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Abstract 

In-line inspection (ILI) tools are used to help assess areas of a pipeline considered to have 
the potential to contain critical defects. As the ILI tools move through the inside of the 
pipe, signals are sent via transducers to the inside pipe wall. These signals help identify 
different types of anomalies, such as internal/external corrosion, cracks, and 
manufacturing artifacts. The depth of the anomaly is a key characteristic estimated by the 
ILI tool that is used in integrity analyses. How much faith one may place in the ILI 
results is often assessed through validation efforts that compares ILI to field excavation 
measurements. The data are used in multiple metrics of an integrity analysis, such as 
whether the ILI tool passes the industry standard API 1163 or the data should be adjusted. 
Adjusting ILI data can provide an accurate, but perhaps slightly conservative, safety 
approach to using all of the ILI calls given that only a small subset of field excavations 
have been performed. This study used representative ILI results and the Power BI data 
integration software to create flexible interactive analyses (statistical and visual) that 
rapidly track pipeline integrity metrics. 
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1. Introduction 

 
Risk management for hazardous liquid and natural gas pipelines requires that the 
structural integrity is well understood. In-line inspections (ILIs) provide valuable data 
that are used in integrity management programs to identify potentially problematic 
sections of a pipeline. As the ILI tools move through the inside of the pipe, different 
types of anomalies, such as internal/external corrosion, cracks, and manufacturing 
artifacts are identified from signals sent via transducers to the inside pipe wall. 
Assessment of the integrity of pipelines using ILI plays a large role in estimating 
integrity, with anomaly size being fundamentally important in acceptability analyses. 
Most pipelines are inspected with an ILI tool every five or seven years, depending on the 
product being transported and the identified threats to the pipeline.  
 
It is important for pipeline operators to be able to assess the performance of a single ILI 
survey (i.e. how well the characteristics of each anomaly match the true condition of the 
buried pipeline). One common method to assess tool performance is to excavate selected 
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portions of the line and make direct measurements of the anomaly to be compared to the 
measurements and characteristics of the anomaly as reported by the ILI tool. If there is 
reasonable agreement between the ILI and direct measurements, then the remainder of 
the ILI data and results are relied upon to make integrity-based decisions. If there is not 
reasonable agreement, detailed comparison of the ILI and direct measurements is 
required to understand the adjustments necessary for the ILI results to be able to rely 
upon them for integrity-based decision making. Microsoft Power BI is a visualization 
software that can be used to filter these large databases and allow for easy comparison.  
 
DigIt is one such Microsoft Power BI application providing visualization and analytical 
capabilities. As will be illustrated, a variety of visualizations and statistical analyses are 
used to provide an overall assessment of the ILI tools’ performance in terms of anomaly 
depth. Various anomaly types may be analyzed by the DigIt application, but the 
presentation in the paper focuses on metal loss (i.e. corrosion) in an effort to be succinct. 
DigIt has many commonalities with another Power BI application that has been 
developed called CGReal Bias. Where DigIt is used to collectively compare anomaly 
depths across numerous pipe segment lines to assess the overall performance of a specific 
ILI tool, CGReal Bias focuses generally on just one line and two ILI surveys. Because 
pipelines are inspected every five or seven years, comparing successive surveys can show 
if there is any anomaly growth. The first step in this analysis is to ensure that each survey 
is directly comparable and each ILI tool has reported accurately. CGReal Bias uses 
whatever direct data is available but is more focused on matched ILI anomalies from the 
two surveys. Through a statistical process, comparison of the survey and direct 
measurement results are used to estimate potential bias in one of the ILI runs. 
 
 

2. DigIt Power BI Visualizations and Filtering 

 

Figure 1 is the Metal Loss page in Power BI for the DigIt application. A key goal 
underlying DigIt is to provide pipeline operators with both visual and analytical results 
that assess how well the ILI results match the direct excavation measurements. Power BI 
provides a framework that allows users to easily filter data and see results dynamically. 
The key components shown in Figure 1 are discussed in more detail in this paper.  
 

 
Figure 1: DigIt Power BI page focusing on metal loss 
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2.1 Unity Plot 

 
Typically, to assess ILI tool performance a comparison of the ILI reported and direct 
measured depths is plotted and often referred to as a “unity plot.” The ILI reported depths 
are plotted on the x-axis, as they are similar to predictor or independent variables used in 
a standard statistical regression analysis, and the direct measured depths are on the y-axis. 
The scale on these unity plots reflects the common practice of reporting metal loss depth 
as a ratio or percentage of the wall thickness (WT) of the pipe. 
 
