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Abstract. The problem of denoising a one-dimensional signal possessing varying de-
grees of smoothness is ubiquitous in time-domain astronomy and astronomical spectroscopy.
For example, in the time domain, an astronomical object may exhibit a smoothly varying
intensity that is occasionally interrupted by abrupt dips or spikes. Likewise, in the spectro-
scopic setting, a noiseless spectrum typically contains intervals of relative smoothness mixed
with localized higher frequency components such as emission peaks and absorption lines.
In this work, we present trend filtering, a modern nonparametric statistical tool that yields
significant improvements in this broad problem space of denoising spatially heterogeneous
signals. When the underlying signal is spatially heterogeneous, trend filtering is superior to
any statistical estimator that is a linear combination of the observed data—including kernels,
LOESS, smoothing splines, Gaussian process regression, and many other popular methods.
In the spirit of illustrating the broad utility of trend filtering, we discuss its relevance to a di-
verse set of spectroscopic and time-domain studies. The observations we discuss are (1) the
Lyman-α forest of quasar spectra; (2) more general spectroscopy of quasars, galaxies, and
stars; (3) stellar light curves with transiting exoplanet(s); (4) eclipsing binary light curves; and
(5) supernova light curves. We study the Lyman-α forest in the greatest detail—using trend
filtering to map the large-scale structure of the intergalactic medium along quasar-observer
sightlines. The remaining studies broadly center around the themes of using trend filtering to
estimate observable parameters and generate spectral/light-curve templates.

Key Words. Trend filtering, Lyman-α forest, spectroscopy, light curves, exoplanet tran-
sits, eclipsing binaries

1. Introduction. The contents of this paper were published as a two-part series in
[101] and [102], and were also submitted as part of the first author’s doctoral disser-
tation [100]. Many astronomical observations produce one-dimensional data with un-
known or varying degrees of smoothness. These include data from time-domain as-
tronomy, where transient events such as supernovae can show light-curve variations on
timescales ranging from seconds to years [e.g., 29, 126]. Similarly, in astronomical spec-
troscopy, with wavelength (or frequency) as the independent variable, sharp absorption
or emission-line features can be present alongside smoothly varying black-body or other
continuum radiation [see, e.g., 117]. In each of these general settings, we observe a sig-
nal plus noise and would like to denoise the signal as accurately as possible. Indeed
the set of statistical tools available for addressing this general problem is quite vast.
Commonly used nonparametric regression methods include kernel smoothers [e.g., 55, 21],
local polynomial regression [LOESS; e.g., 77, 97], splines [e.g., 96, 20, 26], Gaussian process
regression [e.g., 48, 1, 52], and wavelet decompositions [e.g., 46, 119, 51]. A rich and ele-
gant statistical literature exists on the theoretical and practical achievements of these meth-
ods [see, e.g., 54, 133, 56] for general references). However, when the underlying signal is
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spatially heterogeneous, i.e. exhibits varying degrees of smoothness, the power of classical
statistical literature is quite limited. Kernels, LOESS, smoothing splines, and Gaussian pro-
cess regression belong to a broad family of nonparametric methods called linear smoothers,
which has been shown to be uniformly suboptimal for estimating spatially heterogeneous
signals [85, 84, 31]. The common limitation of these methods is that they are not locally
adaptive; i.e., by construction, they do not adapt to local degrees of smoothness in a sig-
nal. In particular, continuing with the example of a smoothly varying signal with occasional
sharp features, a linear smoother will tend to oversmooth the sharp features and/or overfit the
smooth regions in its effort to optimally balance statistical bias and variance. Considerable
effort has been made to address this problem by locally varying the hyperparameter(s) of a
linear smoother. For example, locally varying the kernel bandwidth [e.g., 82, 40, 41, 72, 49]
irregularly varying spline knot locations [e.g., 24, 62, 28], and constructing non-stationary
covariance functions for Gaussian process regression [e.g., 111, 88, 89]. However, since hy-
perparameters typically need to be estimated from the data, such exponential increases in the
hyperparameter complexity severely limit the practicality of choosing the hyperparameters in
a fully data-driven, generalizable, and computationally efficient fashion. Wavelet decompo-
sitions offer an elegant solution to the problem of estimating spatially heterogeneous signals,
providing both statistical optimality [e.g., 30, 31] and only requiring data-driven tuning of a
single (scalar) hyperparameter. Wavelets, however, possess the practical limitation of requir-
ing a stringent analysis setting, e.g. equally-spaced inputs and sample size equal to a power
of two, among other provisions; and when these conditions are violated, the optimality guar-
antees are void. So, seemingly at an impasse, the motivating question for this work is can we
have the best of both worlds? More precisely, is there a statistical tool that simultaneously
possesses the following properties:

P1. Statistical optimality for estimating spatially heterogeneous signals
P2. Practical analysis assumptions; for example, not limited to equally-spaced inputs
P3. Practical computational speed
P4. A one-dimensional hyperparameter space, with automatic data-driven methods for se-

lection

In this paper we introduce trend filtering [114, 63, 122], a statistical method that is new to
the astronomical literature and provides a strong affirmative answer to this question.

The layout of the paper is as follows. In Section 2 we provide both theoretical and em-
pirical evidence of the superiority of trend filtering for estimating spatially heterogeneous
signals compared to classical statistical methods. In Section 3 we introduce trend filtering,
including a general overview of the estimator’s machinery, its connection to spline methods,
automatic methods for choosing the hyperparameter, uncertainty quantification, generaliza-
tions, and recommended software implementations in various programming languages. In
Section 4 we use trend filtering to rigorously study the Lyman-α forest of quasar spectra—a
series of absorption features that can be used as a tracer of the matter density distribution
along quasar-observer lines of sight. Finally, in Section 5 we illustrate the utility of trend
filtering to a much wider variety of one-dimensional problems across astronomical spec-
troscopy and time-domain astronomy (necessarily discussing each application less compre-
hensively than our Lyman-α forest study). In particular, we discuss how trend filtering can
be used to (1) generate galaxy, quasar, and stellar spectral templates and produce robust
estimates of emission-line parameters; (2) model exoplanet transit events in phase-folded
stellar light curves, providing transit depth and duration measurements; (3) improve upon
the polyfit algorithm of [106] for denoising phase-folded eclipsing binary light curves;
(4) generate supernova light-curve templates and produce nonparametric estimates of the
observable parameters—e.g., the maximum apparent magnitude, the time of maximum, and
the decline rate. Beyond its uses for astronomical data analysis, we also briefly discuss its
relevance to large-scale one-dimensional data reduction and compression.
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2. Classical statistical methods and their limitations. We begin this section by provid-
ing background and motivation for the nonparametric approach to estimating (or denoising)
signals. We then discuss statistical optimality for estimating spatially heterogeneous signals,
with an emphasis on providing evidence for the claim that trend filtering is broadly superior
to classical statistical methods in this setting. Finally, we end this section by illustrating this
superiority with a direct empirical comparison of trend filtering and several popular classical
methods on simulated observations of a spatially heterogeneous signal.

2.1. Nonparametric regression. Suppose we observe noisy measurements of a response
variable of interest (e.g., flux, magnitude, photon counts) according to the data generating
process (DGP)

(1) f(ti) = f0(ti) + εi, i= 1, . . . , n

where f0(ti) is the signal at input ti (e.g., a time or wavelength) and εi is the noise at ti that
contaminates the signal, giving rise to the observation f(ti). Let t1, . . . , tn ∈ (a, b) denote the
observed input interval and E[εi] = 0 (where we use E[·] to denote mathematical expecta-
tion). Here, the general statistical problem is to estimate (or denoise) the underlying signal f0
from the observations as accurately as possible. In the nonparametric setting, we refrain from
making strong a priori assumptions about f0 that could lead to significant modeling bias, e.g.
assuming a power law or a light-curve/spectral template fit. Mathematically, a nonparametric
approach is defined through the deliberately weak assumption f0 ∈ F (i.e. the signal belongs
to the function class F ) where F is infinite-dimensional. In other words, the assumed class
of all possible signals F cannot be spanned by a finite number of parameters. Contrast this
to the assumption that the signal follows a pth degree power law, i.e. f0 ∈ FPL where

(2) FPL =

{
f0 : f0(t) = β0 +

p∑
j=1

βjt
j

}
,

a class that is spanned by p+ 1 parameters. Similarly, given a set of p spectral/light-curve
templates b1(t), . . . , bp(t), the usual template-fitting assumption is that f0 ∈ FTEMP where

(3) FTEMP =

{
f0 : f0(t) = β0 +

p∑
j=1

βjbj((t− s)/v)

}
and s and v are horizontal shift and stretch hyperparameters, respectively. Both (2) and (3)
represent very stringent assumptions about the underlying signal f0. If the signal is anything
other than exactly a power law in t—a highly unlikely occurrence—nontrivial statistical bias
will arise by modeling it as such. Likewise, if a class of signals has a rich physical diversity
(e.g., Type Ia supernova light curves; [135]) that is not sufficiently spanned by the library
of templates used in modeling, then statistical biases will arise. Depending on the size of
the imbalance between class diversity and the completeness of the template basis, the biases
could be significant. Moreover, these biases are rarely tracked by uncertainty quantification.
To be clear, this is not a uniform criticism of template-fitting. For example, templates are ex-
ceptionally powerful tools for object classification and redshift estimation (e.g., [59], [12]).
Furthermore, much of our discussion in Section 5 centers around utilizing the flexible non-
parametric nature of trend filtering to construct more complete spectral/light-curve template
libraries for various observational objects and transient events.

Let f̂0 be any statistical estimator for the signal f0, derived from the noisy observations in
(1). Further, let pt(t) denote the probability density function (pdf) that specifies the sampling
distribution of the inputs on the interval (a, b), and let σ2(t) = Var(ε(t)) denote the noise
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level at input t. In order to assess the accuracy of the estimator it is common to consider the
mean-squared prediction error (MSPE):

R(f̂0) = E
[
(f̂0 − f)2

]
(4)

= E
[
(f̂0 − f0)2

]
+ σ2(5)

=

∫ b

a

(
Bias2(f̂0(t)) + Var(f̂0(t))

)
· pt(t)dt+ σ2,(6)

where

Bias(f̂0(t)) = E[f̂0(t)]− f0(t)(7)

Var(f̂0(t)) = E
(
f̂0(t)−E[f̂0(t)]

)2
(8)

σ2 =

∫ b

a
σ2(t) · pt(t)dt.(9)

The equality in (6) is commonly referred to as the bias-variance decomposition. The first
term is the squared bias of the estimator f̂0 (integrated over the input interval) and intuitively
measures how appropriate the chosen statistical estimator is for modeling the observed phe-
nomenon. The second term is the variance of the estimator that measures how stable or sen-
sitive the estimator is to the observed data. And the third term is the irreducible error—the
minimum prediction error we cannot hope to improve upon. The bias-variance decomposi-
tion therefore illustrates that an optimal estimator is one that combines appropriate modeling
assumptions (low bias) with high stability (low variance).

2.1.1. Statistical optimality (minimax theory). In this section, we briefly discuss a math-
ematical framework for evaluating the performance of statistical methods over nonparametric
signal classes in order to demonstrate that the superiority of trend filtering is a highly general
result. Ignoring the irreducible error, the problem of minimizing the MSPE of a statistical
estimator can be equivalently stated as a minimization of the first term in (5)—the mean-
squared estimation error (MSEE). In practice, low bias is attained by only making very weak
assumptions about what the underlying signal may look like, e.g. f0 has k continuous deriva-
tives. An ideal statistical estimator for estimating signals in such a class (call it F ) may then
be defined as

(10) inf
f̂0

(
sup
f0∈F

E
[
(f̂0 − f0)2

])
.

