalevsky  
36  Hahn  64  Ponce  205  Musgrave  32  Jongen  117  Tcherepnin_A 

3  Pierne  150  Guarnieri  74  Riegger  91  Boulanger  58  Miaskovsky  
9  Dukas  237  Brouwer  174  Perle  129  Durufle  82  Prokofiev  
5  Gretchaninov  72  Barrios   223  Davidovsky  21  Vierne  146  Shostakovich 
8  Glazunov  179  Lauro  176  Babbitt  75  Dupre  144  Tubin  

28  Scriabin   2  Mascagni  235  Wuorinen  132  Berkeley  156  Holmboe  
30  Rachmaninov  12  Cilea  125  Crawford  164  Francaix  155  Larsson  
40  Gliere  15  Giordano  175  Ginastera  79  Martinu  228  Sallinen  
34  Ives  201  Argento  105  Gerhard  80  Martin  158  Schuman  

7  Nielsen  43  Wolf-Ferrari  153  Carter  177  Dutilleux  116  Thompson  
6  Sibelius 161  Menotti  190  Ligeti  108  Tansman  103  Hanson  

26  Stenhammar 124  Finzi  221  Davies 118  Auric  112  Harris  
4  Strauss_R  35  Holst  222  Birtwistle  81  Ibert  209  Leighton  

19  Pfitzner  61  Grainger  140  Scelsi  89  Tailleferre  126  Rubbra  
31  Reger  27  Vaughan_Williams  197  Schuller  191  Rorem  186  Kokkonen  
11  Busoni  94  Warlock  121  Krenek  17  Koechlin  96  Moeran  
54  Medtner   73  Butterworth  130  Wolpe  90  Mompou   215  Norgard  
16  Beach  76  Clarke  135  Dallapiccola  85  Milhaud  127  Partch  
46  Dohnanyi  1  Delius  198  Henze  113  Poulenc  178  Harrison  
25  Zemlinsky  52  Canteloube  220  Schnittke   10  Satie  106  Cowell  
48  Schreker  70  Griffes  143  Hartmann_KA  142  Lambert  160  Hovhaness  
71  Berg  165  Montsalvatge  78  Toch  59  Stravinsky  238  Andriessen  
33  Schoenberg  51  Ireland 181  Rochberg  86  Honegger  245  Adams  
66  Webern  62  Szymanowski  207  Crumb  67  Varese  227  Riley  
20  Lehar  77  Villa-Lobos  202  Stockhausen 152  Messiaen  229  Reich  

107  Korngold  99  Castelnuovo-Tedesco  187  Xenakis    231  Glass  
47  Karg-Elert  84  Moreno_Torroba  196  Boulez    212  Gubaidulina   
57  Enescu  42  Falla  208  Sculthorpe    243  Nyman  
23  Schmitt  63  Turina  139  Jolivet    248  Tan 
50  Bridge  123  Rodrigo  210  Takemitsu    102  Thomson  
41  Coleridge-Taylor  49  Respighi  182  Maderna    241  Monk  
22  Novak  55  Pizzetti  194  Nono    216  Oliveros  
29  Alfven  60  Kodaly  195  Berio    219  Schafer  
37  Suk  98  Orff  213  Kagel    101  Sowerby  
68  Bax  97  Hindemith  240  Holliger    92  Moore  
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95  Schulhoff  53  Bloch  247  Rihm    169  Dello_Joio  

  56  Bartok  225  Part    232  Bolcom  

  157  Barber  217  Penderecki    14  Joplin 

  167  Britten  200  Kurtag    100  Still 

  138  Tippett  218  Gorecki    246  Larsen  

  128  Walton      171  Fine_I 

  168  Lutoslawski      233  Harbison  

        45  Ruggles  

        193  Kraft  

        166  Nancarrow  

        183  Piazzolla  

        120  Weill  

        170  Gould  

        180  Bernstein  

        119  Copland  

        159  Bowles  

        110  Gershwin  

        211  Amram  

        111  Eisler  

        141  Blitzstein  

        44  Carpenter  

        88  Grofe  

        83  Bliss  

        184  Arnold  

        147  Creston  

        87  Howells  

        145  Alwyn  

        203  Rautavaara  

        236  Tower  

        239  Zwilich  

        206  Druckman  

        230  Bennett_RR 

        173  Diamond  

        234  Corigliano  

        204  Adler  

        242  Tavener  

        192  Pinkham  

        244  Rutter  

        39  Kreisler  

        148  Finney  

        154  Anderson  
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        226  Schickele  

        172  Persichetti  

        188  Foss  

        151  Badings  

        185  Husa  

        122  Luening  

        65  Malipiero  

        69  Casella  

        137  Petrassi  

        136  Skalkottas 

        189  Walker  

        93  Piston  

        104  Sessions  
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