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Abstract
A trained ML model is deployed on another ‘test’ dataset where target feature values (labels) are un-
known. Drift is distribution change between the training and deployment data, which is concerning
if model performance changes. For a cat/dog image classifier, for instance, drift during deployment
could be rabbit images (new class) or cat/dog images with changed characteristics (change in dis-
tribution). We wish to detect these changes but can’t measure accuracy without deployment data
labels. We instead detect drift indirectly by nonparametrically testing the distribution of model pre-
diction confidence for changes. This generalizes our method and sidesteps domain-specific feature
representation.

We address important statistical issues, particularly Type-1 error control in sequential testing,
using Change Point Models (CPMs, [13]). We also use nonparametric outlier methods to show
the user suspicious observations for model diagnosis, since the before/after change confidence dis-
tributions overlap significantly. In experiments to demonstrate robustness, we train on a subset of
MNIST digit classes, then insert drift (e.g., unseen digit class) in deployment data in various settings
(gradual/sudden changes in the drift proportion). A novel loss function is introduced to compare the
performance (detection delay, Type-1 and 2 errors) of a drift detector under different levels of drift
class contamination.

Key Words: concept drift, sequential detection, goodness-of-fit tests

1. Introduction

The problem of sequential change generally involves detecting when the distribution of
data observed over time has changed. If the problem is phrased as a binary yes/no deci-
sion that change has occurred, let us denote cases before the change as ‘negative’ and after
change as ‘positive.’ In this case, deciding change has occurred when it has not (yet) would
be a false positive, also known as a Type-1 error. We address below some of the important
statistical issues, such as controlling the false positive rate—that is, the likelihood of falsely
detecting drift—at an acceptable level. Although change detection is a general problem, we
are specifically interested in using it for monitoring changes in the performance (e.g., clas-
sification accuracy) of a machine learning (ML) model. An ML model may serve a critical
business or other function, such as classifying loan applicants as good or bad risks, or clas-
sifying mammogram images as malignant or benign. In cases like this, it is important to be
able to detect when the model’s performance changes (particularly if it degrades) relative to
the baseline it was trained on. In addition, having some realistic statistical guarantee on the
decision, since retraining a model may have real costs, is important. In our experiments,
we will couch ML model monitoring in a setting where a new label class is encountered in
deployment, which was not present in the training data. Observations from this new ‘drift
class’ should typically cause the model’s performance to change.
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Training data
{(x1, y1), . . . , (xK , yK)}

Deployment (test) data
{(xK+1, yK+1), . . . }

ModelM is trained M returns predictions

Figure 1: Illustration of training and deployment data.

Some of these practical issues, as well as the main method we will use, change point
models (CPMs; [12], [13]) have been mentioned in our earlier work in [1] and [2]. Here,
we extend this earlier work in two ways. First, we apply the loss function introduced in
[1] to compare the performances of our various change detectors. Secondly, in addition to
detecting changes in the data observed, we would like to present the user with anomalous
data examples that have high likelihood of being instances of the new class, to help diagnose
the model.

2. Motivation

Our experiments here address the scenario of a ML modelM trained on input data (xi, yi),
where xi may be of arbitrary domain or dimension, and yi is a target variable. Here, we
deal with the specific case of classification, but the results are applicable to other prediction
tasks. After training,M is then deployed on the field on data (Figure 1).

We would like to monitorM’s performance under deployment and determine statisti-
cally if there has been a significant change relative in performance relative to that observed
previously. Such performance changes may be the result of ‘drift’, which is any change
in the data (X, y) itself between training and deployment. The literature on drift often
distinguishes between concept and data drift, which deal with changes in the distributions
Pr(Y | X) and Pr(X), respectively. As noted in [11], the definitions of these drift types in
the literature is inconsistent. In our experiments, we induce change in the data by altering
the distribution of the class labels Pr(Y) observed in deployment; in [11], this is termed
‘prior class probability shift.’ Since we use images from the MNIST image dataset ([8]),
and since the image pixel representation should directly depend on the digit class (digits
0 through 9), we change only Pr(X) —indirectly through changing Pr(Y) —and not the
conditional Pr(Y | X), though this is not an essential aspect of our approach. Our ap-
proach (see Section 3), which is based on detecting changes in performance metrics ofM,
should be able to detect any changes in distributions of X or Y as long as these are reflected
indirectly in changes in the performance metric.

We want our drift detection method to be as generalizable as possible. This includes
not making assumptions on the distribution of the input X, including its dimensionality
(uni- or multivariate), domain (e.g., image vs numeric data), or on the model typeM used.
Hence, rather than modeling the data inputs to detect drift (as in the case of variational
auto-encoders, for instance), we will instead monitor a univariate output of the modelM
and try to detect changes inM’s performance. If the data X or Y (unobserved) change,
but the model performance doesn’t, we will probably not detect this.