Figure 2 is an example of the unity plot within the DigIt application. Hovering near a 
given point results in a box popping up which gives the information recorded for that data 
point. In addition to displaying the variable in the legend of the plot (Vendor Spec) and 
the x and y values (ILI_Depth and Direct_Depth), the pop-up can include any variables 
(called Tooltips in Power BI) that further describe the given point. If the ILI tool has 
perfect sizing accuracy, all matched Direct-ILI pairs would fall on a 45 degree (1:1) line 
indicating complete agreement between the two data sets. The data point featured in 
Figure 2 had an ILI_Depth of 0.70 and a Direct_Depth of 0.58, which indicates that the 
anomaly depth reported by the ILI (70%WT) was greater than what was directly 
measured (58%WT). This discrepancy in the depths is indicated in the subsequent 
“Direct minus ILI Depth” entry, which displays the difference. This value is used to 
indicate how well the ILI tool adhered to its sizing specification. 
 
Depending on the ILI vendor specification, a given matched pair is binarily assessed as 
being within or out of specification. Each ILI vendor sets its own specifications for a 
given ILI tool based upon rigorous testing during tool development. Many of the tools 
used in North America employ magnetic flux leakage (MFL) and/or ultra-sonic (UT) 
non-destructive testing (NDT) technologies. The particular ILI tool that reported the 
example data point was an MFL-A where the “A” stands for axial, which indicates the 
orientation of the magnetic flux during the inspection. Within their respective 
performance specifications, ILI vendors specify a tolerance that applies to the ILI 
reported depth of all anomalies. This states that 80% of the time, when compared to the 
actual anomaly depth, the ILI reported depth will be within the tolerance value. This 
number is most commonly 10%WT, which equates to +/- 0.10 for many of the data in 
Figure 2.  
 
The data point with the pop-up in Figure 2 has a Direct_Depth minus the ILI_Depth 
of -0.12. Because the absolute value of the difference is greater than the tolerance (0.10), 
the point is labeled “Out of Spec” for the variable Vendor Spec and set to a different 
color. Note in Figure 2 that there are some Out of Spec points mixed in with In Spec 
points. Such data points were reported by UT ILI tools that had a tighter specification 
than a 0.10 tool tolerance. 
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Figure 2: Unity plot of Direct versus ILI depth for the full set of data 
 
2.2 Pipeline Operators Forum (POF) Anomaly Dimension Class 

 
Although Figure 2 is informative as-is, it is examining the full set of data. With Power 
BI, it is easy to filter the data and have the results change almost immediately. The unity 
plot can be filtered by “slicer” controls to only include certain anomaly types. The 
anomaly classification is based on the Pipeline Operator Forum (POF), which categorizes 
based on length and width of the anomaly. In Figure 3, pitting has been selected in the 
POF Anomaly Dimension Class1 table in the upper right of the image. Clicking on any 
dimension class (or any combination using the control key) fades the non-selected 
classes. At the same time, the rest of the metal loss page is automatically filtered for only 
the classes selected. This filtering may be combined with slicers as to further control the 
data analyzed. The highlighting of a subset of this table filters the data in both the unity 
plot as well as for the statistics described later. 
 
 

 
 
Figure 3: Unity plot of Direct versus ILI depth for just pitting anomalies 
 
The POF Anomaly Dimension Class table in Figures 1, 3, and 4 summarizes the number 
of metal loss anomalies by the POF dimension class. This provides useful information 

 
1 “Specifications and requirements for in-line inspection of pipelines”  Pipeline Operators Forum.  
Version 2016.  Publicly available:  https://www.pipelineoperators.org/downloads-links/ 
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because tool performance often varies based upon dimension class. As illustrated in 
Figure 4, conditional formatting is used for the Filtered Count background color which 
gives a visual comparison among the anomaly class totals. The dimension class “general” 
has the most observations (77) and the cell is fully colored in a light green color. Smaller 
counts are shown with proportionally less of their respective Filtered Count cell colored. 
 

 
Figure 4: Pipeline Operators Forum (POF) Anomaly Dimension Class 
 
In addition to a general tolerance specified by the ILI vendor for a given tool, such as the 
+/- 0.10 for many MFL tools, the tolerances may be increased based on the POF class. 
For example, axial grooving depths reported by MFL-A tools typically have a vendor-
specified tolerance of +/- 0.15. Thus, a larger difference between the Direct Depth and 
the ILI Depth is used to assess if the ILI Depth is within or out of specification. This will 
impact the binomial-based API 1163 results shown near the bottom on the Power BI page 
in Figure 1 and later detailed in section 3.2. 
 