That is, we would like our statistical estimator to be the minimizer (infimum) of the worst-
case (supremum) MSEE over the signal class F . This is rarely a mathematically tractable
problem for any practical signal class F . A more tractable approach is to consider how the
worst-case MSEE behaves as a function of the sample size n. A reasonable baseline metric
for a statistical estimator is to require that it satisfies

(11) sup
f0∈F

E
[
(f̂0 − f0)2

]
→ 0

as n→∞. That is, for any signal f0 ∈ F , when a large amount of data is available, f̂0 gets
arbitrarily close to the true signal. In any practical situation, this is not true for parametric
models because the bias component of the bias-variance decomposition never vanishes. This,
however, is a widely-held—perhaps, defining—property of nonparametric methods. There-
fore, in order to distinguish optimality among nonparametric estimators, we require a stronger
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metric. In particular, we study how quickly the worst-case error goes to zero as more data is
observed. This is the core idea of a rich area of statistical literature called minimax theory
[see, e.g., 128, 133, 127]. For many infinite-dimensional classes of signals, theoretical lower-
bounds exist on the rate at which the MSEE of any statistical estimator can approach zero.
Therefore, if a statistical estimator is shown to achieve that rate, it can be considered optimal
for estimating that class of signals. Formally, letting g(n) be the rate at which the MSEE of
the theoretically optimal estimator (10) goes to zero (a monotonically decreasing function in
n), we would like our estimator f̂0 to satisfy

(12) sup
f0∈F

E
[
(f̂0 − f0)2

]
=O(g(n)),

where we use O(·) to denote big O notation. If this is shown to be true, we say the estimator
achieves the minimax rate over the signal class F . Loosely speaking, we are stating that a
minimax optimal estimator is an estimator that learns the signal from the data just as quickly
as the theoretical gold standard estimator (10).

2.1.2. Spatially heterogeneous signals. Thus far we have only specified that the signal
underlying most one-dimensional astronomical observations should be assumed to belong
to a class F that is infinite-dimensional (i.e. nonparametric). Further, in Section 2.1.1 we
introduced the standard metric used to measure the performance of a statistical estimator
over an infinite-dimensional class of signals. Recalling the discussion in the abstract and
Section 1, trend filtering provides significant advances for estimating signals that exhibit
varying degrees of smoothness across the input domain. We restate this definition below.

Definition. A spatially heterogeneous signal is a signal that exhibits varying degrees
of smoothness in different regions of its input domain.

Example. A smooth light curve with abrupt transient events.

Example. An electromagnetic spectrum with smooth continuum radiation and sharp
absorption/emission-line features.

To complement the above definition we may also loosely define a spatially homogeneous
signal as a signal that is either smooth or wiggly1 across its input domain, but not both. As
“smoothness” can be quantified in various ways these definitions are intentionally mathemat-
ically imprecise. A class that is commonly considered in the statistical literature is the L2

Sobolev class:

(13) F2,k(C1) :=

{
f0 :

∫ b

a
f
(k)
0 (t)2dt < C1

}
,C1 > 0, k ∈N.

That is, anL2 Sobolev class is a class of all signals such that the integral of the square (the “L2

norm”) of the kth derivative of each signal is less than some constantC1. Statistical optimality
in the sense of Section 2.1.1 for estimating signals in these classes (and some other closely
related ones) is widely held among statistical methods in the classical toolkit; for example,
kernel smoothers [60, 116], LOESS [38, 39], and smoothing splines [86]. However, a seminal
result by [85] and [84] showed that a statistical estimator can be minimax optimal over signal

1This is, in fact, a technical term used in the statistical literature.
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classes of the form (13) and still perform quite poorly on other signals. In particular, the
authors showed that, when considering the broader L1 Sobolev class

(14) F1,k(C2) :=

{
f0 :

∫ b

a

∣∣f (k)0 (t)
∣∣dt < C2

}
,C2 > 0, k ∈N,

all linear smoothers2—including kernels, LOESS, smoothing splines, Gaussian process re-
gression, and many other methods—are strictly suboptimal. The key difference between these
two types of classes is that L2 Sobolev classes are rich in spatially homogeneous signals but
not spatially heterogeneous signals, while L1 Sobolev classes3 are rich in both [see, e.g., 31].

The intuition of this result is that linear smoothers cannot optimally recover signals that
exhibit varying degrees of smoothness across their input domain because they operate as if
the signal possesses a fixed degree of smoothness. For example, this intuition is perhaps most
clear when considering a kernel smoother with a fixed bandwidth. The result of [85] and
[84] therefore implies that, in order to achieve statistical optimality for estimating spatially
heterogeneous signals, a statistical estimator must be nonlinear (more specifically, it must be
locally adaptive). [122] showed that trend filtering is minimax optimal for estimating signals
in L1 Sobolev classes. Since L2 Sobolev classes are contained within L1 Sobolev classes,
this result also guarantees that trend filtering is also minimax optimal for estimating signals
in L2 Sobolev classes. Wavelets share this property, but require restrictive assumptions on
the sampling of the data [30].

How large is this performance gap? The collective results of [85], [84], and [122] reveal
that the performance gap between trend filtering and linear smoothers when estimating spa-
tially heterogeneous signals is significant. For example, when k = 0, the minimax rate over
L1 Sobolev classes (which trend filtering achieves) is n−2/3, but linear smoothers cannot
achieve better than n−1/2. To put this in perspective, this result says that the trend filtering
estimator, training on n data points, learns these signals with varying smoothness as quickly
as a linear smoother training on n4/3 data points. As we demonstrate in the next section, this
gap in theoretical optimality has clear practical consequences.

In order to minimize the pervasion of technical statistical jargon throughout the paper,
henceforth we simply refer to a statistical estimator that achieves the minimax rate over L2

Sobolev classes as statistically optimal for estimating spatially homogeneous signals, and
we refer to a statistical estimator that achieves the minimax rate over L1 Sobolev classes as
statistically optimal for estimating spatially heterogeneous signals. As previously mentioned,
the latter implies the former, but not vice versa.

2.2. Empirical comparison. In this section we analyze noisy observations of a simu-
lated spatially heterogeneous signal in order to compare the empirical performance of trend
filtering and several classical statistical methods—namely, LOESS, smoothing splines, and
Gaussian process regression. The mock observations are simulated on an unequally-spaced
grid t1, . . . , tn ∼Unif(0,1) according to the data generating process

(15) f(ti) = f0(ti) + εi

2A linear smoother is a statistical estimator that is a linear combination of the observed data. Many popular
statistical estimators, although often motivated from seemingly disparate premises, can be shown to fall under this
definition. See, e.g., [133] for more details.

3The L1 Sobolev class is often generalized to a nearly equivalent but slightly larger class—namely, signals
with derivatives of bounded total variation. See [122] for the generalized definition.
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with

(16) f0(ti) = 6

3∑
k=1

(ti − 0.5)k + 2.5

4∑
j=1

(−1)jφj(ti),

where φj(t), j = 1, . . . ,4 are compactly-supported radial basis functions distributed through-
out the input space and εi ∼ N(0,0.1252). We therefore construct the signal f0 to have a
smoothly varying global trend with four sharp localized features—two dips and two spikes.
The signal and noisy observations are shown in the top panel of Figure 1.

In order to facilitate the comparison of methods we utilize a metric for the total statistical
complexity (i.e. total wiggliness) of an estimator known as the effective degrees of freedom
[see, e.g., 123]. Formally, the effective degrees of freedom of an estimator f̂0 is defined as

(17) df(f̂0) = σ −2
n∑
i=1

Cov(f̂0(ti), f(ti))

where σ2 is defined in (9). In Figure 1 we fix all estimators to have 55 effective degrees of
freedom. This exercise provides insight into how each estimator relatively distributes its com-
plexity across the input domain. In the second panel we see that the trend filtering estimate
has sufficiently recovered the underlying signal, including both the smoothness of the global
trend and the abruptness of the localized features. All three of the linear smoothers, on the
other hand, severely oversmooth the localized peaks and dips. Gaussian process regression
also exhibits some undesirable oscillatory features that do not correspond to any real trend
in the signal. In order to better recover the localized features the linear smoothers require a
more complex fit, i.e. smaller LOESS kernel bandwidth, smaller smoothing spline penaliza-
tion, and smaller Gaussian process noise-signal variance. In Figure 2 we show the same com-
parison, but we grant the linear smoothers more complexity. Specifically, in order to recover
the sharp features comparably with the trend filtering estimator with 55 effective degrees
of freedom, the linear smoothers require 192 effective degrees of freedom—approximately
3.5 times the complexity. As a result, although they now adequately recover the peaks and
dips, each linear smoother severely overfits the data in the other regions of the input domain,
resulting in many spurious fluctuations.

As discussed in Section 2.1.2, the suboptimality of LOESS, smoothing splines, and Gaus-
sian process regression illustrated in this example is an inherent limitation of the broad linear
smoother family of statistical estimators. Linear smoothers are adequate tools for estimat-
ing signals that exhibit approximately the same degree of smoothness throughout their input
domain. For example, in Section 4.3 we use LOESS to nonparametrically reconstruct the
smooth background continuum radiation in quasar spectra. However, when a signal is ex-
pected to exhibit varying degrees of smoothness across its domain, a locally-adaptive statis-
tical estimator is needed.

3. Trend filtering. Trend filtering, in its original form, was independently proposed in
the computer vision literature [114] and the applied mathematics literature [63], and has
recently been further developed in the statistical and machine learning literature, most notably
with [124, 122, 130, 107]. This work is in no way related to the work of [67], which goes by
a similar name. At a high level, trend filtering is closely related to two familiar nonparametric
regression methods: variable-knot regression splines and smoothing splines. We elaborate on
these relationships below.
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FIG 1. Comparison of statistical methods on data simulated from a spatially heterogeneous signal. Each statisti-
cal estimator is fixed to have 55 effective degrees of freedom in order to facilitate a direct comparison. The trend
filtering estimator is able to sufficiently distribute its effective degrees of freedom such that it simultaneously re-
covers the smoothness of the global trend, as well as the abrupt localized features. The LOESS, smoothing spline,
and Gaussian process regression each estimates the smooth global trend reasonably well here, but significantly
oversmooths the sharp peaks and dips. Here, we utilize quadratic trend filtering (see Section 3.2).
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FIG 2. (Continued): Comparison of statistical methods on data simulated from a spatially heterogeneous signal.
Here, each of the linear smoothers (i.e. the LOESS, smoothing spline, and Gaussian process regression) is fixed
at 192 effective degrees of freedom—the complexity necessary for each estimator to recover the sharp localized
features approximately as well as the trend filtering estimator with 55 effective degrees of freedom. While the
linear smoothers now estimate the four abrupt features well, each severely overfits the data in the other regions
of the input domain.
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3.1. Closely-related methods. Splines have long played a central role in estimating com-
plex signals (see, e.g., [25] and [129] for general references). Formally, a kth order spline is a
piecewise polynomial (i.e. piecewise power law) of degree k that is continuous and has k− 1
continuous derivatives at the knots. As their names suggest, variable-knot regression splines
and smoothing splines center around fitting splines to observational data. Recall from (1) the
observational data generating process (DGP)

(18) f(ti) = f0(ti) + εi, t1, . . . , tn ∈ (a, b),

where f(ti) is a noisy measurement of the signal f0(ti), and E[εi] = 0. Given a set of knots
κ1, . . . , κp ∈ (a, b), the space of all kth order splines on the interval (a, b) with knots at
κ1, . . . , κp can be parametrized via a basis representation

(19) m(t) =
∑
j

βjηj(t),

where {ηj} is typically the truncated power basis or B-spline basis. A suitable estimator for
the signal f0 may then be

(20) f̂0(t) =
∑
j

β̂jηj(t),

where the β̂j are the ordinary least-squares (OLS) estimates of the basis coefficients. This is
called a regression spline. The question of course remains where to place the knots.