We follow a similar approach to that of previous works; for instance, [2], [6], [7],
and [9] monitor changes in model confidence, estimated accuracy, or other outputs, since
univariate metrics are more easily analyzed by methods such as density estimates and sta-
tistical tests. We will show also that many of the methods historically used for change
detection suffer from flawed statistical guarantees.
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Training data
{(xi, yi)} for yi ∈ {0, ..., 9}\{y∗}

(digit y∗ omitted)

Deployment (test) data
{(xi, yi)} for yi ∈ {0, ..., 9}

(digit y∗ included)

Figure 2: Scenario for training and prediction for MNIST data with omitted digit y∗ (drift
class) in the deployment data.

3. Experimental Setup

The experimental data used here derives from experiments from [2] on MNIST ([8]) image
data, which consists of handwritten images of digits 0 through 9 (ten classes); let these
classes be denoted y = {0, 1, . . . , 9}. In [2], for each digit class y∗ ∈ y, a training set is
formed which contains images from the remaining digits y∗ = y \ y∗. A logistic regression
modelM is trained on this subset (with y∗ omitted), and hence can only classify images
as belonging to one of these nine classes. Then,M is presented with images of the same
classes of the training classes y∗, along with images from the omitted digit class y∗ (see
Figure 2). Images where yi = y∗ are called ‘drift class’ since it is a class not observed in
training. In [2], experiments were also done where the drift class observations differed from
the training data by being either a random noise or an out-of-domain (non-digit) image, but
here we use only the results where the drift class was an unseen digit.

As mentioned in Section 2, we will monitor a model output; here, this is the outputted
model confidence, denoted z ∈ [0, 1], of the most likely predicted class ŷ for a given
instance. For the experiments that follow, we use only fixed sets {(zi, yi)} outputted from
the MNIST experiments of [2], where zi is the outputted confidence on a given prediction
M(xi) for which yi is the true class. In order to demonstrate the performance of our drift
detector, these data are held fixed and we repeatedly sample from them in the following
procedure.

For a given digit y∗ ∈ y (say, ‘0’), do the following:

• The relevant experiment from [2] is that where the remaining digit classes y∗ were
trained on.

• Form a sequence of 100 batches of 20 values each of outputted confidences zt (2,000
values total). Batch j ∈ {1, . . . , 100} thus consists of {z20j−19, z20j}. See Figure 3.
Let b(t) = dt/20e be the batch index of an observation index t.

• Batches 1–50 consist of values of zt where the true digit label yt is one of the training
digit classes (e.g., 1–9) (but not the same training instances themselves).

• Batch j has 100pj% of values consisting of zt where yt = y∗, the omitted class. For
j = 1, . . . , 50, pj = 0, by definition; for j = 51, . . . , 100, 0 ≤ pj ≤ 1.

The changepoint K = 1, 000 (the last index in batch 50) is the last sequence index t
before which the drift class (zt for yt = y∗) may be inserted. For conciseness, let B =
b(K) = 50, the batch of the changepoint. The next observed z1,001 has probability p51
(since b(1, 001) = 51) of being from the omitted class y∗. The goal is to detect, at some
time index d > K, that a change happened at some t < d. A false alarm occurs if d ≤
K, that is a (false) ‘detection’ is made before it actually happened. We wish to avoid
false alarms (controlling its likelihood below a pre-determined level α, such as 0.05) while
simultaneously detecting as quickly as possible, that is minimizing the delay d −K > 0.
The above procedure is repeated 50 times for each digit y∗ and the results aggregated.
For instance, the estimated Type-1 error (false alarm probability) will be the number of
repetitions for which d ≤ K, divided by 50.
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Batch 1
{z1, ..., z20}

Batch 50=B
{z981, ..., z1,000}

Batch 51=B + 1
{z1,001, ..., z1,020}

Batch 100
{z1,981, ..., z2,000}

Figure 3: Construction of batches of prediction confidences zt.

4. Sequential Change Detection

Many previous methods to detect concept drift have tended to demonstrate their success
by carrying out repeated statistical hypothesis tests (or threshold checks) on some data
value or statistic (function) of it, observed over time. In general, a statistical hypothesis test
formulates a null distribution—possibly nonparametric, described by an empirical set of
values—against which a data statistic is compared and a measure of statistical significance
(such as a p-value) is calculated. For instance, [9] calculate a signal value on the data, and
count how often the signal value is observed to be a given number of standard deviations
above the mean, calculated historically. They consider several rules for how many times
this has to happen (x) in the past (y) observations (‘Western Electric Rules’) in order to
declare drift. In [14], an intriguing method is presented to detect ML model potential fail-
ure by monitoring a model’s “regions of uncertainty” through its “marginal density”. The
thresholds for change detection are based on the empirical mean and standard deviations
of their metric under k-fold cross validation. While the experimental results are adequate,
they do not appear to attempt to control the false positive rates either sequentially or using
the criteria of [5].

