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Abstract

The main goal of this research is to propose a methodology for classifying time series. Two ap-

proaches were used in this methodology: (A1) methods based on the parameters from models, and

(A2) methods based on the features of time series. Approach A2 was used in method 1 (M1) and

both approaches A1 and A2 were used in methods 2 and 3 (M2 and M3). (M1) Features based on

functions such as spectral density, sample Auto Correlation Function (Sample ACF), sample Partial

Auto Correlation Function (Sample PACF) and rolling ranges, (M2) Estimates of parameters and

features based on a Seasonal Autoregressive Integrated Moving Average (Seasonal ARIMA) model

with a Threshold Generalized Autoregressive Conditional Heteroskedastic (TGARCH) model and

a Student distribution for residuals (Seasonal ARIMA-TGARCH-Student) and (M3) Estimates of

parameters and features based on a Additive Seasonal Holt-Winters prediction function (Additive

SH-W). For M2 and M3: Firstly, estimates of the parameters of models were calculated. Secondly,

features of residuals from the models, such as the maximum of the spectral density and mean of the

values of Sample PACF were computed. The Sparse Partial Least Squares Discriminant Analysis

(sPLS-DA) was used to identify groups of time series using the classification variables (features or

parameter estimates) from the three methods. The centroid distance and the Balanced classification

Error Rate (BER) were used to apply the sPLS-DA. The methodology is described using time series

data from a study carried out in the Metropolitan Cathedral of Valencia in 2008 and 2010. The time

series data corresponds to the time series of relative humidity from sensors positioned at different

points of the apse (positions: cornice or ribs RC, walls W and frescoes F) in the Cathedral in 2008

and 2010. The sensors were monitored with the goal of assisting conservation of the renaissance

frescoes in the Cathedral. The classification variables in our study were calculated separately for

various seasons of the year (winter, spring and summer) for both 2008 and 2010. For methods 1,2

and 3 in 2008 and M1 and M3 in 2010, the first component from sPLS-DA showed that the time

series that are situated in the RC and W positions were classified according to their location. Also,

for M1 (2010) the time series in RC, F and W were classified according to their positions. The

methodology proposed in this research would be appropriate when there are no major differences

between the time series of different groups, and when, according to the characteristics and context

of the problem, it is possible to indicate the class of the time series.

Key Words: ARIMA, Art conservation, Auto correlation function, Diagnosis sensor, Holt Winters,

Microclimate Spectral density, TGARCH, Student

1. Introduction

The famed Renaissance frescoes in Valencia’s cathedral had been kept at a relatively con-

sistent temperature until the year 2004 when restoration began [Garcı́a-Diego and Zarzo,

2010]. In order to maintain the preservation of the frescoes, a unique monitoring system
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was introduced to regulate both temperature and humidity. Sensors were located at differ-

ent points at the vault of the apse and inserted into the painting’s surface itself [Zarzo et al.,

2011, Garcı́a-Diego and Zarzo, 2010]. The system was designed to identify both water

entering from the roof and general humidity in the vault itself [Garcı́a-Diego and Zarzo,

2010]. The statistical analysis directed by Zarzo et al. [2011], Garcı́a-Diego and Zarzo

[2010] of data on relative humidity (RH) displayed the importance of humidity sensors in

maximizing protection and preventing deterioration of the frescoes.

In the preliminary study, RH data was analyzed [Zarzo et al., 2011, Garcı́a-Diego and

Zarzo, 2010] from the sensors (positions: cornice C, ribs R, walls W and frescoes F)

located in the cathedral of Valencia. These are shown in Figure 1. The researchers used a

Principal Components Analysis (PCA). This method was applied to the RH data (RHh data

or RHd data or RHm data), where RHh corresponds to an average of 60 values of RH per

hour, RHd to the average of the values of RH per day and RHm to the average of the values

of RH per month. The researchers concluded that the study of RH, using PCA as well as

the interpretation of the first two components of the PCA, can be a very powerful method

for the preventive conservation of frescoes. Also, they came to the conclusion that PCA

can be used to identify abnormal conditions of the paintings and an abnormal performance

in sensors [Zarzo et al., 2011, Garcı́a-Diego and Zarzo, 2010].