3.1.1. Variable-knot regression splines. The variable-knot (or free-knot) regression
spline approach is to consider all regression spline estimators with knots at a subset of the
observed inputs, i.e. {κ1, . . . , κp} ⊂ {t1, . . . , tn} for all possible p. Formally, the variable-
knot regression spline estimator is the solution to the following constrained least-squares
minimization problem:

(21)

min
{βj}

n∑
i=1

(
f(ti)−

∑
j

βjηj(ti)

)2

s.t.
∑
j≥k+2

1{βj 6= 0}= p

p≥ 0

where p≥ 0 is the number of knots in the spline and 1(·) is the indicator function satisfying

(22) 1{βj 6= 0}=

{
1 βj 6= 0,

0 βj = 0.

Furthermore, note that the equality constraint on the basis coefficients excludes those of the
“first” k + 1 basis functions that span the space of global polynomials and only counts the
number of active basis functions that produce knots. The variable-knot regression spline op-
timization is therefore a problem of finding the best subset of knots for the regression spline
estimator. Due to the sparsity of the coefficient constraint, the variable-knot regression spline
estimator allows for highly locally-adaptive behavior for estimating signals that exhibit vary-
ing degrees of smoothness. However, the problem itself cannot be solved in polynomial time,
requiring an exhaustive combinatorial search over all ∼2n feasible models. It is common to
utilize stepwise procedures based on iterative addition and deletion of knots in the active set,
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but these partial searches over the feasible set inherently provide no guarantee of finding the
optimal global solution to (21).

In order to make the connection to trend filtering more explicit it is helpful to reformulate
the constrained minimization (21) into the following penalized unconstrained minimization
problem:

(23) min
{βj}

n∑
i=1

(
f(ti)−

∑
j

βjηj(ti)

)2

+ γ
∑
j≥k+2

1(βj 6= 0),

where γ > 0 is a hyperparameter that determines the number of knots in the spline and the
sum of indicator functions serves as a smoothness “penalty” on the ordinary least-squares
minimization. Penalized regression is a popular area of statistical methodology [see, e.g.,
56], in which the cost functional (i.e. the quantity to be minimized) quantifies a tradeoff
between the training error of the estimator (here, the squared residuals) and the statistical
complexity of the estimator (here, the number of knots in the spline). In particular, (23) is
known as an `0-penalized least-squares regression because of the penalty’s connection to the
mathematical `0 vector quasi-norm.

3.1.2. Smoothing splines. Smoothing splines counteract the computational issue faced
by variable-knot regression splines by simply placing knots at all of the observed inputs
t1, . . . , tn and regularizing the smoothness of the fitted spline. For example, letting G be the
space of all cubic natural splines with knots at t1, . . . , tn, the cubic smoothing spline is the
solution to the optimization problem

(24) min
m∈G

n∑
i=1

(
f(ti)−m(ti)

)2
+ γ

∫ b

a

(
m′′(t)

)2
dt,

where m′′ is the second derivative of m and γ > 0 tunes the amount of regularization. Letting
η1, . . . , ηn be a basis for cubic natural splines with knots at the observed inputs, (24) can be
equivalently stated as a minimization over the basis coefficients:

(25) min
{βj}

n∑
i=1

(
f(ti)−

∑
j

βjηj(ti)

)2

+ γ

n∑
j,k=1

βjβkωjk

where

(26) ωjk =

∫ b

a
η′′j (t)η′′k(t)dt.

The cost functional (25) is differentiable and leads to a linear system with a special sparse
structure (i.e. bandedness), which yields a solution that can both be found in closed-form
and computed very quickly—in O(n) elementary operations. This particular choice of cost
functional, however, produces an estimator that is a linear combination of the observations—
a linear smoother. Therefore, as discussed and demonstrated in Section 2, smoothing splines
are suboptimal for estimating spatially heterogeneous signals. Equation (25) is known as an
`2-penalized least-squares regression because of the penalty’s connection to the mathematical
`2 vector-norm.

3.2. Definition. Trend filtering can be viewed as a blending of the strengths of variable-
knot regression splines (local adaptivity and interpretability) and the strengths of smoothing
splines (simplicity and speed). Mathematically, this is achieved by choosing an appropriate
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set of basis functions and penalizing the least-squares problem with an `1 norm on the ba-
sis coefficients (sum of absolute values), instead of the `0 norm of variable-knot regression
splines (sum of indicator functions) or the `2 norm of smoothing splines (sum of squares).

This section is primarily summarized from [122] and [131]. Let the inputs be ordered with
respect to the index, i.e. t1 < · · ·< tn. For the sake of simplicity, we consider the case when
the inputs t1, . . . , tn ∈ (a, b) are equally spaced with ∆t= ti+1 − ti. See the aforementioned
papers for the generalized definition of trend filtering to unequally spaced inputs.

For any given integer k ≥ 0, the kth order trend filtering estimate is a piecewise poly-
nomial of degree k with knots automatically selected at a sparse subset of the observed
inputs t1, . . . , tn. In Figure 3, we provide an example of a trend-filtered data set for orders
k = 0,1,2, and 3. Specifically, the panels of the figure respectively display piecewise con-
stant, piecewise linear, piecewise quadratic, and piecewise cubic fits to the data with the
automatically-selected knots indicated by the tick marks on the horizontal axes. Constant
trend filtering is equivalent to total variation denoising [109], as well as special forms of the
fused lasso of [121] and the variable fusion estimator of [70]. Linear trend filtering was inde-
pendently proposed by [114] and [63]. Higher-order polynomial trend filtering (k ≥ 2) was
developed by [124] and [122]. In the Figure 3 example, the quadratic and cubic trend filtering
estimates are nearly visually indistinguishable, and this is true in general. Although, as we
see here, trend filtering estimates of different orders typically select different sets of knots.

Like the spline methods discussed in Section 3.1, for any order k ≥ 0, the trend filtering
estimator has a basis representation

(27) m(t) =

n∑
j=1

βjhj(t),

but, here, {h1, . . . , hn} is the falling factorial basis

(28) hj(t) =

{∏j−1
i=1 (t− ti) j ≤ k+ 1,∏j−1
i=1 (t− tj−k−1+i) · 1{t≥ tj−1} j ≥ k+ 2.

Like the truncated power basis, the first k+ 1 basis functions span the space of global kth or-
der polynomials and the rest of the basis adds the piecewise polynomial structure. However,
the knot-producing basis functions of the falling factorial basis hj , j ≥ k+ 2 have small dis-
continuities in their jth order derivatives at the knots for all j = 1, . . . , k−1, and therefore for
orders k ≥ 2 the trend filtering estimate is close to, but not quite a spline. The discontinuities
are small enough, however, that the trend filtering estimate defined through the falling facto-
rial basis representation is visually indistinguishable from the analogous spline produced by
the truncated power basis (see [122] and [131]). The advantage of utilizing the falling facto-
rial basis in this context instead of the truncated power basis (or the B-spline basis) comes in
the form of significant computational speedups, as we detail below.

Analogous to the continuous smoothing spline problem (24), we letHk be the space of all
functions spanned by the kth order falling factorial basis, and pose the trend filtering problem
as a least-squares minimization with a derivative-based penalty on the fitted function. In
particular, the kth order trend filtering estimator is the solution to the problem

(29) min
m∈Hk

n∑
i=1

(
f(ti)−m(ti)

)2
+ γ · TV(m(k)),

where m(k) is the kth derivative of m, TV(m(k)) is the total variation of m(k), and γ > 0 is
the model hyperparameter that controls the smoothness of the fit. Whenm(k) is differentiable
everywhere in its domain, the penalty term simplifies to

(30) TV(m(k)) =

∫ b

a
|m(k+1)(t)|dt.
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FIG 3. Piecewise polynomials with adaptively-chosen knots produced by trend filtering. From top to bottom, we
show trend filtering estimates of orders k = 0,1,2 and 3, which take the form of piecewise constant, piecewise
linear, piecewise quadratic, and piecewise cubic polynomials, respectively. The adaptively-chosen knots of each
piecewise polynomial are indicated by the tick marks along the horizontal axes. The constant trend filtering
estimate is discontinuous at the knots, but we interpolate here for visual purposes. The data set is taken from
the Lyman-α forest of a mock quasar spectrum ([8]), sampled in logarithmic-angstrom space. We study this
phenomenon in detail in Section 4.
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Avoiding the technical generalized definition of total variation [see, e.g., 122], we can simply
think of TV(·) as a generalized L1 norm4 for our piecewise polynomials that possess small
discontinuities in the derivatives. Again referring back to the smoothing spline problem (24),
definitions (29) and (30) reveal that trend filtering can be thought of as an L1 analog of
the (L2-penalized) smoothing spline problem. Moreover, note that unlike smoothing splines,
trend filtering can produce piecewise polynomials of all orders k ≥ 0.

Replacing m with its basis representation, i.e. m(t) =
∑

j βjhj(t), yields the equivalent
finite-dimensional minimization problem5:

(31) min
{βj}

n∑
i=1

(
f(ti)−

n∑
j=1

βjhj(ti)

)2

+ γ · k! ·∆tk
n∑

j=k+2

|βj |.

The terms k! and ∆tk are constants and can therefore be ignored by absorbing them into the
hyperparameter γ. Visual inspection of (31) reveals that trend filtering is also analogous to the
variable-knot regression spline problem (21)—namely, by replacing the `0 norm on the basis
coefficients with an `1 norm. The advantage here is that the problem is now strictly convex
and can be efficiently solved by various convex optimization algorithms. Furthermore, the `1
penalty still yields a sparse solution (i.e. many βj = 0), which provides the automatic knot-
selection property. Letting β̂1, . . . , β̂n denote the solution to (31) for a particular choice of
γ > 0, the trend filtering estimate is then given by

(32) f̂0(t;γ) =

n∑
j=1

β̂jhj(t),

with the automatically-selected knots corresponding to the basis functions with β̂j 6= 0, j ≥
k+ 1.

The advantage of utilizing the falling factorial basis is found by reparametrizing the prob-
lem (31) into an optimization over the fitted values m(t1), . . . ,m(tn). The problem then
reduces to

(33) min
{m(ti)}

n∑
i=1

(
f(ti)−m(ti)

)2
+ γ

n−k−1∑
i=1

|∆(k+1)m(ti)| ·∆t

where ∆(k+1)m(ti) can be viewed as a discrete approximation of the (k+ 1)st derivative of
m at ti. For k = 0 the discrete derivatives are

(34) ∆(1)m(ti) =
m(ti+1)−m(ti)

∆t
,

and then can be defined recursively for k ≥ 1:

(35) ∆(k+1)m(ti) =
∆(k)m(ti+1)−∆(k)m(ti)

∆t
.

The penalty term in (33) can be viewed as a Riemann-like discrete approximation of the inte-
gral in (30). Because of the choice of basis, the problem has reduced to a simple generalized
lasso problem [124, 6] with an identity predictor matrix and a banded6 penalty matrix. This

4We use the upper-case notation Lp, p= 1,2 for the p-norm of a continuous function, and `p, p= 0,1,2 for
the p-norm of a vector.

5This may be recognized as a lasso regression [120], with the features being the falling factorial basis func-
tions.