It is well-known that repeated statistical testing without appropriate adjustment will
cause unacceptable rates of false alarm (Type-1 errors). In the drift setting, the null hy-
pothesis (H0) will be that drift has not occurred, while the alternative (HA) is that it has.
Consider a test for identifying drift, which has decision threshold α (e.g., 0.05). If applied
on a single batch of non-drifted data (H0), this test will raise a false alarm (falsely say
there is drift) with probability α. This α is a parameter specified by the user. However, say
the test is applied to w independent windows of non-drifted data, and that the drift will be
detected at the first batch that seems to have drifted (that is, its p-value is ≤ α). This is
equivalent to a drift detection if any one of the w batches appears to have drifted signifi-
cantly. The probability of the correct decision here (that is, of none of the windows falsely
indicating drift) is now (1−α)w, rather than the higher 1−α for a single test. Thus, a test
naively applied multiple times without proper adjustment will not give the expected α-level
statistical guarantee.

The rationale for making repeated drift tests in our setting is that we want to detect
drift as soon as possible, and hence have to conduct the test at multiple time points without
waiting to observe all the data; in many cases, the data may be an ‘infinite’ stream without
a predetermined sample size. The problem illustrated above of false alarms under multiple
tests is compounded when the data windows are not independent, as in the case when we
want to examine overlapping windows of historical values.

For instance, consider an independent normal sample {x1, x2, . . . , x100} ∼ iid N(µ =
0, 1). For the 81 values t = 20, 21, . . . , 100, let xt = {x1, . . . , xt}. Let the pair of
hypotheses be H0 : µ = 0 and HA : µ 6= 0; the null hypothesis H0 is always true since the
true mean is unchanged at µ = 0. The hypothesis test is repeatedly performed for each of
the overlapping sets xt, t ≥ 20. The first such sample whose p-value < α for a pre-chosen
α—that is, the first time the sample mean x̄t appears significantly different from µ = 0—
triggers a decision of change. Let V denote the number of these change detections out of
the 81 tests done. For the standard case of α = 0.05, the probability of at least one (false)
detection V , that is, the expected false alarm probability of this entire procedure, is around
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23% rather than 5% (α); see Table 1. In the independent (non-overlapping set) case, the
false alarm rate would be 1−(1−α)81, which is≈ 98.4% for α = 0.05, almost a certainty.
Thus, the false alarm rate of the overlapping case is not as bad as the independent case, but
it is still much higher than the desired 100α%.

α 0.05 0.01 0.005 0.001
Pr(V ≥ 1) 0.2296 0.0678 0.0360 0.0074

E(V ) 4.0825 0.7680 0.3598 0.0527

Table 1: Observed false alarm probability for repeated testing on overlapping samples
20, . . . , 100, based on 10,000 simulations.

As noted by [5] in presenting their ECDD method for detecting concept drift in Bernoulli-
distributed variables (e.g., binary indicator of correct classification), many drift detection
methods suffer a weakness in that they cannot properly demonstrate that the false alarm
probability is controlled in reality under a wide variety of settings. The average run length
(denoted ARL0) is the average number of observations between false positives. For in-
stance, to use their example, say the creators of a given method experimentally demonstrate
that their method makes one false alarm detection every 100 observations (ARL0 = 100).
Because the rate of positive instances (instances of drift) in the data stream is unknown,
such a rate of mistaken decisions may seem low in a different application but will likely
be too high for a practical sequential detection setting if a detection of drift has potentially
costly consequences, such as forcing model retraining or examination of the data, and we
are to trust its decision.

A stricter criterion, such as one false positive every 5,000 observations rather than 100
(higher ARL0) may be needed to demonstrate that a positive decision of drift is to be
trusted. It seems that many methods of drift/shift detection may thus use data streams
that are too short relative to what is likely to be encountered in a realistic scenario; this is
particularly true if a method must make a single positive decision and be evaluated based
on it (i.e., ‘all-or-nothing’ scoring) rather than being allowed to make more than one false
positive and being evaluated on the average rate.

The sequential statistical technique we adopt to deal with these issues is the Change
Point Model (CPM) developed by [13] and implemented as the cpm package [12] for R
software. The CPM allows us to conduct repeated backwards-looking drift detection while
controlling false alarm probability (Type-1 error) for a user-desired value of ARL0; this
method also has theoretic statistical guarantees on correctness, not just limited experimental
results, as we summarize below. We note also that two of the authors of the CPM (Adams
and Ross) were authors of the ECDD [5] discussed above.