Figure 1: Position of the 29 sensors for monitoring the RH of the air inside the Cathe-

dral. Seven of the sensors are located on the ribs (orange), two probes at the cornice (light

orange), ten probes on the walls below the severies (blue) and ten probes on the frescoes

(gray). In this research the sensors that were used were: 18 common sensors in both 2008

and 2010 (circular), 4 sensors only used in 2008 (diamond), one sensor only used in 2010

(square) and 4 sensors which were not used (star).

This study will propose a methodology for discriminating time series from sensors lo-

cated in the Cathedral of Valencia. Research that may be related to this study correspond

to time series clustering. According to Vilar and Montero [2014], clustering is an unsuper-

vised learning task that separates a set of unlabeled data objects into homogeneous clusters.

Separation is carried out in such a way that objects in the same cluster are more alike each

other than objects in different clusters, according to some defined criterion. There are five

approaches to time series clustering methods based on: (A1) parameters from models, (A2)

serial features extracted from the original time series, (A3) complexity of a time series (A4)

the properties of the predictions and (A5) the comparison of raw data [Liao, 2005].

A crucial aspect in cluster analysis is establishing a suitable similarity or dissimilarity

measure between two objects. Different approaches for defining a dissimilarity between

time series have been proposed. Liao [2005] presented an investigation about a similarity
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or dissimilarity measure and Fu [2011] provided an overview on time series data min-

ing directions, such as measures of dissimilarity, clustering procedures and visualization

tools. Vilar and Montero [2014] also produced a description on time series clustering and

created a R package TSclust where they implemented a large set of well-established,

peer-reviewed, time series dissimilarity measures. They also described the main features

of TSclust and presented examples of how it is used. Some of these are shown below.

Several measures have been proposed for approach 1 (A1) [Piccolo, 1990, Maharaj,

1996, 2002, Kakizawa et al., 1998, Vilar and Pértega, 2004]. The most commonly contem-

plated criterion has been to assume that the time series are generated byARIMA processes.

Piccolo [1990] introduced the Euclidean distance between their corresponding Autoregres-

sive (AR) expansion as the metric and used a complete linkage clustering algorithm to

construct the dendrogram. One problem of this metric is related to the effective numerical

computations of the AR coefficients. For Autoregressive Moving Average models ARMA

processes, Maharaj [2000] developed an agglomerative hierarchical clustering procedure

that is based on the p-value of a test of hypothesis applied to every pair of given station-

arity time series. Kalpakis et al. [2000] studied the clustering of ARIMA time series, by

using the Euclidean distance between the Linear Predictive Coding LPC spectrum of two

time series as their dissimilarity measure. Xiong et al. [2002] clustered univariate ARIMA

time series and assumed that the time series are generated by ARMA models, although

they used mixtures of ARMA models. They derived an Expectation Maximization (EM)

algorithm for learning the mixing coefficients as well as the parameters of the component

models. One problem with the method is that if the underlying clusters are very close to

each other, the clustering performance might diminish significantly. Researchers in ma-

chine learning and speech recognition have proposed models such as Markov chains (MC)

or hidden Markov (HM) [Ramoni et al., 2002, Smyth, 1997, Oates et al., 1999, Bagnall

et al., 2003]. In relation to approach 2 (A2), some dissimilarity measures extracted from

the original time series features are ACF, cross-correlations, spectral features [Kovac̃ić,

1996, Struzik and Siebes, 1999, Peña and Galeano, 2001, Caiado et al., 2006, Douzal and

Nagabhushan, 2007]. According to approach 3 (A3), most measures based on complexity

of a time series are supported on the notion of Kolmogorov complexity or algorithmic en-

tropy [Li and Vitãnyi, 2007]. There are two useful approaches for evaluating complexity

differences between two time series, the first, uses algorithms based on data compression

[Li et al., 2001, 2004, Cilibrasi and Vitãnyi, 2005, Keogh et al., 2007] and the second,

considers differences between permutation distributions [Brandmaier, 2011]. In relation to

approach 4 (A4), studies by Alonso et al. [2006], Vilar et al. [2010] focused on the no-

tion of dissimilarity governed by the performance of future forecasts. Two time series are

similar if their forecasts for a specific future time are close. Measures such as Minkowski,

Fréchet, Euclidean or Manhattan are used in approach 5 (A5). Other measures of this type

are described by Batista et al. [2011].