6A banded matrix only contains nonzero elements in the main diagonal and zero or more diagonals on either
side.
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Method Computational
Complexity

Hyperparameters
to estimate

Locally-adaptive
Wavelets O(n) 1
Trend filtering O(n1.5) 1
Variable-knot regression splines O(n ·

(n
p

)
) 1

Non-adaptive

Uniform-knot regression splines O(n) 1
Smoothing splines O(n) 1
Kernel smoothers O(n2) 1
LOESS O(n2) 1
Gaussian process regression O(n3) 3+

TABLE 1
Comparison of computational costs associated with popular one-dimensional nonparametric regression

methods. The computational complexity column states the dependence on the sample size n of the number of
elementary operations necessary to obtain the fitted values of each estimator (i.e. the estimator evaluated at the
observed inputs). For trend filtering, the O(n1.5) complexity represents the worst-case complexity of the [107]

convex optimization algorithm. In most practical settings the actual complexity of this algorithm is close to
O(n). Variable-knot regression splines require a (nonconvex) exhaustive combinatorial search over the set of

possible knots and the complexity therefore includes a binomial coefficient term
(n
p

)
= n!/(n!(n− p)!), where p

is the number of knots in the spline. The remaining methods are explicitly solvable and the stated complexity
represents the cost of an exact calculation. The O(n) complexity of wavelets relies on restrictive sampling
assumptions (e.g., equally-spaced inputs, sample size equal to a power of two). The stated computational

complexity of all methods represents the cost of a single model fit and does not include the cost of
hyperparameter tuning. Gaussian process regression suffers from the most additional overhead in this regard

because of the (often) large number of hyperparameters used to parametrize the covariance function (e.g.,
shape, range, marginal variance, noise variance). Each of the non-adaptive methods (linear smoothers) can be
made to be locally adaptive (e.g., by locally varying the hyperparameters of the model), but at the expense of

greatly increasing the dimensionality of the hyperparameter space to be searched over.

special structure allows the solution to be found in nearly linear time, i.e. O(n) elementary
operations. In this work we utilize the specialized alternating direction method of multipliers
(ADMM) algorithm of [107]. This algorithm has a linear complexity per iteration, so the
overall complexity is O(nr) where r is the number of iterations necessary to converge to the
solution. In the worst case scenario r ∼ n1/2, so the worst-case overall complexity isO(n1.5).
The practical computational speed further illustrates the value of trend filtering to astronomy,
as it is readily compatible with the large-scale analysis of one-dimensional data sets that has
become increasingly ubiquitous in large sky surveys. We show a comparison in Table 1 of
the computational costs associated with trend filtering and other popular one-dimensional
nonparametric methods.

Given the trend filtering fitted values obtained by the optimization (33) the full continuous-
time representation of the trend filtering estimate follows by inverting the parametrization
back to the basis function coefficients and plugging them into the basis representation (32).

3.3. Extension to heteroskedastic weighting. Thus far we have considered the simple
case where the observations are treated as equally-weighted in the cost functional (33). Re-
call from (18) the observational data generating process and define σ2i = Var(εi) to be the
noise level—the (typically heteroskedastic) uncertainty in the measurements that arises from
instrumental errors and removal of systematic effects. When estimates for σ2i , i = 1, . . . , n
accompany the observations, as they often do, they can be used to weight the observations
to yield a more efficient statistical estimator (i.e. smaller mean-squared error). The error-
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Language Recommended implementation

R github.com/glmgen
C github.com/glmgen
Python cvxpy.org
Matlab http://stanford.edu/~boyd/l1_tf
Julia github.com/JuliaStats/Lasso.jl

TABLE 2
Recommended implementations for trend filtering in various programming languages. See Section 3.4 for

details. We provide additional code at github.com/capolitsch/trend-filtering for selecting the
hyperparameter via minimization of Stein’s unbiased risk estimate (see Section 3.5) and various bootstrap

methods for uncertainty quantification (see Section 3.6). Our implementations are built on top of the glmgen R
package of [5].

weighted trend filtering estimator is the solution to the following minimization problem:

(36) min
{m(ti)}

n∑
i=1

(
f(ti)−m(ti)

)2
wi + γ

n−k−1∑
i=1

|∆(k+1)m(ti)| ·∆t,

where the optimal choice of weights is wi = σ−2i , i= 1, . . . , n. Much of the publically avail-
able software for trend filtering allows for a heteroskedastic weighting scheme (see Sec-
tion 3.4).

3.4. Software. Trend filtering software is available online across various platforms. For
the ADMM implementation of [107] that we utilize in this work, implementations are avail-
able in R and C [5], as well as Julia [66]. Matlab and Python implementations are available for
the primal-dual interior point method of [63], but only for equally-weighted linear trend fil-
tering [65, 27]. We provide links to our recommended implementations in Table 2. Note that
in all software implementations the trend filtering hyperparameter is called λ instead of γ,
which we use here to avoid ambiguity with the notation for wavelength in our spectroscopic
examples.

3.5. Choosing the hyperparameter. The choice of the piecewise polynomial order k gen-
erally has minimal effect on the performance of the trend filtering estimator in terms of mean-
squared error and therefore can be treated as an a priori aesthetic choice based on how much
smoothness is desired or believed to be present. For example, we use k = 2 (quadratic trend
filtering) throughout Sections 4 and 5 so the fitted curves are smooth, i.e. differentiable ev-
erywhere.

Given the choice of k, the hyperparameter γ > 0 is used to tune the complexity (i.e. the
wiggliness) of the trend filtering estimate by weighting the tradeoff between the complexity
of the estimate and the size of the squared residuals. Obtaining an accurate estimate is there-
fore intrinsically tied to finding an optimal choice of γ. The selection of γ is typically done
by minimizing an estimate of the mean-squared prediction error (MSPE) of the trend filtering
estimator. Here, there are two different notions of error to consider, namely, fixed-input error
and random-input error. As the names suggest, the distinction between which type of error to
consider is made based on how the inputs are sampled. As a general rule-of-thumb, we rec-
ommend optimizing with respect to fixed-input error when the inputs are regularly-sampled
and optimizing with respect to random-input error on irregularly-sampled data.

Recall the DGP stated in (18) and let it be denoted by Q so that EQ[·] is the mathematical
expectation with respect to the randomness of the DGP. Further, let σ2i = Var(εi). The fixed-
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input MSPE is given by

R(γ) =
1

n

n∑
i=1

EQ
[(
f(ti)− f̂0(ti;γ)

)2 ∣∣∣ t1, . . . , tn](37)

=
1

n

n∑
i=1

(
EQ
[(
f0(ti)− f̂0(ti;γ)

)2 ∣∣∣ t1, . . . , tn]+ σ2i

)
(38)

and the random-input MSPE is given by

(39) R̃(γ) = EQ
[(
f(t)− f̂0(t;γ)

)2]
,

where, in the latter, t is considered to be a random component of the DGP with a marginal
probability density pt(t) supported on the observed input interval. In each case, the theo-
retically optimal choice of γ is defined as the minimizer of the respective choice of error.
Empirically, we estimate the theoretically optimal choice of γ by minimizing an estimate
of (37) or (39). For fixed-input error we recommend Stein’s unbiased risk estimate (SURE;
[115, 33]) and for random-input error we recommend K-fold cross validation with K = 10.
We elaborate on SURE here and refer the reader to [132] for K-fold cross validation.

The SURE formula provides an unbiased estimate of the fixed-input MSPE of a statistical
estimator:

R̂0(γ) =
1

n

n∑
i=1

(
f(ti)− f̂0(ti;γ)

)2
+

2σ2df(f̂0)
n

,(40)

where σ2 = n−1
∑n

i=1 σ
2
i and df(f̂0) is defined in (17). A formula for the effective degrees of

freedom of the trend filtering estimator is available via the generalized lasso results of [125];
namely,

df(f̂0) = E[number of knots in f̂0] + k+ 1.(41)

We then obtain our hyperparameter estimate γ̂ by minimizing the following plug-in estimate
for (40):

(42) R̂(γ) =
1

n

n∑
i=1

(
f(ti)− f̂0(ti;γ)

)2
+

2σ̂
2
d̂f(f̂0)
n

,

where d̂f is the estimate for the effective degrees of freedom that is obtained by replacing
the expectation in (41) with the observed number of knots, and σ̂

2
is an estimate of σ2. If

a reliable estimate of σ2 is not available a priori, a data-driven estimate can be constructed
(see, e.g., [133]). We provide R code on the corresponding author’s GitHub page7 for imple-
menting SURE with trend filtering. The code is built on top of the glmgen R package of
[5], which already includes an implementation of K-fold cross validation.

Because of the existence of the degrees of freedom expression (41), trend filtering is also
compatible with reduced chi-squared model assessment and comparison procedures under a
Gaussian noise assumption [94, 19].

3.6. Uncertainty quantification.

7https://github.com/capolitsch/trend-filtering

 
355

https://github.com/capolitsch/trend-filtering


3.6.1. Frequentist. Frequentist uncertainty quantification for trend filtering follows by
studying the sampling distribution of the estimator that arises from the randomness of the
observational data generating process (DGP). In particular, most of the uncertainty in the es-
timates is captured by studying the variability of the estimator with respect to the DGP. We
advise three different bootstrap methods [32] for estimating the variability of the trend fil-
tering estimator, with each method corresponding to a distinct analysis setting. Here, we
emphasize the terminology variability—as opposed to the variance of the trend filtering
estimator—since, by construction, as a nonlinear function of the observed data, the trend
filtering estimator has a non-Gaussian sampling distribution even when the observational
noise is Gaussian. For that reason, each of our recommended bootstrap approaches is based
on computing sample quantiles (instead of pairing standard errors with Gaussian quantiles).

We restate the assumed DGP here for clarity:

(43) f(ti) = f0(ti) + εi, t1, . . . , tn ∈ (a, b)

where E[εi] = 0. We make the further assumption that the errors ε1, . . . , εn are independent8.
The three distinct settings we consider are:

S1. The inputs are irregularly sampled
S2. The inputs are regularly sampled and the noise distribution is known
S3. The inputs are regularly sampled and the noise distribution is unknown

The corresponding bootstrap methods are detailed in Algorithm 1 [nonparametric bootstrap;
32], Algorithm 2 [parametric bootstrap; 34], and Algorithm 3 [wild bootstrap; 136, 73, 75],
respectively. We provide code on our GitHub page for implementing each of these methods
with trend filtering.

Algorithm 1 Nonparametric bootstrap for random-input uncertainty quantification
Require: Training Data (t1, f(t1)), . . . , (tn, f(tn)), hyperparameters γ and k, prediction input grid t′1, . . . , t

′
m

1: for all b in 1 :B do
2: Define a bootstrap sample of size n by resampling the observed pairs with replacement:

(t∗1, f
∗
b (t∗1)), . . . , (t∗n, f

∗
b (t∗n))

3: Let f̂∗b (t′1), . . . , f̂∗b (t′m) denote the trend filtering estimate fit on the bootstrap sample and evaluated on
the prediction grid t′1, . . . , t

′
m

4: end for
Output: The full trend filtering bootstrap ensemble

{f̂∗b (t′i)}i=1,...,m
b=1,...,B

Given the full trend filtering bootstrap ensemble provided by the relevant bootstrap algo-
rithm, for any α ∈ (0,1), a (1−α) · 100% quantile-based pointwise variability band is given
by

(44) V1−α(t′i) =
(
f̂∗α/2(t

′
i), f̂

∗
1−α/2(t

′
i)
)
, i= 1, . . . ,m

where

(45) f̂∗β(t′i) = inf
g

{
g :

1

B

B∑
b=1

1
{
f̂∗b (t′i)≤ g

}
≥ β

}
, β ∈ (0,1).