Algorithm 1 shows the outline of the CPM method; the interested reader is directed to
[13] for full details. Here, data x1, x2, . . . (in our application, the inputs are the observed
confidence values zt) are input. At each time point t, the data are split at each potential time
k = 2, . . . , t−1 into before/after samples {x1, . . . , xk} and {xk+1, . . . , xt}. These samples
are then input into a two-sample goodness-of fit test such as Cramer von-Mises, Student T-
test, or Kolomogorov-Smirnov; the availability of many tests and the nonparametric options
make this method attractive. The goodness-of-fit test yields a set of statistics {Wk,t}t−1k=2,
one for each split, calculated using a given function Diff(·), which are then normalized. At
each time t, let τ = argmaxk Wk,t be the index k with the largest corresponding statistic
Wτ,t; τ represents the guess of the true changepoint, denoted K (i.e., τ = K̂ based on the
data observed until then). Wt = Wτ,t is then compared to a decision threshold ht, and if it
exceeds ht, change is declared at time d = t. This is based on the fact that the outputted
statistic of a goodness-of-fit test is maximized if the proposed split point is actually the
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correct one, meaning the two samples compared will be the most different they can be. The
key point is that these thresholds ht increase over time (see Figure 4) rather than staying
constant, so that the the probability of of a false alarm is always the desired α, given that
one has not yet declared change has occurred; that is,

• Pr(W1 > h1 | no change) = α

• Pr(Wt > ht | no change by t and Wt−1 ≤ ht−1, . . . ,W1 ≤ h1) = α, ∀t > 1

The estimated changepoint is thus K̂ = τ when t = d, and its batch is B̂ = b(K̂). A
true detection is when K̂ > K, which requires in addition that b(d) > B = b(K), since
true detection can happen only at the first instance of drift or later.

Algorithm 1: Outline of Ross & Adams’ CPM algorithms
Result: DRIFT detected
//Set your significance level
α = 0.05;
//Initial stabilization period
t0 = 25;
t = t0;
d =∞; K̂ =∞;
//Sequential critical values
hb, hb+1, . . .
DRIFT = False
while DRIFT = False do

//Consider each possible split of data into two before/after subsets
for k = 2, . . . , t− 1 do

X0 = {x1, . . . , xk}
X1 = {xk+1, . . . , xt}
Wk,t = norm(Diff(X0,X1))

end
//Find most significant split
τ = argmaxk Wk,t

if Wτ,t > ht then
d = t; K̂ = τ ;
DRIFT = True

end
t++;

end
return d (detection time), K̂ (estimated changepoint); both are∞ if no detection

5. Drift scenarios

Many change detection methods have distinguished between change that happens gradually
vs abruptly; [6] for instance, use the term ‘drift’ for gradual and ‘shift’ for abrupt change. In
our application, gradual change can be thought of as gradual (slow increasing) introduction
of the omitted digit class in the data stream. In Section 3, we noted that pj is the omitted
digit class proportion in batch j. We first propose to test our application of the CPM under
various drift scenarios (see Figure 5) as follows; after each scenario name, in parentheses,
appears an abbreviation that appears in the plots Figure 8 and after. Note that pj = 0, ∀j ≤
50 under all scenarios:
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20 30 40 50 60 70 80

4.5

5.0

5.5

6.0

6.5

7.0

7.5

Critical values of ht for CvM method

t

h t

α = 0.01   
α = 0.05

Figure 4: Critical values ht, t = 20, . . . , 80 for the Cramer-von-Mises CPM for α =
0.01, 0.05. For a lower α (higher significance), the critical values are higher. Also, for
each α, ht increase with t.

• ‘Sudden’ changes where the contamination rate in the first post-change batch j = 51
remains constant for the entire history, that is p51 = · · · = p100.

– sudden quarter (S 25%): pj = 0.25, j ≥ 51.

– sudden half (S 50%): pj = 0.50, j ≥ 51.

– sudden full (S 100%): pj = 1.0, j ≥ 51.

• ‘Sudden’ changes where the drift classes disappear after a certain time period.

– sudden half return (SR 50%): pj = 0.5, 51 ≤ j ≤ 65; pj = 0, j ≥ 66.

– sudden full return (SR 100%): pj = 1.0, 51 ≤ j ≤ 65; pj = 0, j ≥ 66.

• Gradual changes

– gradual to half (G 50%): pj = 0.05(j − 50), 51 ≤ j ≤ 60; pj = 0.50, j ≥
66.

– gradual to full (G 100%): pj = 0.05(j − 50), 51 ≤ j ≤ 70; pj = 1.0, j ≥
71.

– gradual long delay (G LD): pj = 0.05d(j−50)/3e, j ≥ 51 (pj increases by
5 ppt every 3 batches).
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Fraction of drift class in window

time window (all after changepoint)
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sudden_full_return
sudden_half_return
gradual_to_half

gradual_to_full
gradual_long_delay

Figure 5: Drift scenarios in terms of drift (omitted digit) class proportion pj in batches
j = 51, . . . , 100. See Section 5.

The idea is that sudden changes in pj should be easier to detect than gradual changes
that begin smaller and reach the same level, and changes that persist should be easier to de-
tect than changes that return to the pre-change situation (pj = 0). The CPM has options to
include as its goodness-of-fit test the Student-T and Cramer von-Mises (CvM) test, among
others. Using a fixed performance metric—principally detection delay, and the false and
missed alarm probabilities—we can compare a given CPM detector to others, and compare
the results of a given detector for the different drift scenarios. However, how can we com-
pare two detectors’ success in several scenarios over these different metrics? Is it better to
have a false alarm probability of 0.05 and delay of 7 batches, or a probability of 0.03 and
delay of 10 batches?