In the opinion of Liao [2005], beyond all these criteria for defining dissimilarity mea-

sures between time series they are often adapted to the problem at hand. According to

the problem in a specific context, certain properties of the time series are highlighted in a

dissimilarity measure.

In this study a methodology for discriminating time series is proposed, where ap-

proaches A1 and A2 are used. The measure that is used to predict the class of each time

series is called prediction distance. It is applied to latent variables (components) that are

calculated using a linear combination of estimates of the parameters of one of the models

aforementioned and features of the time series. One problem is the amount of information

that can be used in the latent variables because this might make the results difficult to in-

terpret. As a consequence, a methodology is proposed to identify the clusters of time series

 
109



with the optimal information of the time series. In this research, the term classification

variables is utilized to refer to the estimates of the parameters of the models and to refer to

the features extracted from the time series data.

As the classification data (related to classification variables) in this study, is charac-

terized by more variables than the number of the time series (sensors), they often imply a

high degree of multicollinearity, and this might lead to severely ill-conditioned problems.

One solution is to perform feature selection, or introduce artificial variables that summarize

most of the information.

Support Vector Machines (SVM) [Vapnik, 1999] and Classification and Regression

Trees (CART) [Deconinck et al., 2005], do not necessarily require variable selection for

predictive purposes. However, the results are often difficult to interpret when there are

a large number of variables. In order to solve this problem, some methods have been

suggested: Nearest Shrunken Centroids (NSC) [Tibshirani et al., 2002], Optimal Feature

Weighting (OFW) [Lê et al., 2009, 2007], Random Forests (RF) [Breiman, 2001], Recur-

sive Feature Elimination (RFE) [Guyon and Elisseefi, 2003], Linear Discriminant Analysis

(LDA), Principal Component Analysis (PCA) [Bair et al., 2006, Jombart et al., 2010], Par-

tial Least Squares Regression (PLS) [Wold, 1966], and PLS with discrimination purposes

[Antoniadis et al., 2003, Boulesteix, 2004, Dai et al., 2006].

LDA has often been shown to produce the best classification results. However, for large

data sets with a large number of correlated predictors, LDA uses too many parameters that

are estimated with a high variance. While Sparse LDA produces a parsimonious model.

Another limitation of the approaches cited above is the deficiency of interpretability when

dealing with a large number of variables.

In order to select the relevant variables in PLS [Lê Cao et al., 2008, 2009, Chun and

Keleş, 2010], the penalties ℓ1 (Lasso regression [Hoerl and Kennard, 1970]) or ℓ2 (Ridge re-

gression [Hoerl and Kennard, 1970]) are applied to the variable weight vectors. Chung and

Keles [2010] extended the Sparse PLS from Chun and Keleş [2010] for multiclass classifi-

cation problems and demonstrated that both Sparse PLS Discriminant Analysis (sPLS-DA)

and Sparse PLS (sPLS) with an incorporated generalized framework, improved classifica-

tion accuracy compared to classical PLS [Fort and Lambert-Lacroix, 2005].

sPLS-DA has very satisfying predictive performances and is able to select informative

variables easily. While the approach proposed by Chung and Keles [2010] uses a two-

staged procedure, sPLS-DA proposed by Lê Cao et al. [2011] performs variable selection

and classification in a one-step procedure.

In this study, in order to identify a small subset of components and classification vari-

ables and to recognize groups of the time series, the sPLS-DA [Lê Cao et al., 2011] was

employed. The prediction distance proposed was centroid distance and Balanced classifi-

cation error rate (BER) was used to evaluate the results.