8If nontrivial autocorrelation exists in the noise then a block bootstrap [69] will yield a better approximation
of the trend filtering variability than the bootstrap implementations we discuss.
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Algorithm 2 Parametric bootstrap for fixed-input uncertainty quantification (when noise distribution
εi ∼Qi is known a priori)
Require: Training Data (t1, f(t1)), . . . , (tn, f(tn)), hyperparameters γ and k, assumed noise distribution εi ∼

Qi, prediction input grid t′1, . . . , t
′
m

1: Compute the trend filtering point estimate at the observed inputs:

(t1, f̂0(t1)), . . . , (tn, f̂0(tn))

2: for all b in 1 :B do
3: Define a bootstrap sample by sampling from the assumed noise distribution:

f∗b (ti) = f̂0(ti) + ε∗i where ε∗i ∼Qi, i= 1, . . . , n

4: Let f∗b (t′1), . . . , f∗b (t′m) denote the trend filtering estimate fit on the bootstrap sample and evaluated on
the prediction grid t′1, . . . , t

′
m

5: end for
Output: The full trend filtering bootstrap ensemble

{f̂∗b (t′i)}i=1,...,m
b=1,...,B

Algorithm 3 Wild bootstrap for fixed-input uncertainty quantification (when noise distribution is not
known a priori)
Require: Training Data (t1, f(t1)), . . . , (tn, f(tn)), hyperparameters γ and k, prediction input grid t′1, . . . , t

′
m

1: Compute the trend filtering point estimate at the observed inputs:

(t1, f̂0(t1)), . . . , (tn, f̂0(tn))

2: Let ε̂i = f(ti)− f̂0(ti), i= 1, . . . , n denote the residuals
3: for all i do
4: Define a bootstrap sample by sampling from the following distribution:

f∗b (ti) = f̂0(ti) + u∗i i= 1, . . . , n

where

u∗i =

{
ε̂i(1 +

√
5)/2 with probability (1 +

√
5)/(2

√
5)

ε̂i(1−
√

5)/2 with probability (
√

5− 1)/(2
√

5)

5: Let f∗b (t′1), . . . , f∗b (t′m) denote the trend filtering estimate fit on the bootstrap sample and evaluated on
the prediction grid t′1, . . . , t

′
m

6: end for
Output: The full trend filtering bootstrap ensemble

{f̂∗b (t′i)}i=1,...,m
b=1,...,B

Analogously, bootstrap sampling distributions and variability intervals for observable param-
eters of the signal may be studied by deriving a bootstrap parameter estimate from each trend
filtering estimate within the bootstrap ensemble. For example, in Sections 5.2 and 5.4 we
examine the bootstrap sampling distributions of several observable parameters of exoplanet
transits and supernovae, respectively.

3.6.2. Bayesian. There is a well-studied connection between `1-penalized least-squares
regression and a Bayesian framework [see, e.g., 120, 45, 93]. A discussion specific to trend
filtering can be found in [44].
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3.7. Relaxed trend filtering. We are indebted to Ryan Tibshirani for a private conversa-
tion that motivated the discussion in this section. Trend filtering can be generalized to allow
for greater flexibility through a technique that we call relaxed trend filtering9. Although the
traditional trend filtering estimator is already highly flexible, there are certain settings in
which the relaxed trend filtering estimator provides nontrivial improvements. In our experi-
ence, these typically correspond to settings where the optimally-tuned trend filtering estima-
tor selects very few knots. For example, we use relaxed trend filtering in Section 5.2 to model
the detrended, phase-folded light curve of a Kepler star with a planetary transit event.

The relaxed trend filtering estimate is defined through a two-stage sequential procedure in
which the first stage amounts to computing the traditional trend filtering estimate discussed
in Section 3.2. Recall the trend filtering minimization problem (31). For any given order
k ∈ {0,1,2, . . .} and hyperparameter γ > 0, let us amend our notation so that

(46) f̂ TF0 (t) =

n∑
j=1

β̂ TFj hj(t)

denotes the basis representation of the traditional trend filtering estimate. Further, define the
index set

(47) Kγ =
{

1≤ j ≤ n | β̂ TFj 6= 0
}

that includes the indices of the non-zero falling factorial basis coefficients for the given choice
of γ. Now let β̂ OLSj , j ∈ Kγ , denote the solution to the ordinary least-squares (OLS) mini-
mization problem

(48) min
{βj}

n∑
i=1

(
f(ti)−

∑
j∈Kγ

βjhj(ti)

)2

,

and define the corresponding OLS estimate as

(49) f̂ OLS0 (t) =
∑
j∈Kγ

β̂ OLSj hj(t).

That is, the OLS estimate (49) uses trend filtering to find the knots in the piecewise poly-
nomial, but then uses ordinary least-squares to estimate the reduced set of basis coefficients.
The relaxed trend filtering estimate is then defined as a weighted average of the traditional
trend filtering estimate and the corresponding OLS estimate:

(50) f̂ RTF0 (t) = φf̂ TF0 (t) + (1− φ)f̂ OLS0 (t),

for some choice of relaxation hyperparameter φ ∈ [0,1].
In principle, it is preferable to jointly optimize the trend filtering hyperparameter γ and the

relaxation hyperparameter φ, e.g. via cross validation. However, it often suffices to choose γ
and φ sequentially, which in turn adds minimal computational cost on top of the traditional
trend filtering procedure. Because of the trivial proximity of the falling factorial basis to the
truncated power basis (established in [122] and [131]), it is sufficient to let f̂ OLS0 be the
kth order regression spline with knots at the input locations selected by the trend filtering
estimator. In heteroskedastic settings, as discussed in Section 3.3, a piecewise polynomial
or regression spline fit by weighted least-squares should be used in place of the OLS esti-
mate (49).

9We choose this term because the generalization of trend filtering to relaxed trend filtering is analogous to the
generalization of the lasso [120] to the relaxed lasso [81].
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4. MAIN APPLICATION: QUASAR LYMAN-α FOREST. In this section, we use
trend filtering to study the Lyman-α forest of quasar spectra. We choose to study this applica-
tion in depth and then illustrate the breadth of trend filtering’s utility through our discussions
in Section 5.

The Lyman-α (Lyα) forest is the name given to the absorption features seen in quasar
spectra which are caused by neutral hydrogen (H I) in the intergalactic medium between
a quasar and an observer. When emitted from an accretion disk close to the central black
hole, the light from the quasar has a relatively smooth spectrum—a continuum—caused by
the summed black-body emission of gas with different temperatures at different disk radii
[87]. Emission lines are also seen, and their intensities and line ratios supply information
on the physical conditions in the line emitting gas. At least twenty broad emission lines,
broadened by high velocities and temperatures can be measured in a single AGN, along with a
similar number of narrow lines from colder gas [78]. The emitted spectrum therefore already
consists of a superposition of components with varying degrees of smoothness. The Lyα
forest arises when this spectrum is further processed with the addition of absorption lines.
Light moving towards the observer is redshifted into resonance with the Lyα transition of H
I, and the strength of absorption features is dictated by the densities of intergalactic material
along the line of sight [108]. The smoothness of the absorption lines varies depending on the
gas pressure, and thermal doppler broadening [50, 95]. Sharper absorption features, metal
lines, are also caused by other intergalactic species, such as C IV, O VI and Mg II [57, 99]. The
usefulness of the Lyα forest as a cosmological probe [e.g., 90] stems from its relationship to
the matter density field in the Universe, effectively mapping out structure along each quasar-
observer line of sight [e.g., 22, 71, 103]. In order to extract this information from noisy
spectra and separate it from other components, it is useful to have a method that can deal
with the complexities outlined above, i.e. one that can naturally adapt to varying degrees of
smoothness without extensive tuning.

The relative fluctuations in the Lyα forest transmitted flux fraction are of primary interest
since they possess a monotonic relationship with the relative distribution of the absorbing
H I. We utilize trend filtering to first denoise the spatially heterogeneous flux signal in an
observed Lyα forest. Estimates for the fluctuations in transmitted flux due to absorbing H I

are then typically produced by coupling the denoised Lyα forest with estimates for the quasar
continuum and the cosmic mean transmitted flux in the Lyα forest. We take an alternative
approach: directly estimating the mean flux level—defined as the product of the continuum
and cosmic mean transmitted flux—as in [21]. The mean flux level is a very smooth, spatially
homogeneous function within the truncated Lyα forest restframe. It is therefore appropriate
to use a linear smoother (see Section 2) for this stage of estimation. Specifically, we use
local polynomial regression (LOESS; [18]; [42]; [74]). In this section, we illustrate these
methods on a mock quasar Lyα forest from [8] and a real quasar Lyα forest from the Baryon
Oscillation Spectroscopic Survey Data Release 12 (BOSS DR12; [4]) of the Sloan Digital
Sky Survey III [SDSS-III; 35, 2].

Historically, Lyα forest analyses have typically utilized kernel smoothers [e.g., 21, 64],
wavelets [e.g., 119], or Gaussian processes [e.g., 91].

4.1. Notation. Suppose we observe a quasar located at redshift z = z0. Ignoring sys-
tematic effects such as sky contamination and interstellar extinction for the moment, the
observational DGP of the Lyα forest can be assumed to follow the model

f(λ) = f0(λ) + ε(λ), λ ∈Λ(z0),(51)

= F (λ) ·C(λ) ·
(
1 + δF (λ)

)
+ ε(λ),(52)
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Input Definition Range (quasar at z = z0)

λ Observed wavelength Λ(z0)

ν Rest wavelength Λrest(z0) = Λ(z0)/(1 + z0)

z Redshift Π(z0) = Λ(z0)/λLyα − 1

ζ Log-wavelength (scaled) Z(z0) = 104 · log10(Λ(z0))

TABLE 3
Various input spaces utilized for the Lyα forest analysis. Notation of functions is held constant, e.g. δF (·), and
an alteration of the input variable implicitly indicates a change of input spaces. Logarithmic wavelengths are

scaled for numerical stability of the trend filtering optimization algorithm.

where f(λ) is the observed flux at wavelength λ, f0(λ) is the flux signal, ε(λ) is zero mean
white Gaussian noise, Λ(z0) = (λLyβ, λLyα) · (1 + z0) is the redshifted Lyα forest, C(λ) is
the flux of the unabsorbed quasar continuum, F (λ) = f0(λ)/C(λ) is the transmitted flux
fraction, F (λ) = E[F (λ)] is the mean transmitted flux fraction (over the sky) in the Lyα
forest at redshift z = λ/λLyα − 1, and

(53) δF (λ) = F (λ)/F (λ)− 1

is the fluctuation about the mean Lyα transmitted flux at redshift z = λ/λLyα−1. Here, δF is
the quantity we are primarily interested in estimating since δF ∝ δ−1H I at each fixed redshift,
where δH I is the density of H I. The estimation of the flux signal f0 is viewed as an ancillary
step.

Although, in principle, it is preferable to study the full spectral range Λ(z0) we have found
that, in the nonparametric setting, estimating the quasar continuum near the localized Lyα
and Lyβ emission peaks at the boundaries of the Lyα forest reduces the estimation accuracy
in the interior of Λ(z0). Therefore, in this work we limit our analysis to the truncated Lyα
forest range

(54) Λ(z0) = (1045 Å ,1195 Å) · (1 + z0).

We simplify notation in this work by changing the input space of the functions introduced
above by merely altering the input variable. For example, with respect to δF , we maintain the
notation δF (·) for all inputs λ, ν, z, ζ , while it is understood that a proper change of input
spaces has taken place. The various input spaces are defined in Table 3.