In [1] we presented a novel loss function. Recall, K is the true changepoint (50 in our
setting); b(t) = dt/20e is the batch of a time index t, and B = b(K); and {pj}, j =
1, . . . , 100 are the contamination values associated with a given drift scenario. Let d ∈
{1, . . . , 100} be the window of detection, if, made, where b(d) = 51 is the best result; if no
detection is made, let d =∞. LetL0, L1 < 0 be constants specifying a penalty incurred for
a false alarm (Type-1 error or false positive) and missed alarm (Type-2 or false negative),
respectively. A given result (K, d, {pj}), which together describe the true changepoint,
detected time, and drift scenario, receives a loss score defined as

L(K, d, {pj}) =



L0 if d ≤ K
L1 if missed (d =∞)

L1 −

 L1∏b(d)
j=b(K)+1 (1 + pj)

b(d)−j
b(d)−b(K)

 if K < d <∞

Setting L0 < L1 (we set L0 = −1000 and L1 = −250) means a false alarm is
penalized more than a missed detection, forcing the detector to be more conservative. The
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Figure 6: Loss function value for L0 = −350 and L1 = −250.

best result is if the detection at d falls in batch b(d) = b(K) + 1 = 51, the first batch after
the change. If this happens, the denominator of the third expression in L(·) is 1 since the
exponent is 0. For true detections where b(K) < b(d) < ∞, the loss function penalizes
delayed detection by compounding pj for each batch j for the number of windows it has
been present until the detection. Since L0 factors out of the third expression, all that matters
is the ratio of L0 and L1, not their absolute values.

This is illustrated in Figure 6; we set L0 = −350 here for clarity. For detection batch
b(d) ≤ 50, the loss is constant at L0. For b(d) = 51, the loss is 0 since this is optimal.
For b(d) > 51, the loss declines monotonically to L1 = −250. However, for instance,
sudden full (thick solid black line), the loss grows more negative faster than, say, for
sudden quarter (thin solid black line), where the drift contamination is smaller. Thus,
for instance, at any given detection time b(d), the first receives lower loss; also, the same
given loss value (y-axis) is incurred earlier by the first than the second. The most gradual
and lowest contamination gradual long delay (thin dashed green line) scenario has loss
that grows the slowest.

6. Outlier Detection

In addition to detecting drift in terms of a change in distribution of the confidences zt, we
may also want to provide the user suspicious instances of the underlying data (xt, yt), even
though only {zt} are used in the detection itself. The hope is that these suspicious instances
will help the user understand the cause of the drift and make appropriate adjustments toM,
or possibly, the detection procedure itself.

As mentioned, the CPM (Algorithm 1) makes a detection at time t = d and returns an
estimate K̂ of the true changepoint K (=1,000). Thus, the pre-drift and post-drift samples
are Z0 = {z1, . . . , zK̂} and Z1 = {zK̂+1, . . . , zd}. Since our detection is in change of
distribution of zt, a natural solution is to select the most anomalous confidence values in
Z1 relative to Z0. Define Θ = {t : t ∈ {K̂ + 1, . . . , d} s.t. zt is an outlier relative to Z0},
so the anomalous confidence values are {zt}t∈Θ. The user will thus be presented with
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{(xt, yt)}t∈Θ in the original domain of the data (e.g., images and class label) as poten-
tial outliers. We may additionally want to restrict |Θ| to be of maximal size, say 7; this
is based on the ideas introduced in [10] that human short-term memory can handle only
a limited number of items. We do not think all of {(xt, yt)}t∈Θ will be outliers, but
rather that they include at least one (and at higher proportion than a random sample from
{(xt, yt)}K̂+1≤t≤d). Nor do we hope to return most of the drift instances to user, but rather
a few representative ones that will help in diagnosis. It is assumed that the user should be
able to diagnose the problem relatively easily once pointed to these items, such as seeing
by visual inspection that the digit is a new class, or that the handwriting style or image
resolution has changed.

We use the two-sample local kernel density-based test, proposed in [3]. It is imple-
mented in R package ks (kernel smoothing; [4]) as kde.local.test for the general
case and kde.local.test.1d for the simpler univariate case. In the univariate case,
the test takes as input two univariate samples (here, Z0 and Z1) and conducts a nonpara-
metric kernel density estimate on each, denoted f̂0 and f̂1, a process which includes de-
termining the optimal bandwidth values for each, which are inputs into the algorithm. The
domain (in our case zt ∈ [0, 1]) is discretized into n equally-spaced points {δ1, . . . , δn}
where δ1 = 0 and δn = 1. Let ∆i = f̂1(δi) − f̂0(δi). Assuming this discretization repre-
sents the densities well enough, a local test will be done at each δi to see if the difference
∆i between the two densities is significantly different from 0. At each δi, the statistic

χ2
stat =

(
∆i

ŜD(∆i)

)2

is calculated; the standard deviations of the differences ∆i are ob-

tained from a formula that relies on the density bandwidths. Each statistic is independently
chi-squared χ2

1 distributed, since they are squared normally-distributed random variables.
For each, the upper-tailed p-value is calculated; given a desired threshold α∗ (which, in our
application, may be different from the α of the CPM), a Hochberg multiple-testing adjust-
ment is applied to them, yielding adjusted p-values {π1, . . . , πn}, and thus a decision as to
which δi are locations of significant differences.