Three different methods were applied to the time series to find classification variables:

(M1) Features based on functions such as spectral density, sample Auto Correlation Func-

tion (sample ACF), sample Partial Auto Correlation Function (sample PACF) and rolling

ranges [Palma, 2016, Venables and Ripley, 2002, Brockwell and Davis, 1991a, Box and

Jenkins, 1976, Bloomfield, 1976, Brockwell and Davis, 1991b, Kovalevsky, 2018], (M2)

Estimates of parameters and features based on a Seasonal Autoregressive Integrated Mov-

ing Average (Seasonal ARIMA) model with a Threshold Generalized Autoregressive Condi-

tional Heteroskedastic (TGARCH) model and a Student distribution for residuals (Seasonal

ARIMA-TGARCH-Student) [Kovalevsky, 2018] and (M3) Estimates of parameters and fea-

tures based on Additive Seasonal Holt-Winters prediction function (Additive SH-W) [Holt,

2004, Winters, 1960].

Estimates of parameters of models applied to time series of RH were calculated, for M2
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and M3. Secondly, features of residuals from models such as the maximum of the spectral

density and mean of the values of partial autocorrelation function were computed for the

same methods.

The databases used in this research correspond to subsets of the data sets of RH used in

the study conducted by [Zarzo et al., 2011]. This study focuses on the data from 23 sensors

for 2008 and 20 for 2010. Furthermore, the values of RH are not missing values. The

RH data from each sensor corresponds to a time series of RH. The sPLS-DA was carried

out separately for various seasons of the year (winter, spring and summer) for both 2008

and 2010. In this supervised classification framework, it is assumed that the time series

are partitioned into K=3 groups according to the position of sensors, RC, W and F in

the Cathedral. The groups R and C were joined as a new group RC to ensure a balanced

number of sensors per group. The groups were selected according to physical interest in

the Cathedral’s microclimate.

The R software [R Core Team, 2014] was used to carry out the analysis (versions

3.6.2 and 4.0). The most important packages of R employed in this piece of work

were struc change [Zeileis, 2006a], rugarch [Kovalevsky, 2018], mixOmics [Ro-

hart et al., 2017b], QuantTools [Kovalevsky, 2018], aTSA [Qiu, 2015], forecast

[Hyndman et al., 2020], stats [R Core Team, 2014] and tseries [Trapletti and Hornik,

2019].

This research aims to bring forward a supervised methodology for discriminating time

series according to approaches A1 and A2. This methodology has two stages: (1) obtain the

classification variables using three methods (M1, M2, and M3) and (2) classify the time se-

ries using sPLS-DA as a discriminant technique. This technique is applied to classification

variables estimated in stage (1).

This article is structured as follows: In Sect. 2, characteristics of the data sets and

the sensors are displayed. Statistical tests to identify structural breaks of the time series,

methods for calculating classification variables, and the sPLS-DA are introduced in Sect.

3. The results of the methods applied to time series and estimates from the sPLS-DA are

presented in Sect. 4. The most notable results from sPLS-DA are presented in Sect. 5.

2. Data and Materials

2.1 Data

The databases correspond to subsets of the time series of RH (for each sensor) used in the

study conducted by [Zarzo et al., 2011]. The time periods of the subsets were selected in

such a way as to avoid the missing values. The missing values were not used in order to

have a simple methodology.

In respect to the notation RHh = {RHht
, t ∈ Z} or RHd = {RHdt , t ∈ Z} represent

two real-valued processes, where RHht
corresponds to an average of 60 measures of RH

per hour at time t and RHdt corresponds to the average of measures per day at time t.
Also, RHh = (RHh1 , . . . , RHhnh

)⊤ and RHd = (RHd1 , . . . , RHdnd
)⊤ represent the

partial realizations (observed time series) of the RHh and RHd processes. For each partial

realization the lengths are nh and nd respectively. The notation RH refers to both: RHh

and RHd, and RH refers to both: RHh and RHd.