4.2. Trend filtering the observed flux. We use quadratic trend filtering to estimate the
flux signal f0 of the observational model (51). In both BOSS DR12 and the [8] mock cata-
log, the quasar spectra are sampled on equally-spaced grids in logarithmic wavelength space
with ∆ log10(λi) = 10−4 dex (in logarithmic angstroms). Furthermore, flux measurement
variances are provided by the BOSS pipeline [12], accounting for the statistical uncertainty
introduced by photon noise, CCD read noise, and sky-subtraction error. We correct the BOSS
spectrum for interstellar extinction with the [17] extinction law and the [110] dust map.

We fit the trend filtering estimator on the equally-spaced logarithmic grid and tune the
complexity by minimizing Stein’s unbiased risk estimate (SURE) of the fixed-input mean-
squared error (42). More precisely, we fit the trend filtering estimator in the input space
Z(z0) = 104 · log10(Λ(z0)), as defined in Table 3, where we add the scaling to unit spacing
for numerical stability of the trend filtering convex optimization.

4.3. Nonparametric continuum estimation. We utilize a modified [21] approach to prop-
agate the trend filtering estimate for the flux signal f0 from Section 4.2 into an estimate for
the fluctuation field δF along a line of sight to an observed quasar. Namely, given the trend
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filtering estimate f̂0, we directly estimate the smooth mean flux level defined as the product
m= F ·C and then define the δF estimates via the transformation δ̂F := f̂0/m̂−1. We carry
out the estimation of m via a wide-kernel LOESS smooth of the trend filtering estimate, with
the specific bandwidth of the kernel selected by optimizing over a large sample of mock spec-
tra (detailed in Section 4.4). We find that regressing on the fitted values of the trend filtering
estimate—instead of the observational DGP (51)—significantly improves the accuracy and
robustness of the δF estimates. We carry out the LOESS estimation in the Lyα restframe
Λrest(z0) (see Table 3) in order to remove the effect of redshifting on the smoothness of m.
The LOESS estimation of m is a fully nonparametric procedure and provides a reduction in
bias over popular parametric approaches such as low-order power laws and principal compo-
nents analyses (PCA). The sole assumption of our LOESS approach is that, in the restframe,
the mean flux level m always has a fixed degree of smoothness, defined by an optimal fixed
kernel bandwidth. There is of course a bias-variance tradeoff here; namely, the decreased
bias comes with a modest increase in variance compared to a parametric power law or low-
dimensional PCA model. Our decision in favor of the LOESS approach directly reflects our
stance that low bias is preferable to low variance in this context since statistical uncertainty
due to estimator variability is tracked by our uncertainty quantification (Section 4.5), while
uncertainty due to modeling bias is not easily quantifiable. Therefore, we can be more con-
fident that significant fluctuations in the estimated δF field are in fact real, and not due to
statistical bias in the quasar continuum estimate.

To be explicit, the LOESS estimator for m is a regression on the data set

(55) {(νi, f̂0(νi; γ̂)}ni=1, νi ∈ Λrest(z0),

which can be viewed as arising from the DGP

(56) f̂0(νi; γ̂) =m(νi) + ρi,

where f̂0 is the trend filtering estimate fixed at the minimum SURE hyperparameter γ̂, ei =

f̂0(νi; γ̂)− f0(νi) are the errors of the trend filtering estimate, and ρi =m(νi) · δF (νi) + ei
are autocorrelated fluctuations about zero. The LOESS estimator is the natural extension of
kernel regression [83, 134] to higher-order local polynomials. Given a kernel function K(·)
with bandwidth h > 0, for each i= 1, . . . , n, the LOESS estimator is obtained by minimizing

(57)
n∑
j=1

(
f̂0(νj ; γ̂)− φνi(νj ;β0, . . . , βd)

)2
K

(
|νj − νi|

h

)
,

and letting m̂(νi) = β̂0, where φνi(· ;β0, . . . , βd) is a dth order polynomial centered at νi.
Specifically, we utilize the local linear regression estimator (LLR; d = 1) and the Epanech-
nikov kernel [37]

(58) K(t) =
3

4
(1− t2)1{|t|< 1}.

The LLR estimator is described in full detail by Algorithm 4. Given the trend filtering esti-
mate f̂0 and the LLR estimate m̂, the δF estimates are then defined as

(59) δ̂F (zi; γ̂) =
f̂0(zi; γ̂)

m̂(zi)
− 1, z1, . . . , zn ∈Π(z0),

where we deliberately express m̂ as “hyperparameter-less” since γ has already been fixed at
the minimum SURE value γ̂ and we provide the optimal LOESS bandwidth value h0 = 74
Å—optimized over the large mock sample. Here, we have also done a change of variables
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Algorithm 4 LOESS (local linear) estimator for mean flux level

Require: Training Data {(νi, f̂0(νi; γ̂))}ni=1, Bandwidth h0 = 74 Å
1: for all i do
2: Let β̂0, β̂1 minimize the locally weighted sum of squares

n∑
j=1

(
f̂0(νj ; γ̂)− β0 − β1(νj − νi)

)2
·K

(
|νj − νi|
h0

)
.

3: Let m̂(νi) = β̂0(νi).
4: end for

Output: {m̂(νi)}ni=1

to redshift space—our desired input domain for studying the H I density fluctuations in the
IGM.

Although h0 is chosen to directly optimize δ̂F accuracy, an estimate for the quasar contin-
uum C(·) arises intrinsically:

(60) Ĉ(νi) = F (νi)
−1 · m̂(νi), νi ∈Λrest(z0),

where precise estimates of F follow from a rich literature [e.g., 11, 80, 43, 23, 92, 9]. The δF
estimates could then be equivalently restated as

(61) δ̂F (zi; γ̂) =
F̂ (zi; γ̂)

F (zi)
− 1, z1, . . . , zn ∈Π(z0),

where

(62) F̂ (zi; γ̂) = f̂0(zi; γ̂)/Ĉ(zi).

4.4. Calibrating continuum smoothness. We utilize a sample of 124,709 mock quasar
spectra from the [8] catalog to optimize the bandwidth of the LOESS estimator for the mean
flux level that intrinsically removes the effect of the quasar continuum. Our mock data reduc-
tion is detailed in the appendix and the redshift distribution of the quasars is shown in the top
panel of Figure 4.

For each mock quasar Lyα forest with DGP Qj , j = 1, . . . , 124,709, we first compute
the trend filtering hyperparameter value that minimizes the true fixed-input mean-squared
prediction error

(63) γj0 = arg min
γ>0

1

n

n∑
i=1

EQj
[(
f(ζi)− f̂0(ζi;γ)

)2 ∣∣∣ ζ1, . . . , ζn].
Then, given the trend filtering restframe fitted values {(νi, f̂0(νi;γj0)}ni=1, we fit a LOESS
estimator with bandwidth h and define the error (as a function of h) of the resulting δF
estimator as the fixed-input mean absolute deviation (MAD) error

(64) Rj(h) =
1

n

∑
i

EQj
[∣∣δF (νi)− δ̂F (νi;γ

j
0, h)

∣∣ ∣∣∣ ν1, . . . , νn],
where EQj denotes the mathematical expectation over the randomness arising from the ob-
servational DGP Qj . Because we can repeatedly sample from each mock quasar DGP, the
expectations in (63) and (64) can be computed to an arbitrary precision. Here, we utilize 300
realizations of each DGP to approximate the mathematical expectations.
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FIG 4. Top: Distribution of mock quasar redshifts (data reduction detailed in the appendix). We utilize this sample
of 124,709 quasars to calibrate the optimal nonparametric continuum smoothness. Bottom: Mean absolute devi-
ation error curve for selecting the optimal kernel bandwidth for the LOESS (local linear) estimator of the mean
flux level, averaged over the 124,709 spectra in the mock sample. The optimal choice of bandwidth is h0 = 74 Å.

We then define the optimal choice of h as the minimizer of the summed error over the full
sample of m=124,709 mock quasar spectra:

(65) h0 = arg min
h>0

m∑
j=1

Rj(h).

The aggregate error curve is shown in the bottom panel of Figure 4, yielding an optimal
value of h0 = 74 Å. We find that defining R(h) as the conditional MAD error—instead of
the conditional MSE—provides an essential boost in robustness that keeps the error from
being dominated by a very small proportion of worst-case estimates. More complex choices
of bandwidth, e.g. variable bandwidths that depend on the S/N ratio of the trend filtering
estimator, the restframe pixel spacing, and/or the redshift of the quasar, do not significantly
improve upon the h0 = 74 Å restframe fixed bandwidth.

4.5. Uncertainty quantification. Given the assumed noise model εi ∼ N(0, σ2i ), i =
1, . . . , n provided by the BOSS pipeline [12], we can construct a pointwise variability band
for δ̂F via an augmentation of the parametric bootstrap outlined in Algorithm 2. Specifically,
given the parametric bootstrap ensemble of trend filtering estimates provided by Algorithm 2,
we fit the mean flux level of each with the LOESS estimator detailed in Algorithm 4, and then
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define the δ̂F bootstrap ensemble

(66) δ̂∗F,b(zi) =
f̂∗b (zi)

m̂∗b(zi)
− 1, i= 1, . . . , n, b= 1, . . . ,B,

where, for each b= 1, . . . ,B, m̂∗b is the LOESS estimate fit to the data set
{

(νi, f̂
∗
b (νi))

}n
i=1

.
Note that refitting the LOESS estimator on each bootstrap realization allows us to track the
extra variability introduced into the δF estimates by the uncertainty in the continuum esti-
mate. Analogous to (44), a (1− α) · 100% quantile-based pointwise variability band for δ̂F
is then given by

(67) V1−α(zi) =
(
δ̂∗F,α/2(zi), δ̂

∗
F,1−α/2(zi)

)
, i= 1, . . . , n.

where

(68) δ̂∗F,β(zi) = inf
g

{
g :

1

B

B∑
b=1

1
{
δ̂∗F,b(zi)≤ g

}
≥ β

}
,

for any β ∈ (0,1).

4.6. Results. A mock quasar spectrum from [8] and a real quasar spectrum from the
Baryon Oscillation Spectroscopic Survey (BOSS; [4]) are displayed in Figure 5, with the
results of our Lyα forest analysis overlaid. Starting with the top panel, the quadratic trend
filtering estimate is fit on the equally-spaced observations in logarithmic wavelength space
and then transformed to the restframe wavelength space, where the LOESS estimate for the
mean flux level—the product of the continuum and cosmic mean Lyα absorption—is then
fit to the trend filtering fitted values. The δF estimates are then computed according to (59)
and displayed in redshift space in the second panel, where they closely track the true δF de-
fined by (53). Furthermore, the 95% bootstrap variability band defined in (67) can be seen
to almost fully cover the true δF signal. The estimated δF can be interpreted as an inversely
proportional proxy for the deviations from the mean H I density in the intervening intergalac-
tic medium at each redshift—with negative values of δF corresponding to (epoch-relative)
over-densities of H I and positive values corresponding to under-densities.

The third and fourth panels are the analogous plots for a BOSS quasar spectrum Lyα
forest (Data Release 12, Plate = 6487, MJD = 56362, Fiber = 647). The quasar is located in
the northern galactic cap at (RA, Dec, z) ≈ (196.680◦, 31.078◦, 2.560).

5. Further Applications. The analysis of signals possessing varying degrees of smooth-
ness permeates many areas of astronomy. In this section, we discuss a variety of further ap-
plications for which trend filtering may find use. For the sake of brevity, we discuss these
applications in less detail than the Lyα forest analysis in Section 4. Naturally, we expect
trend filtering may find many uses in astronomy beyond those we explicitly discuss.