Now, the individual tests can be used to determine significant regions. Let δa < δb be
two points in the discretization. We can say an interval [δa, δb] ∈ [0, 1] is an area where f0
and f1 differ significantly if πi < α∗, ∀a ≤ i ≤ b, that is if there is a significant density dif-
ference at all intermediate discretization points δi. Let Λ be the union of all such intervals,
if they exist. Thus, we may specifically define Θ = {t : t ∈ {K̂ + 1, . . . , d} s.t. zt ∈ Λ},
again restricted to a maximal size and choosing the intervals in Λ in order of the signifi-
cance of their p-value given it is below α∗. The user is thus presented with {(xt, yt)}t∈Θ
as before.

For the purposes of this application of outlier detection, we only consider those points
δi for which πi < α∗ and specifically f̂1(δi) > f̂0(δi), rather than simply having them be
significantly different. That is, we consider only one tail (>) of the two-tailed (6=) results.
Considering only intervals [δi, δj ] where post-change confidences zt are more concentrated
thatn pre-change (f̂1 > f̂0) rather than less-concentrated, is more likely to identify unusual
observations. It turns out that the model M’s predictions on the drift class observations
can actually tend to be more confident (incorrectly) than less confident. This means that the
intervals [δi, δj ] ∈ [0, 1] that we identify as potentially containing outliers can occur at the
upper (confident) edges of [0,1] in addition to the lower ones.

Figure 7 shows an example of this local test on two Beta-distributed samples with
densities f0 ∼ B(α = 24, β = 20) and f1 ∼ B(α = 10, β = 10). The red shaded area
represent the areas where f̂1 > f̂0 significantly. Note that, for instance, f̂1 > f̂0 to the right
of the leftmost shaded region, but that this height difference is not judged as statistically
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Figure 7: Illustration of kernel density test of local differences between two Beta-
distributed samples f0 ∼ B(α = 24, β = 20) and f1 ∼ B(α = 10, β = 10). The red
shaded areas show areas of the domain z ∈ [0, 1] where f̂1(z) > f̂0(z) significantly. The
regions are formed by joining together all individual points δi ∈ [0, 1] in the discretization
of the domain where f̂1(δi) > f̂0(δi).

significant. The outlier sample is indices t ∈ Θ where zt fall in the shaded regions, from
which we only select the most anomalous (regions with lowest p-values) subject to the
limited number of outliers (10) we wish to present.

7. Results

As mentioned in Section 3, for each digit y∗ ∈ {0, 1, 2, 4, 5, 6, 8, 9} (3 and 7 were omitted
due to technical issues), for each scenario from Section 5 we generate 50 repetitions of
sequences {zt} of length 2,000. The first 1,000 are zt whereM is trained on all digits other
than the omitted y∗. In the last 1,000, zt are a mix of all digits including y∗, which is inserted
in proportions pj corresponding to that scenario. We use two CPM nonparametric tests,
Student-T test (‘Student-T’), which tests for changes in the mean confidence, and Cramer-
von-Mises (‘CvM’), which tests for arbitrary distribution change, each with α = 0.05.

In addition, for each, we try using the local density test (Section 6) with α∗ = 0.05, in
which we do not return a CPM detection until at least one outlier is returned (that is, we
have at least one {zt : t ∈ Θ} to present to the user. This additional condition can only
delay the detection relative, so the false alarm probability can only decrease but the missed
alarm probability can increase if this prevents returning a detection. These two tests are
denoted ‘Student-T outliers’ and ‘CvM outliers’.

Furthermore, we wish to demonstrate the fact that the CPM detectors are able to control
the false alarm correctly (see Section 4), which methods that do not have sequential control
do not. Therefore, we compare our CPM results with two non-sequential methods:

• ‘naiveT pairwise’: calculate the p-value of the two-sample Student-T test between
pairs of batches {z1, . . . , z20} (the baseline) and {z20j−19, z20j} for j = 2, . . . , 100;
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let the corresponding p-values be {π2, . . . , π100} (not to be confused with the p-
values of the local test in Section 6). Let j∗ = min({j : 2 ≤ j ≤ 100 & πj ≤ α}),
that is the first batch j that is declared significantly (defined by level α) different from
the initial one. The best guess of changepoint is the previous batch, B̂ = b(K̂) =
j∗ − 1. If none are significant, B̂ =∞.