The observed time series RHh in 2008 consists of 3,851 (nh) observations and it con-

sists of 3,414 (nh) in 2010. In 2008: the realization of time series RHh for winter, spring

and summer consists of 1,430 and 2,099 and 322 observations respectively. In 2010: the

same time series for winter, spring and summer consist of 636 and 2,178 and 600 observa-

tions respectively.
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This research analyzed 23 sensors of RH in the year 2008 and 20 sensors in 2010.

Among these, 18 sensors were common in both 2008 and 2010 (circular), 4 sensors were

only used in 2008 (diamond), one sensor was only used in 2010 (square), 4 sensors were

not used (star). On the other hand, there are an unbalanced number of sensors per position

RC (orange) (R or C), W (blue) and F (gray). In 2008 the number of sensors was: 7, 9

and 7 and in 2010: 8, 6 and 6 (see Figure 1).

The sensors G, H, P and L were discarded because in this work the analysis was sepa-

rated by season and it was imposed as a condition of having time series with at least 300

observations.

2.2 Materials

For each probe there is a sensor in the apse of the Cathedral. Each probe contains an

integrated circuit model DS2438 (Maxim Integrated Products, Inc.) that incorporates an

analogue-to-digital voltage converter. Characteristics of the probes and sensors, details

of the curves of calibration, as well as installation description of sensors and probes, are

described in [Zarzo et al., 2011, Garcı́a-Diego and Zarzo, 2010].

3. Methodology

3.1 Structural breaks of time series

Some models such as the ARMA [Box and Jenkins, 1976], ARCH and GARCH [Palma,

2016] assume that the mean of an observed time series over a period of time is constant

throughout [Palma, 2016]. However, an observed time series that corresponds to real situ-

ations can often present breaks in the mean, due to changes in external factors. If there is

a change in the slope of the linear trend without a discontinuity of the trend then there is a

structural break in the time series [Palma, 2016].

The most important classes of test on structural breaks are: (1) tests from the gen-

eralized fluctuation test framework (e.g., the CUSUM and MOSUM tests, among others)

[Leisch et al., 2000] and (2) tests based on F statistics (e.g., Chow [Chow, 1960] and

the supF [Zeileis et al., 2002] tests, etc)[Hansen, 2002, Andrews, 1993, Andrews and

Ploberger, 1994] The tests from class 1 test empirical fluctuation processes and the tests

from class 2 compute and test sequences of F statistics [Zeileis et al., 2002].

Figures from the observed time series RHh for both years, 2008 and 2010, suggest

potential structural breaks in at least two points (see Figure 2). The supF and CUSUM

tests were used to to assess the significance of these potential structural breaks. The null

hypothesis (H0) and the alternative hypothesis (H1) are as follows: ”no structural change”

and ”the coefficient vector varies over time” [Zeileis et al., 2002].

In order to apply both tests, the observed time series RHh was used after applying

the logarithmic transformation, rt = log(RHht
), which has been used by other works

to stabilize the variance of the time series [Cryer and Chan, 2008]. Furthermore, the

time series were also differentiated, Wt = rt − rt−1 in order to remove the trend of

the time series [Cryer and Chan, 2008]. The supF and CUSUM tests were applied to

six groups: winter 2008 (group 1), spring 2008 (group 2), summer 2008 (group 3), win-

ter 2010 (group 4), spring 2010 (group 5) and summer 2010 (group 6). Each group j
(j = 1, . . . , 6) has two variables xj and yj, where xj = [wj2 , wj3 , . . . , wjnj

] and yj =

[wj1 , wj3 , . . . , wjnj−1 ]. The elements of xj and yj are elements of a vector Wtj given by

Wtj= Wj = [wj1 , wj2 , . . . , wjnj
]. Where nj is the number of observations of group j.

Furthermore, n1 = 1, 430, n2 = 2, 099, n3 = 322, n4 = 636, n5 = 2, 178 and n6 = 600.
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On the other hand, the higher the probability that the H0 will be rejected the more the

sample size increases [Thiese et al., 2016, Wasserstein and Lazar, 2016]. According to

this argument, the significance level was determined by the sample size. Then, for summer

(2008) and winter and summer (2010), the significance level was 0.05 and for other groups,

this was 0.02. Descriptions of the tests are presented below.