The applications we discuss in this section can be grouped into two broad (and often
intertwined) categories: (1) deriving estimates of observable parameters from trend-filtered
observations; and (2) using trend filtering to construct spectral/light-curve templates of astro-
nomical objects/events. In Section 5.1, we discuss constructing spectral template libraries for
astronomical objects by trend filtering coadded spectroscopic observations. We illustrate our
approach on quasar, galaxy, and stellar spectra from the Sloan Digital Sky Survey. Emission-
line parameters can also be robustly estimated by fitting radial basis functions (e.g., Gaus-
sians) to trend-filtered estimates near emission lines. In Section 5.2, we use relaxed trend
filtering to model the detrended, phase-folded light curve of a Kepler stellar system with
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FIG 5. Results of Lyα forest analysis. Top panel: Lyα forest of a mock quasar spectrum [8] in the restframe,
with the quadratic trend filtering estimate shown in orange and the LOESS (local linear) estimate for the mean
flux level shown in blue. Second panel: The redshift-space fluctuations in the Lyα transmitted flux fraction, with
our estimate superposed. The fluctuations inversely trace the relative under- and over-densities of H I in the
intervening intergalactic medium between Earth and the quasar. Third and Fourth panels: Analogous plots for
a real quasar Lyα forest from the twelfth data release of the Baryon Oscillation Spectroscopic Survey ([4]; Plate
= 6487, MJD = 56362, Fiber = 647). The quasar is located at (RA, Dec, z) ≈ (196.680◦, 31.078◦, 2.560).
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a transiting exoplanet. We derive estimates and full uncertainty distributions for the transit
depth and total transit duration. In Section 5.3, we use trend filtering to denoise a detrended,
phase-folded Kepler light curve of an eclipsing binary (EB) system. We illustrate that trend
filtering provides significant improvements upon the popular polyfit method of [106] that
is used to model Kepler EB light curves and derive observable parameters. In Section 5.4,
we discuss using trend filtering to construct light-curve templates of supernova (SN) explo-
sions. We illustrate this approach on a SN light curve obtained from the Open Supernova
Catalog [53]. Furthermore, we derive estimates and full uncertainty distributions for a set of
observable parameters—namely, the maximum apparent magnitude, the time of maximum,
and the decline rate. Finally, in Section 5.5, we briefly discuss a different, non-data-analysis
application of trend filtering. Specifically, we discuss the use of trend filtering as a tool for
fast and flexible one-dimensional data reduction and compression. The flexibility of the trend
filtering estimator, paired with its efficient speed and storage capabilities, make it a poten-
tially powerful tool to include in large-scale (one-dimensional) astronomical data reduction
and storage pipelines.

5.1. Spectral template generation and estimation of emission-line parameters. Auto-
mated spectral classification and redshift estimation pipelines require rich template libraries
that span the full space of physical objects in the targeted set in order to achieve high statis-
tical accuracy. In this section, we discuss using trend filtering to construct spectral templates
from observational spectra. We describe the procedure here for generating a single spectral
template from a well-sampled observed spectrum. Suppose we observe coadded flux mea-
surements of a targeted source at wavelengths λ1, . . . , λn ∈ Λ according to the data generat-
ing process

(69) f(λi) = f0(λi) + εi,

where the observations have been corrected for systematic effects (e.g., sky subtraction, in-
terstellar extinction, etc.) and the εi are mean-zero errors that arise from instrumental uncer-
tainty and systematic miscalibrations. After removal of potentially problematic pixels (e.g.,
near bright sky lines), let f̂0(λ), λ ∈ Λ denote the trend filtering estimate fit to the obser-
vations. Given a confident object classification and redshift estimate z0 (e.g., determined by
visual inspection), we then define the restframe spectral template

(70) b(λrest) = f̂0(λ/(z0 + 1)), λrest ∈Λ/(z0 + 1),

and store it in the respective object template library.
In Figure 6, we show three optical coadded spectra from the twelfth data release of the

Baryon Oscillation Spectroscopic Survey (BOSS DR12; [4]) of the Sloan Digital Sky Sur-
vey III (SDSS-III; [35, 2]). The figure is zoomed to a subinterval of the optical range for
visual clarity and the spectra are easily identifiable as a quasar, a galaxy, and a star, respec-
tively. We fit an error-weighted quadratic trend filtering estimate to each spectrum in the
logarithmic-angstrom wavelength space in which the BOSS spectra are gridded, and tune
the hyperparameter to minimize Stein’s unbiased risk estimate (see Section 3.5). The trend
filtering estimates give good results, adequately adapting to even the strongest emission and
absorption features in each spectrum.

As in the BOSS spectroscopic pipeline [12], after a spectral classification and redshift
measurement have been precisely determined, emission-line parameter estimates can then
be obtained by fitting Gaussian radial basis functions to the emission lines of the spectrum
“best fit”—nonlinearly optimizing the amplitudes, centroids, and widths. We propose that the
trend filtering estimate of a spectrum be used as the “best fit” for this type of procedure, e.g.
instead of the low-dimensional principal components models currently used by the BOSS
pipeline. The relative magnitudes of the emission-line parameter estimates can then be used
to determine object subclassifications.
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FIG 6. Optical coadded spectra collected by the Baryon Oscillation Spectroscopic Survey [4] of the Sloan Digital
Sky Survey III [35, 2]. From top to bottom, a quasar (DR12, Plate = 7140, MJD = 56569, Fiber = 58) located at
(RA, Dec, z)≈ (349.737◦, 33.414◦, 2.399), a galaxy (DR12, Plate = 7140, MJD = 56569, Fiber = 68) located at
(RA, Dec, z) ≈ (349.374◦, 33.617◦, 0.138), and a star (DR12, Plate = 4055, MJD = 55359, Fiber = 84) located
at (RA, Dec, z) ≈ (236.834◦, 0.680◦, 0.000). We fit a quadratic trend filtering estimate to each spectrum in the
logarithmic wavelength space in which the observations are equally spaced, and optimize the hyperparameter
by minimizing Stein’s unbiased risk estimate. Given confidently determined redshifts (e.g., determined by visual
inspection), the trend filtering estimate for each object can be scaled to the restframe and stored as a spectral
template. Furthermore, emission-line parameter estimates for a spectrum can be obtained by fitting Gaussian
radial basis functions to the emission lines of the trend filtering estimate.
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5.2. Exoplanet transit modeling. In this section we discuss the use of trend filtering for
modeling the photometric time series of an extrasolar planet transiting its host star. Given a
phase-folded stellar light curve, corrected for stellar variability and spacecraft motion sys-
tematics, trend filtering can be used to automatically produce fully nonparametric estimates
and uncertainties for the transit depth and total transit duration.

We demonstrate our approach on long-cadence photometric observations of Kepler-10
(KOI-72, KIC 11904151; [13]). Kepler-10 is confirmed to host at least two exoplanets:
Kepler-10b (KOI-72 b, KIC 11904151 b; [7]) and Kepler-10c (KOI-72 c, KIC 11904151
c; [47]). Each planet was first detected via the transit method—a measurable periodic dim-
ming in the photometry caused by the planet crossing in front of the host star. Here, we
use trend filtering to estimate a nonparametric transit model for Kepler-10c and derive depth
and duration measurements. The results of our analysis are displayed in Figure 7. The top
panel displays a sample of the Kepler-10 long-cadence (30-min. increment), quarter-stitched,
median detrended, relative flux light curve processed by the Kepler pipeline [61], which we
accessed from the NASA Exoplanet Archive [3]. The observed transit events of Kepler-10c
are indicated by the vertical dashed lines. The middle panel displays the light curve (with
1σ error bars) after phase-folding with respect to the ∼45.29 day orbital period of Kepler-
10c and zooming in on the transit event. We fit a relaxed quadratic trend filtering estimate
(see Section 3.7) to the phased data, weighted by the measurement variances provided by
the Kepler pipeline and tuned by sequential K-fold cross validation. The optimal relaxation
hyperparameter is φ̂= 0.14, indicating that relaxation significantly improves the traditional
trend filtering estimate in this setting. In particular, we find that relaxation allows the esti-
mate to faithfully capture the sharp transitions corresponding to the beginning of the ingress
phase and the end of the egress phase. The relaxed trend filtering estimate is overlaid on the
phase-folded light curve, along with 95% variability bands. Estimates for the transit depth
and total transit duration follow immediately from the relaxed trend filtering estimate, as de-
tailed below. The estimated inception and termination of the transit event are indicated by the
vertical dashed lines in the middle panel. The nonparametric bootstrap sampling distributions
(see Algorithm 1) of the transit depth and total transit duration measurements are displayed
in the bottom panel. Our point estimates for the transit depth and total transit duration for
Kepler-10c are δ̂ = 488.292 ppm and T̂ = 6.927 hours, respectively.

The knot-selection property of trend filtering is particularly appealing in this setting be-
cause it provides interpretation as to where the transit event begins and ends. Specifically, we
define our estimate of the inception of the transit event T̂0 as the leftmost knot selected by the
trend filtering estimator and we define our estimate of the termination of the transit event T̂1
as the rightmost knot10. The total transit duration estimate then follows as T̂ = T̂1− T̂0. Nat-
urally, we define our transit depth estimate δ̂ to be the minimum of the relaxed trend filtering
estimate.

It is thus far unclear to us whether trend filtering can also reliably detect the end of the
ingress and beginning of the egress phases—e.g. via knot selection or examining changes
in the estimated derivates—and therefore also provide nonparametric ingress/egress duration
measurements. We recommend pairing trend filtering with the traditional analytical transit
model search [e.g., 76] for these particular measurements. That is, given the transit depth and
total transit duration measurements provided by trend filtering, an analytical planet model
can be fit over a parameter space that is constrained by the trend filtering parameter measure-
ments. Coupling the two methods in this way therefore also provides significant computa-
tional speedups over a traditional single-stage analytical model search since it greatly reduces

10Note that the boundary points of the input space are not considered knots.
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FIG 7. Kepler-10c transit light curve analysis. Top: Long-cadence (30-min.), quarter-stitched, median detrended,
relative flux light curve (LC_DETREND) of the confirmed exoplanet host Kepler-10 (KOI-072, KIC 11904151;
[7]), processed by the Kepler pipeline [61] and obtained from the NASA Exoplanet Archive [3]. Vertical lines in-
dicate the observed transit events of the system’s second confirmed planet Kepler-10c (KOI-072 c, KIC 11904151
c; [47]). Middle: Phase-folded transit light curve for Kepler-10c (∼45.29 day orbital period) with 1σ error
bars. The error-weighted relaxed trend filtering estimate, optimized by sequential K-fold cross validation, is su-
perposed with 95% variability bands. The estimated inception and termination of the transit event are indicated
by the vertical dashed lines. The estimated transit depth and total transit duration are δ̂ = 488.292 ppm and
T̂ = 6.927 hours, respectively. Bottom: Bootstrap sampling distributions of the transit depth and transit dura-
tion estimates.
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FIG 8. Long-cadence (30-min. increment), detrended, median-normalized light curve of a Kepler eclipsing binary
system (KIC 6048106; [13, 105]). The vertical red lines mark the primary eclipses (the eclipses of the hotter star)
and the vertical blue lines mark the secondary eclipses (the eclipses of the cooler star). KIC 6048106 has an
orbital period of ∼1.559 days.

the dimensionality of the parameter space to be searched over. Furthermore, the relaxed trend
filtering estimate may provide a benchmark χ2 statistic for the constrained analytical model
comparison.

A dedicated paper on this application of trend filtering is forthcoming.