• ‘naiveT splits’: This imitates the before/after splitting procedure of the CPM (see
Algorithm 1). At each batch j ≥ 2, determine each before-after split at batch bound-
aries Z0;k,j = {z1, . . . , z20k} and Z1;k,j = {z20k+1 . . . , z20j} for 1 ≤ k < j. Let
the corresponding p-values for a two-sample Student-T test of Z0;k,j vs Z1;k,j be
{π1,j , . . . , πj−1,j}. Let πj = min({π1,j , . . . , πj−1,j}), the most significant split ob-
served. If πj ≤ α, a change is declared and B̂ = b(K̂) = j − 1, the previous
batch.

Note that the non-sequential tests use the T-test without decision thresholds that account
for the time elapsed, as opposed to the dynamic CPM thresholds ht (see Figure 4).

In the following plots, we compare detection methods (CPM with/without outlier de-
tection, and naive methods). The results in each are aggregated across 50 repetitions each
for each omitted digit class y∗.

Figure 8 shows the false alarm probabilities, that is, the probability of an early detec-
tion. The Student-T CPMs (upper left corner) tend to have a false alarm rate of about 0.10
despite α = 0.05. The CvM CPM (upper middle) has false alarm rates across all sce-
narios that are closer to the desired α. The non-sequential tests (right column) both have
unacceptably-high false alarm rates, far above the 0.05 rate. This demonstrates that non-
sequential methods should not be blindly used if controlling the overall false alarm rate is
desired.
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Figure 8: False alarm (Type-1 error) probabilities by scenario and detection method, ag-
gregated across omitted digits and repetitions.

Figure 9 shows the probability of not detecting change at all; this is the Type-2 error.
The true rate should be 0 since we do indeed simulate a distribution change, however it is
possible that the detector would have detected if allowed more time. By and large, in most
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scenarios and methods, the missed alarm rate is close to 0. The scenarios sudden quarter
(S 25%) and gradual half return (GR 50%) (see Figure 5) seem to be more difficult. For
the non-sequential tests, the low missed alarm rates are not much of a consolation since
they have unacceptably-high false alarm rates.
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Figure 9: Missed alarm (Type-2 error) probabilities by scenario and detection method,
aggregated across omitted digits and repetitions.

Figure 10 shows the detection delay by batch, conditional on making a detection. The
naiveT splits detector almost always makes a false alarm (almost no detections after B =
b(K) to consider for delays, see Figure 8), so most values are missing. For the other cases,
we see that the more gradual (G LD, G 50%, G 100%) scenarios are the hardest to detect
quickly since the change is smallest. S 25% also tends to have longer delays, even though
it is a sudden change, since the contamination level is relatively low. The sudden 100%
contamination scenarios (S 100% and SR 100%, in which the contamination disappears),
have the shortest detection delays because the change is more abrupt. Also, the delay for
each CPM can only increase if the outliers requirement is added.

In the previous figures, we have compared the methods across various scenarios. Sce-
narios with more abrupt change should have lower detection delay and also lower missed
detection probability, but this relationship is likely not linear with the amount of contam-
ination. In Section 5 we introduced a loss function which takes into account the amounts
of drift contamination pj and the delay (compounding each pj for the number of batches
detection has been delayed on it) when assigning a score. Boxplots of the loss functions are
shown in Figure 11. Since any false alarm yields a loss of L0 = −1, 000, and a delayed or
missed alarm yields a loss between 0 and L1 = −250, the interesting part of the boxplot is
between 0 and−250. Note that in Figure 6, the loss under all scenarios converges to nearly
L1, the loss for a missed detection, before the end of 100 batches, so the boxplots in this
area will not be skewed by missed detections.

For instance, in Figure 10 for the CvM CPM (middle upper row), consider the rightmost
two scenarios, G 100% and G LD; the inter-quartile ranges (rectangles) of the two boxplots
do not even overlap, indeed the whole distribution of delay for G 100% is lower than the
mean of that of G LD. However, the delayed detection of G LD is justified because its
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Detection delay across digits (if detected)
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Figure 10: Batch detection delay (b(d) − b(K) − 1), conditional on making a correct
detection (K < d < ∞) by scenario and detection method, aggregated across omitted
digits and repetitions.

contamination is much more gradual. In Figure 11, the loss for G LD is more negative
(worse) than G 100%, but not worse to the same degree as is its comparative detection
delay, since the lower drift contamination in G LD is penalized less than is the sudden full
contamination in G 100%. The loss function at least allows us to compare performance
under different scenarios on a more level ground.

In Section 6 we stated an additional goal of returning particularly anomalous data ex-
amples to the user if model performance change is detected, to allow them to better diag-
nose the cause of the change by manual inspection or simple analysis. We used a local
density-difference test to determine indices t ∈ Θ corresponding to observed confidences
{zt} in the determined post-change sample Z1 (whose density is estimated by f̂1), which
appear anomalous relative to the pre-change sample Z0 (whose density is estimated by
f̂0. Here, we select up to 10 of the most anomalous cases (1 ≤ |Θ| ≤ 10). The goal is

that θ :=

∑
t∈Θ I(yt = y∗)

|Θ|
—that is, the fraction of returned outliers {xt} that are the

drift class (omitted digit)—will be relatively high, meaning we are relatively confident our
outliers are of the drift class.