(a) 2008 RC. (b) 2010 RC.

(c) 2008 F . (d) 2010 F .

(e) 2008 W . (f) 2010 W .

Figure 2: Column 1 corresponds to 2008 (from January the 15th to the 4th of July) and

column 2 to 2010 (22nd of Febraury to the 18th of July). Graphics correspond to RHh

separated by their positions in the apse in the Cathedral: cornice and ribs (RC), walls (W)

and frescoes (F). Also, by the seasons (winter, spring and summer). Separation by season

is indicated with the vertical blue line. Winter is divided into 2 parts (winter 1 and winter

2) by a structural break that was identified in the series according to the SupF and CUSUM.

The structural break is shown by the yellow line. The results by positions are presented as

follows: (a) y (b) RC, (c) y (d) F and (e) y (f) W .
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3.1.1 The SupF test

The statistic is the maximum F-statistic (supF , across the grid of all potential change

points) from the Chow test [Chow, 1960] in an interval given according to the data [Zeileis

et al., 2002].

To explain the test simply, x, y and n were used instead of xj, yj and nj . To carry out

the test the standard linear regression model (SLRM) must be defined. For this SLRM the

response variable is y and predictor variable is x. The SLRM is given by yi = xi
⊤βi + ui,

where i = 1, . . . , n, xi = (1, xi) and ui is an independent and identically distributed (i.i.d.)

(0, σ2).
An Ordinary Least Squares (OLS) model was fitted, where the regression coefficients

are estimated twice: once for the observations before the change point (i0) and once for

those after the i0. Then, βi is the 2× 1 vector of regression coefficients and it is defined as

follows: βi = βA if 1 ≤ i ≤ i0 and βi = βB if i0 < i ≤ n. Where i0 is a break point in

the interval (1, n− 1).
The test statistic supF is the maximum of the values of F statistics for any potential

break point (i0) in an interval 1 < i ≤ i0 ≤ i < n − 1. The supF is defined as supF =
Supi≤i≤iFi0 where Fi0 = û⊤û−ê⊤ê

ê⊤ê/(n−2)
. The OLS residuals from the regression model are

ê = (ûA, ûB)
⊤ and û is the residuals from the model where the parameters were fitted

once for all observations. The null hypothesis is rejected when the supF gets too large.

3.1.2 The CUSUM test

Ploberger and Kramer [1992] suggested basing a structural change test on cumulative sums

of the common OLS residuals instead of recursive residuals [Zeileis et al., 2002]. The

OLS-CUSUM type empirical fluctuation process is defined by W 0
n(t) = 1

σ̂
√
n

∑⌊nt⌋
i=1 ûi,

0 < t < 1. The limiting process for W 0
n(t) is W 0(t) = W (t) − tW (1), where W (t) is a

Wiener Process [Durrett, 2000]. It starts on 0 at t = 0 and it also returns to 0 for t = 1.

Under a single structural shift alternative, the path should have a peak around t0 [Zeileis

et al., 2002]. In the R software, the results can be computed with functions Fstats, efp

from the strucchange package.

According to the supF test, in winter, the H0 should be rejected, this means that there is

a structural break after the 1,058th (2008) and 338th (2010) observations. The cumulative

sum of the residuals CUSUM should fluctuate around zero, however, significant deviation

occurs from the 1,058th (2008) and 338th (2010) observations. The dates (and time) of the

structural breaks are: the 27th of March 2008 (7:00 AM) and the 8th of March 2010 (1:00

PM).

A fixed parameter model cannot be expected to forecast well if the true parameters of

the model change over time. Ignoring structural breaks can lead to negative implications

such as inconsistency of the parameter estimates and forecast failures [Gaetano, 2018].

The interest of this study is to determine the estimates of the parameters of the models of

time series such as ARIMA and GARCH and as a consequence, the time series data was

separated according to the structural break detected. Also, it might be better to separate

the analysis per season and year, in congruence with the physical characteristics of the data.