2.3 Categorical Filtering using Power BI Slicers 
 
The DigIt Power BI app permits numerous data filtering options in addition to the 
anomaly subset demonstrated in Figure 3. Various slicers allow for dynamic filtering of 
the data set which can be incorporated into the visual display. As any combination of 
slicing operations or other filtering options are chosen, the unity plot and the statistical 
analysis are automatically updated. This quick combination of both visual and analytical 
displays is valuable to pipeline engineers. 
 
There are options for how slicers show their categories that are not covered here but can 
easily be seen when entering a new slicer into Power BI. Each of the five categorical 
slicers shown below will be briefly explained. Figure 5 is a demonstration for three of 
these five. The Generic Tool slicer shows all the generic ILI tool types in the database. 
Selecting either the MFL or UT option filters the data and updates the analyses to only 
include data reported by the representative tool type.   
 
Tool performance can also vary by ILI vendor. The DigIt application is designed to 
facilitate integrity-based decision making according to ILI technology and, when there is 
sufficient data, according to ILI vendor. Understanding tool performance at the ILI 
vendor level allows pipeline operators to select the best performing tool vendor for future 
inspections. This slicer provides an easy way to compare the overall ability of different 
vendors to accurately size anomalies with their various ILI tools. 
 
The third slicer in Figure 5 breaks down the generic tool type into more specific 
categories. For example, some tools can be axial oriented (e.g., the two MFL-A tools in 
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Figure 5), circumferentially oriented, or use different technology. This is beneficial to 
assess when a specific type of anomaly is targeted for detection. If there is a need to 
accurately size cracks, for instance, the three slicers in Figure 5 can be used to determine 
which ILI vendor, tool technology, and tool type produces the best results. 
 

 
Figure 5: DigIt Categorical Slicers: Generic Tool, ILI Vendor, Specific tool 
 

The last two categorical sliders are depicted in Figure 6. The Training Method slicer 
allows selection of the level of training of the technician making the direct excavation 
measurements. Measurement errors occur both with the ILI tool assessment of the 
anomaly features and the direct measurements. Anecdotal experience within the industry 
suggests that the higher level of NDT training and certification of the technician, the 
more accurate the characterization of the anomaly. The second filter in Figure 6 allows 
the filtering of the data based on whether the line transports oil or gas. The product 
transported can also play a significant role in tool performance. Most commonly, ILI 
tools are “pushed” through with the product being transported and velocity excursions 
(tool speeds that exceed the specified threshold) can be common for gas pipelines due to 
the compressibility of the gas. Exceeding the specified velocity threshold can result in 
degraded tool performance. 
 

 
 

Figure 6: DigIt Categorical Slicers: Training Method, Oil/Gas 

 
 

2.4 Continuous Filtering using Power BI Slicers 

 

The filters covered in the previous section are for categorical data. The next two slicers 
were designed for continuous data, as shown in Figure 7. As with categorical slicers, 
users have different options on how to display the range of values. The ones shown in 
Figure 7 by default display the minimum and maximum values in the data set for the 
variable shown. Users can slide either end of the slicer to reduce the range shown or more 
directly type in the value desired.  
 
Leveraging Power BI strength in analytics, when either or both of the continuous slicer 
values are changed, the full statistical analysis and associated unity plot are updated. This 
is valuable when users want to study a subset of the data, such as only the ILI anomalies 
with depths 40%WT or greater. This removes the smaller depth calls from the ILI and 
allows the engineer to study in more detail those that are likely to require remediation.  
 

 
175



 

 

 
 

Figure 7: DigIt Continuous Slicers: ILI Depth, Direct Depth 

 

 
3. Three Statistical Tests for Direct versus ILI Depth 

 
One goal of an ILI run is to estimate the condition of an entire pipeline segment that 
might be hundreds of miles in length. Because only a few excavations are made, an 
evaluation of how well the directly measured depths match the ILI measurements is 
important. If adjustments should be made to the ILI data, this is accomplished by using 
statistical analyses of the limited excavation results. For the many unexcavated ILI calls, 
good estimates of the actual condition of the pipeline is required. In the following 
sections each of three statistical methods is discussed separately. 
 
Figure 8 is more readable version of the same set of statistical results illustrated in 
Figure 1. Any filtering changes the unity plot and the statistics to match the subset of 
values selected. Two (detailed in Section 3.1) of the three statistical approaches suggest 
possible adjustments to the ILI data to better match the direct depths. Based on the data 
within the DigIt application, there are three different tool types seen in Figure 8: MFL 
Vendor 1, UT Vendor 1, and MFL Vendor 2. As will be covered below, none of these 
pass the API 1163 industry guideline and MFL Vendor 2 has recommended adjustments 
to the ILI data for better matching with Direct data. 
 