In Figure 10, let us compare the left column panels (CPM without requiring an outlier
to be returned) with the middle column panels (delaying change detection until at least one
outlier, subject to threshold α∗). Requiring outliers to be found—whether or not they are
of the drift class—delays detection somewhat; the degree depends on the scenario.

In Figure 12, we demonstrate the success of our method by examining the empirical
distribution of the fraction θ. The left column (“no constraint”) shows, for Student-T and
CvM CPM (‘Student-T’ and ‘CvM’ of the previous figures), the fraction of the post-
change sample Z1 that are examples of the drift class (omitted digit). That is, we do not
apply an outlier test, but simply let Θ = {K̂ + 1, . . . , d}, that is, all indices after the
estimated change point K̂, when calculating the fraction θ. The middle column (“with
constraint”) has θ similarly defined, where we show the results where Θ = {K̂+1, . . . , d}
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Figure 11: Loss L(K, d, {pj}) by scenario and detection method, aggregated across omit-
ted digits and repetitions.

when we wait for the test to identify at least one outlier, but before we select only outliers
in Θ. In order for an outlier to be identified after the CPM detects change, the overall

drift fraction
∑d

j=K̂+1
pj

d−K̂
typically needs to be higher than without the outlier requirement,

since a higher θ will increase the number of potential outliers. Thus, the average drift
contamination in the middle column is higher than in the first, since in our scenarios pj
tends to increase with the batch j.

Let Θ = {K̂+1, . . . , d} be the indices after the estimated changepoint when we find at
least one outlier, but before selecting the outliers. Let Θ

′
be the (up to 10) indices sampled

from Θ that are the most anomalous (as defined by our local density test). To be successful,
we need θ

′
defined on the set Θ

′
to be larger than the average fraction θ calculated on the

set Θ. That is, we need to show our outlier detection method actually finds a significantly
higher fraction of drift class (indirectly) than would taking a simple random fraction of
post-change observations indexed Θ, which has average drift contamination θ. The right
column (“only outliers”) of Figure 12 shows these fractions θ

′
; the middle column are the

corresponding θ without the test. As we can see, the boxplots in the right column are
significantly higher than the corresponding ones in the middle column. Indeed, many of
them return an average of 60% or above drift class, meaning that the returned set of outliers
should contain at least several drift instances that should be easy to identify. Furthermore,
these fractions θ

′
are high across scenarios, thought they are highest on average in the more

abrupt scenarios S 100% and SR 100%.

8. Conclusion

In this work, we discussed a method to statistically detect changes in the performance of a
ML modelM by observing changes in the distribution of its prediction confidence zt over
time. It is often the case the the performance (as measured by zt) can change, particularly
for the worse, when it encounters data observations xt which may be unusual in some way
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Fraction of post−change instances are new digit
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Figure 12: Probability of identified post-change sample that is the drift fraction (denoted
θ), for the two CPM methods. Left column is CPM without testing for outliers; middle
column is CPM with testing for outliers, but before most-significant outliers are selected;
right column is only the most significant outliers.

fromM’s training data. Our method uses the CPM ([13]) a nonparametric method that is
both more statistically correct than other methods, and allows us to indirectly infer changes
in model performance regardless of the data domain.

We tested our method by omitting a different MNIST digit class from the training set
each time, and seeing if we could detect the omitted class in the test (deployment) phase.
In our experiments, we simply relied on detecting changes in the prediction confidence
observation without ‘telling’ our detector what type of data change it expected to find.
Our results (see Section 7) show that we are able to reliably detect these changes while
controlling for false alarms, and additionally present potentially anomalous data instances
(see Figure 12)—again, without defining the type of anomaly directly—that have a high
likelihood of belonging to the drift class (here, the omitted digit).

In theory, our approach should work on performance metrics other than confidence, as
long as these metrics are sensitive to changes in the data (e.g., new class). We note that
confidence does not require knowledge of the ground truth yt, whereas other metrics like
F-score and mean squared error (MSE) do. On one hand, if the metric is sensitive to data
changes (‘drift’), we can use changes in the performance to identify drift. But, if the per-
formance metric does not change, perhaps this is good for the modelM because it means
M is robust to data drift according to this metric. In the case we have experimented with,
where the drift takes the form of an unseen class, a traditional classifier cannot classify it
correctly since it only knows the set of labels (digits) it was trained on. In this classification
task, it would not help if the prediction confidence was robust to the new class, sinceM
could never output the correct label; in fact, this would be a bad property. In a numeric
prediction task, such as linear regression, however, a model could still have strong perfor-
mance (e.g., low MSE) despite encountering drift in the form of values outside the expected
range, if the modeled relationship still holds. A sudden change in the MSE could indicate
drift in the form of a change in the model relationship. Thus, a detector which used MSE
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could detect the second kind of drift, which is more problematic, but not the first.
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