According to both considerations, the analysis was separated into four periods: winter 1,

winter 2, spring and summer. Winter 1 corresponds to the period (in winter) before the

structural break and winter 2, after the structural break. In 2008, winter 1 corresponds to

observations from 1 to 1,058, and winter 2 to observations from 1,059 to 1,430. In 2010,

winter 1 corresponds to observations from 1 to 338 and winter 2 to observations from 339

to 636 (see Figure 2).
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3.2 Methods to determine classification variables

In this study, three different methods were applied to find classification variables: (M1)

Features based on functions such as spectral density, ACF, PACF and rolling ranges [Palma,

2016, Venables and Ripley, 2002, Brockwell and Davis, 1991a, Box and Jenkins, 1976,

Bloomfield, 1976, Brockwell and Davis, 1991b, Kovalevsky, 2018], (M2) Estimates of pa-

rameters and features based on a Seasonal ARIMA-TGARCH-Student [Kovalevsky, 2018]

and (M3) Estimates of parameters and features based on a Additive SH-W [Holt, 2004,

Winters, 1960]. The parameters were estimated for M2 and M3 and secondly features of

residuals from models such as the mean of the values of partial autocorrelation function

and the maximum of the spectral density were calculated for the same methods.

The analyses were carried out separately for various groups (winter 1, winter 2, spring

and summer) for both 2008 and 2010. A description of the methods are presented below:

3.2.1 M1: Features based on functions

In this method the functions, spectral density, ACF, PACF and rolling ranges were used

to study the mean, variance, correlation structure, and seasonal components of the time

series of RH. Before computing the classification variables using the first two functions,

logarithm transformation and regular differencing were employed, to stabilize the variances

and remove the trend of the observed time series RH, i.e, rt = log(RHht
) and wt =

rt− rt−1. Thus, the fourth and fifth functions were applied to RHh and RHd and the first

two functions were applied to W, where W = (w1, . . . , wnW
)⊤ and r = (r1, . . . , rnr)

⊤.

A brief explanation of them is presented below.

1. Rolling range: the rolling range over n past values (moving ranges with order n) is the

difference between the maximum and minimum over n past values [Kovalevsky, 2018].

In this study, n = 2 and the RH was used to calculate rolling range. In the R software,

the estimate of rolling range can be computed with the function rollrange from the

QuantTools package.

2. Sample Auto Correlation Function (Sample ACF): a value of the Sample ACF is the

correlation between a value of the time series with a value of the same time series at

previous points (called lags and denotes with l) [Metcalfe and Cowpertwait, 2009]. The

covariance is estimated for l > 0 from nW − l > 0 for observed pairs (w1+l, w1),
. . . , (wnW

, wnW−l). Under assumption of second-order stationarity the subseries

(w1+l, . . . , wnW
), (w1, . . . , wnW−l) have the same mean and variance and the estimator

of Sample ACVF at lag l, acvfl, is presented in equation 1. Where nW is the number of

observations of the observed time series W and W is the sample mean of the observa-

tions of the W. The sample size nW is used even though there are |nW − l| terms.

acvfl =
1

nW

min(nW−l,nW )∑

s=max(1,−l)

(
ws+l −W

) (
ws −W

)
(1)

The Sample ACVF of observed time series W at lag 0, acvf0, equals the sample variance

of W calculated with a denominator of nW . ACF is the correlation of a variable with

itself at different time lags and it is given by acfl = acvfl/acvf0 [Venables and Ripley,

2002]. In the R software, the Sample ACF can be computed with the function acf from

the stats package.
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3. Sample Partial Autocorrelation Function (Sample PACF): the value of PACF at lag l
correspond to the linear correlation of a time series RHhs

and a lagged version of it-

self RHhs+l
with the linear dependence of RH l−1

hl
removed, where RH l−1

hl
denotes

{RHhs−1 , RHhs−2 , . . . , RHhs−(l−1)
}. If l = 1, the Sample PACF is the correlation be-

tween RHh1 and RHh0 . If l ≥ 2, Sample PACF is the correlation between RHhl
−

RH l−1
hl

and RHh0 −RH l−1
h0

[Box and Jenkins, 1976, Brockwell and Davis, 1991b].