 
 

Figure 8: DigIt Statistical Assessments 

 
 
3.1 Difference and Ratio Paired t-tests for potential adjustment of ILI Depth  

 

For each Direct-ILI depth pair in the data selected, two different paired t-test comparisons 
are evaluated. Both are performed at the 95% confidence level and are two-sided tests. 
Because the paired t-test is well covered in the statistical literature (e.g., Mendenhall, 
2009), the step by step analysis sequence is not repeated in this paper. 
 
The first of these t-tests is the traditional paired t-test computed based on the difference 
of the Direct Depth and ILI Depth, with results shown in the three adjustment (Adj) 
columns of Figure 9. The statistically suggested adjustment range of the ILI data is 
shown when the paired mean difference is significantly greater than zero. However, only 
positive adjustments in ILI data are displayed. The rationale is the required strategic 
conservatism associated with the potential consequence of the pipelines being analyzed. 
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It is more conservative to assume the ILI reports smaller anomaly sizes that need to be 
adjusted in the positive direction.  
 
To aid in the distinction of this traditional paired difference t-test and the subsequent 
paired ratio t-test, it is worthwhile to give both the null and alternative hypothesis. Below 
are the null (Ho) and alternative (Ha) hypotheses for the paired difference t-test. 
 

Ho: µdiff = 0 versus Ha: µdiff ≠ 0 where 
 

µdiff is the population mean of the paired differences 
 
The Min Adj and Max Adj in Figure 9 are the lower and upper bounds, respectively, on 
the 95% confidence interval for the mean difference. Statistical significance is based on a 
two-tailed t-test even though only positive values are shown for conservatism, as 
discussed earlier. 
 
It is up to the pipeline operator to decide how to act on the results. If the pipeline 
company wants to adjust the ILI values upwards by a fixed constant, the traditional 
paired difference t-test is appropriate. The recommended adjustment is the Mean Adj; 
however, any value between the Min Adj and Max Adj is acceptable from a statistical 
perspective. Engineering rationale should be used with the viewpoint that the statistical 
evidence is part of a larger decision support system of the operating company. 
 
A second form of a paired t-test is a paired ratio t-test. Although this form of a paired t-
test is straightforward, we have not seen this in the literature. As discussed above, to keep 
the two paired t-test names distinct, the word difference or ratio is added. For each 
Direct-ILI depth matched pair, the ratio of the Direct depth to the ILI depth is computed 
instead of the difference as done in a traditional paired difference t-test. Instead of testing 
to see if there is evidence that µdiff (population mean of the paired differences) is 
significantly different than 0, the test is now on µratio = 1, as shown below. 

 
Ho: µratio = 1 versus Ha: µdiff ≠ 1 where 

 
µratio is the population mean of the paired ratios 

 
As with the standard paired difference t-test, a two-tailed t-test is performed; however, 
values above and below 1.0 are shown. If the lower bound of the confidence interval goes 
negative (not a physical reality), it is set to zero. 
 
Often the two variants of a paired t-test will agree on whether there is a statistically 
significant difference. Logically, both are assessing if µDirect = µILI where µDirect and µILI 
are the population mean depths of Direct and ILI, respectively. In Figure 9, both paired t-
tests show that an adjustment may be warranted for MFL Vendor 2 based on statistics. 
 

      
Figure 9: Paired DigIt t-test Statistical Assessments 
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Engineers generally favor the paired ratio t-test over the traditional paired difference 
t-test. One advantage is that adjusting the ILI data by a ratio results in smaller differences 
for relatively shallow ILI calls and larger differences for deeper ILI calls. Often this 
mirrors what is seen in the unity plot. Such changes are readily seen and modeled in the 
related CGReal Bias application in which the user can make multiple adjustments to the 
original data. In doing so, the CGReal Bias application has side-by-side unity plots of the 
original and adjusted data and separate statistical output for both. 
 
In the CGReal Bias application, the paired ratio t-test information is expanded from what 
is shown above in Figure 9 for DigIt. In DigIt, only the sample mean ratio adjustment 
(RatioAdj for DigIt; Mean Ratio for CGReal Bias) is given and only when the ratio is 
significantly greater than one. In CGReal Bias, as seen in Figure 10, the two-tailed 95% 
confidence interval is given in all cases. As mentioned earlier, if the lower bound (Min 
ratio) goes negative, it is set to zero. Without detailing CGReal Bias, the main intent is to 
evaluate possible bias in one of the ILI runs. In order to do this, it is important to have the 
full ratio confidence interval. The data set used in Figure 10 is different from that used in 
DigIt and involves three different aspects of the two ILI runs that are not discussed here. 
 