5.3. Eclipsing binary modeling. In this section we discuss how trend filtering can fur-
ther improve the work of the Kepler Eclipsing Binary working group, specifically in regard
to the Eclipsing Binaries via Artificial Intelligence (EBAI) pipeline used to characterize Ke-
pler eclipsing binary stars via their phase-folded light curves [106, 105, 113, 79]. The EBAI
pipeline utilizes an artificial neural network (ANN) to estimate a set of physical parameters
for each binary pair (the temperature ratio, sum of fractional radii, photometric mass ratio,
radial and tangential components of the eccentricity, fillout factor, and inclination) from the
observables of the phase-folded light curve (e.g., the eclipse widths, depths, and separations).
[106] outline the EBAI light curve pre-processing algorithm, which they call polyfit, that
provides the crucial step of taking a noisy, irregularly-spaced, phase-folded light curve (de-
trended for spacecraft motion and normalized by the median flux) and outputting a denoised
and gridded phase-folded light curve, which is then fed to the ANN. We propose that trend fil-
tering be used for this pre-processing step instead of the polyfit algorithm for the reasons
detailed below.

An eclipsing binary (EB) light curve is characterized by periodic dips in the observed
brightness that correspond to eclipse events along the line of sight to an observer. In particu-
lar, there are two eclipses per orbital period—a primary and a secondary eclipse. The primary
eclipse occurs when the hotter star is eclipsed by the cooler star and produces a comparatively
deep dip in observed brightness. Analogously, the secondary eclipse occurs when the cooler
star is eclipsed by the hotter star and produces a comparatively shallow dip in the observed
brightness. Depending on the effective temperature ratio and orbital period of the EB, the dips
may range from very narrow and abrupt to very wide and smooth. In Figure 8, we display a
detrended, median-normalized, long-cadence (30 min. increment) light curve of a Kepler EB
(KIC 6048106; [13, 105]), with the primary eclipses and secondary eclipses designated by
dashed red and blue lines, respectively. The orbital period of KIC 6048106 is ∼1.559 days.

After phase-folding with respect to the estimated EB orbital period and centering the pri-
mary eclipse at Phase = 0, the purpose of the EBAI light-curve pre-processing step is to
faithfully extract the signal of the phase-folded light curve and evaluate it on a regular grid so
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that it can then be input into the EBAI ANN. We show a comparison of the polyfit algo-
rithm of [106] and our trend filtering approach in Figure 9 on the phase-folded KIC 6048106
light curve. We choose a relatively high S/N light curve here in order to elucidate the sig-
nificant statistical bias that underlies polyfit. The polyfit algorithm fits a piecewise
quadratic polynomial by weighted least-squares with four knots selected by a randomized
computational search over the phase space. The piecewise quadratic polynomial is forced
to be continuous, but no smoothness constraints are placed on the derivatives of the esti-
mate at the knots. Recalling our discussion in Section 2.1, this overly-stringent modeling
assumption leads to significant statistical bias in the light-curve estimate. The bias is par-
ticularly apparent by examining the residuals of the polyfit estimate, which we display
below the light curve. Moreover, recalling our discussion of variable-knot regression splines
in Section 3.1.1, the randomized partial search over the space of feasible knots inherently
provides no guarantee of finding a global solution—leaving the algorithm susceptible to ex-
treme failure scenarios. We display a quadratic trend filtering estimate of the KIC 6048106
phase-folded light curve in the bottom panel of Figure 9, with the hyperparameter chosen by
K-fold cross validation. The trend filtering estimate accurately recovers the signal of the light
curve (clearly apparent here by examining a high S/N light curve) and produces a desirable
random residual scatter about zero. Since the statistical bias introduced by the polyfit
pre-processing stage propagates through to the EBAI ANN as systematic bias in the input
data, we are confident that the use of trend filtering will in turn improve the error rate of the
EBAI ANN output-parameter estimates.

5.4. Supernova light-curve template generation and estimation of observable parameters.
In this section we demonstrate the use of trend filtering for generating light-curve templates
of supernova (SN) events and estimating observable parameters. We illustrate our approach
on SN 2016coi (ASASSN-16fp; [58]) by constructing a B-band light-curve template from
the well-sampled observations of [14] and [104] and deriving nonparametric estimates and
full uncertainty distributions for the maximum apparent brightness, the time of maximum,
and the decline rate parameter ∆m15(B) introduced by [98]. The improvement yielded by
trend filtering as a tool for SN light-curve template generation, compared to, for example,
the SNooPy cubic smoothing spline approach of the Carnegie Supernova Project [CSP;
20, 16, 15] primarily corresponds to light curves with an especially bright peak magnitude
and fast decline rate. In such cases, trend filtering is better able to recover the abruptness of
the peak, the initial sharp decline, and the subsequent slow decay. This behavior is partic-
ularly characteristic of Type Ia SNe [e.g., 135]. In cases where the peak is not particularly
prominent, trend filtering and cubic smoothing splines produce nearly identical estimates.
Our procedure for generating the SN light-curve templates requires reasonably well-sampled
observations (in particular, with the initial observation occurring before maximum light).
The resulting template libraries can then be used to classify SNe with partially-sampled light
curves and derive parameter estimates [e.g., 10].

The SN light-curve template generation procedure is analogous to the spectral template
generation procedure discussed in Section 5.1, so we discuss it in less formal detail here.
Naturally, the same procedure can also be implemented for generating fixed-time spectral
templates of SN events. Given a well-sampled light curve, corrected for systematic effects
(e.g., K-corrections and interstellar reddening), we propose the use of quadratic trend filter-
ing to generate a “best fit” to the observations. Given a confident type classification, the trend
filtering estimate can then be stored as a light-curve template in the respective library.

We show a B-band light curve for SN 2016coi (ASASSN-16fp; [58]) in the top panel of
Figure 10. The light curve is an aggregation of observations collected by [14] and [104],
which we accessed from the Open Supernova Catalog ([53]). SN 2016coi was discovered
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FIG 9. Comparison of the polyfit algorithm of [106] and our trend filtering approach for denoising phase-
folded eclipsing binary light curves. The light curve shown in this example comes from the Kepler eclipsing binary
system KIC 6048106 [13, 105]. Top: The polyfit algorithm fits a piecewise quadratic polynomial by weighted
least-squares with four knots selected by a randomized search over the phase space. The estimate is constrained
to be continuous but no constraints are enforced on the derivatives at the knots. The overly-stringent assumed
model leads to significant statistical bias, which is readily apparent by examining the autocorrelation in the
residuals. Bottom: Trend filtering is sufficiently flexible to accurately denoise the diverse set of signals observed
in phase-folded eclipsing binary light curves. Here, the goodness-of-fit is clear by the random, mean-zero residual
scatter.
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FIG 10. SN light-curve analysis (SN 2016coi). Top: B-band photometry of the supernova SN 2016coi (ASASSN-
16 fp; [58]) discovered on May 27, 2016 by the All Sky Automated Survey for SuperNovae (ASAS-SN; [112]) in
the galaxy UGC 11868 at redshift z ≈ 0.0036. We fit a quadratic trend filtering estimate, tuned by K-fold cross
validation, and overlay 95% nonparametric bootstrap variability bands. Bottom: Univariate/bivariate nonpara-
metric bootstrap sampling distributions of the observable parameter estimates derived from the trend filtering
light-curve estimate. The bimodality in the bootstrap parameter distributions arises from systematic discrepan-
cies between the observations of the two separate observers [14, 104].
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on May 27, 2016 (UT 2016-05-27.55) by the All Sky Automated Survey for SuperNovae
(ASAS-SN; [112]) in the galaxy UGC 11868 at redshift z ≈ 0.0036. The classification of SN
2016coi currently remains intermediate between Type Ib and Type Ic [36, 68, 104, 118]. We
fit a quadratic trend filtering estimate to the observations, weighted by measurement uncer-
tainties and with the hyperparameter selected by K-fold cross validation. The trend filtering
estimate, along with 95% nonparametric bootstrap variability bands, is overlaid in the top
panel of the figure. In the bottom panels we show the univariate nonparametric bootstrap
sampling distributions for the estimates of the maximum apparent magnitude, the time of
maximum, and the decline rate—defined as the relative change in the B-magnitude light
curve from maximum light to the magnitude 15 days after the maximum [98]. We also show
a bivariate bootstrap sampling distribution for maximum apparent magnitude versus decline
rate. The bimodality in the bootstrap sampling distributions arises from systematic discrepan-
cies between the two separate sets of B-band observations that form the light curve [14, 104].

5.5. Data reduction and compression. Although the primary focus of this paper is the
use of trend filtering as a tool for astronomical data analysis, it also possesses potential utility
for large-scale reduction and compression of one-dimensional data sets. This owes to several
factors: its speed, flexibility, and representation as a sum of basis functions with a sparse
coefficient vector.

Given a one-dimensional set of n observations (t1, f(t1)), . . . , (tn, f(tn)) ∈ (a, b) × R,
trend filtering can quickly provide a flexible, lower-dimensional approximation of the data
where the dimensionality is controlled by the choice of the hyperparameter γ. In this context
γ is a subjective choice that specifies the amount of (lossy) compression desired—unrelated
to the discussion in Section 3.5. For any given choice of γ, let p be the number of knots
selected by the trend filtering estimator. The corresponding continuous-time representation
of this lower-dimensional approximation is fully encoded by the bounds of the observed in-
put interval (a, b) and the sparse basis vector with p+ k + 1 nonzero entries, which can be
stored efficiently. The falling factorial basis then serves as the “dictionary” from which the
continuous-time representation can be losslessly recovered. Gridded uncertainty measure-
ments for the reduced observations can also be computed and stored, though not in a sparse
format, via the methods discussed in Section 3.6.

6. Concluding remarks. The analysis of one-dimensional data arising from signals pos-
sessing varying degrees of smoothness is central to a wide variety of problems in time-domain
astronomy and astronomical spectroscopy. Trend filtering is a modern statistical tool that pro-
vides a unique combination of (1) statistical optimality for estimating spatially heterogeneous
signals; (2) natural flexibility for handling general sampling designs, heteroskedastic noise
distributions, etc.; (3) practical computational speed, i.e. nearly linear computational com-
plexity in the sample size; and (4) a single model hyperparameter that can be chosen via
automatic data-driven methods.

In order to illustrate the broad utility of trend filtering to astronomy, we demonstrated its
promising performance on a wide variety of problems across time-domain astronomy and
astronomical spectroscopy. We studied the Lyman-α forest of quasar spectra with the most
depth—using trend filtering to map the relative distribution of neutral hydrogen in the high
redshift intergalactic medium along quasar-observer lines of sight. Furthermore, we discussed
how trend filtering can be used to (1) generate galaxy, quasar, and stellar spectral templates
and estimate emission-line parameters; (2) produce nonparametric models for exoplanet tran-
sit events in phase-folded stellar light curves, providing estimates for the transit depth and
total duration; (3) improve upon the polyfit algorithm utilized by the Kepler Eclipsing
Binary via Artificial Intelligence (EBAI) pipeline for denoising phase-folded eclipsing bi-
nary light curves (as a preliminary step to estimating the physical parameters); (4) generate
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supernova light-curve templates and produce nonparametric estimates of the maximum ap-
parent magnitude, the time of maximum, and the decline rate; (5) quickly and efficiently
compress large collections of one-dimensional data sets. Naturally, we expect trend filtering
will find uses in astronomy beyond those that we explicitly discussed.

Software for trend filtering is freely available online across various platforms and we pro-
vide links to our recommendations in Table 3.4. Additionally, we make supplementary R
code available on the corresponding author’s GitHub page11 for: (1) selecting the trend filter-
ing hyperparameter by minimizing Stein’s unbiased risk estimate (see Section 3.5); and (2)
various bootstrap methods for trend filtering uncertainty quantification (see Section 3.6).
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