  
 

Figure 10: Paired CGReal Bais paired ratio t-test  
 
 
3.2 API 1163 Statistical Assessment of Direct versus ILI Depth 
 
Section 3.1 examined the matched pairs of direct and ILI depth treating the data as 
continuous. API 1163 treats each matched pair as binary depending on whether a given 
ILI depth is within tolerance of the associated direct depth. There are some key points to 
consider in this approach. Although most MFL ILI runs have a specification of +/- 10% 
wall thickness, these are not universal. Each ILI call must be assessed to be in tolerance 
based on its specific case. The value of X as shown below in Figure 11 is the number of 
successes (ILI calls within tolerance) of n matched pairs. The ratio X/n is the standard 
phat, 𝒑̂, or sample proportion within tolerance. 
 

 
 

Figure 11: API 1163 binary comparison of Direct versus ILI depth  

 

There are multiple issues that should be considered when moving to any binary in/out of 
specification assessment; however, only one is briefly discussed here. Each Direct to ILI 
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depth comparison discards much information in any binomial setting as each is reduced 
from continuous measurements of depth to a simple binary 0-1 value. If a given ILI depth 
is within its tolerance of the Direct depth, the binary value is set to 1; otherwise it is 0. 
The value of X in Figure 11 is a sum of all these binary 0-1 values, and hence the number 
of ILI calls within tolerance. In this binary setting, a match between ILI and Direct depths 
that is perfect (i.e., both report the same value) and a match that is barely within tolerance 
each receive a binary value 1. Such information loss should be noted. A full assessment 
of Direct versus ILI depth should include both continuous comparisons and the unity plot, 
as covered earlier, in addition to addressing the industry recommended API 1163 
specification. 
 
API 1163 (2013) uses the Agresti-Coull (1998) normal approximation that is an improved 
version of the standard central limit approximation for proportion hypothesis testing 
taught in typical statistical texts. Harper (2017) covers the API 1163 Agresti-Coull 
method, including a generalization to finite populations as well as related material on the 
standard normal approximation to the binomial and the exact Clopper-Pearson method. 
The standard normal approximation to the binomial confidence intervals is well 
documented in the literature and not repeated here. Instead, the formulas shown are those 
specific to the Agresti-Coull approximation.  
 
In place of the typical 𝑝̂ and n in the standard normal approximation to the binomial, the 
Agresti-Coull method uses 𝑝̃  and 𝑛̃  defined below. In the equations below using 
API 1163 notation, n is the sample size, x is the number of successes (X in Figure 11), 
and z(α) is the (100 - α)th percentile of a standard normal z along with the other variables 
defined. This results in the Agresti-Coull upper confidence bound 𝑝̂𝑢𝑝𝑝𝑒𝑟. Unlike the two 
paired t-tests discussed earlier, the second edition of API 1163 Agresti-Coull is a one-
tailed confidence interval. In this case, it computes only the upper 95% confidence 
interval, 𝑝̂𝑢𝑝𝑝𝑒𝑟 , of the proportion. If 𝑝̂𝑢𝑝𝑝𝑒𝑟  is at least as large as what the ILI tool 
vendors call certainty in Figure 11, then the ILI tool passes the API 1163 assessment. In 
Figure 11, 𝑝̂𝑢𝑝𝑝𝑒𝑟  is less than the stated certainty, therefore all three subdivisions fail 
API 1163. 
 

𝑝̂𝑢𝑝𝑝𝑒𝑟 = 𝑝̃ + 𝑧𝛼√
𝑝̃(1−𝑝̃)

𝑛̃
  where 

𝑛̃ = 𝑛 + 𝑧𝛼
2, 𝑝̃ =

𝑥+
𝑧𝛼
2

2

𝑛̃
 

 
  

4. Summary 

 
The Power BI DigIt application provides users an intuitive responsive environment to 
select a full data set or a desired subset of Direct-ILI matched depth pairs for fast 
analysis. The analysis includes visualization and a variety of statistical tests to aid a 
pipeline operator in comparing different ILI tool types under many different 
circumstances. Some operators may want to focus only on deeper ILI calls, such as at 
least 40% wall thickness, which is easily addressed by using the continuous sliders to 
filter the data to be analyzed. Others may be more focused on how the training level of 
their direct technicians impacts the comparison of the Direct depths to the ILI depths. In 
the past, such analyses may have taken considerable sub-setting of data and passage of 
the data to different software for visualization and the associated statistical analysis. 
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Additionally, DigIt provides statistical analysis methods not readily available elsewhere. 
This tool is still in its infancy and recommendations are readily accepted. 
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