The Sample ACF and Sample PACF plots are important diagnostic tools for helping to

select the proper order of p and q in ARMA (p, q) models [Box and Jenkins, 1976]. In

the R software, the Sample PACF can be computed with the function pacf from the

tseries package.

4. Spectral density function: spectral density and the autocovariance function expressed

the same information in different ways. The spectral density function is estimated us-

ing the periodogram. The latter displays information about the seasonal components

of a time series and the strengths of the various frequencies for explaining the seasonal

components. To study the seasonal component of the time series, the maximum of the

estimates of spectral density and corresponding frequencies are identified [Venables and

Ripley, 2002]. A brief description of the spectral density that is explained in [Venables

and Ripley, 2002] is presented below.

A covariance-stationary process Wt with mean µ := E[Wt] and jth autocovariance γj :=
[E(Wt−µ)(Wt−j −µ)]. The population spectrum of W at frequency ω ∈ R is given by

sW (ω) =
1

2π

∞∑

j=1

γje
−iωj .

This function is well defined, provided that the sequence {γk : k ∈ Z} is absolutely

summable. From the properties of the complex exponential function, it becomes clear

that the population spectrum is symmetric around 0 and periodic with period π. In ad-

dition, it can be shown that: (1)
∫ π
−π sW (ω)eiwkdω = γk and (2) sW (ω) ≥ 0, ω ∈

[−π, π].

Hence, the autocovariance function and the population spectrum function contain the

same information about W . In particular, γ0 = V [wt] can be computed as follows:

γ0 =

∫ π

−π
sW (ω)dω = 2

∫ π

0
sW (ω)dω.

In fact, this is nothing but a particular case of a far deeper result. Recall the spec-

tral representation theorem: any covariance-stationary process {Wt}
∞
−∞ with absolutely

summable autocovariances can be represented as

Wt = µ+

∫ π

0
{α(ω) cos(ωt) + δ(ω) sin(ωt)}dω,

where α(.) and δ(.) have zero means. Heuristically, this theorem says that Wt can be

decomposed in terms of frequencies. It can be proved that, for any given π0 ∈ [0, π], the

portion of V [Wt] associated with frequencies lower than π0 is precisely 2
∫ π0

0 sW (ω)dω.

In respect to estimating the population spectrum, the most basic estimator of sW (.) is the

so called periodogram:

s̃W (ω) =
1

2π

T−1∑

j=−T+1

γ̂je
−iωj ,

 
116



where T is the sample size and γ̂j is the jth sample autocovariance. This is an unbiased

but an unacceptably noisy estimator of sW (ω). However, if it is assumed that sW is

smooth, the values of this naive estimator can be averaged over frequencies near ω to get

a much more precise estimator of sW (ω), namely:

ŝW (ωj) =
l∑

m=−l

WT (ωm)s̃W (ωj − ωm),

where ωj = 2πj/T , and l takes the role of a bandwidth indicating how many different

frequencies can be considered close to ωj , and WT (.) is a weighting function that must

have the following properties:

l∑

j=−l

WT (ωj) = 1,WT (ωj) = WT (−ωj), lim
T→∞

WT (ωj)
2 = 0.

In the R software, the estimate of sW (ωj) can be computed with the function spectrum

from the stats package. By default, this function assumes that WT (ωj) ∝ 2 − I(j ∈
{−l, l}).

The classification variables according to type of data are the following: (1) For RHh

and RHd: the means of rolling ranges [Kovalevsky, 2018] of order 2 for the RHd and

RHh (rMd and rMh). These variables correspond to the parameters (HMV and DMV) con-

sidered in the preliminary investigations of this project [Zarzo et al., 2011, Garcı́a-Diego

and Zarzo, 2010]. Other variables are variance of rolling ranges of order 2 for the RHd

and RHh (rVd and rVh). Also, the estimates of the sample PACF of the RHh for the

first four lags (pacf1, pacf2, pacf3 and pacf4) and (2) for W: maximum of spectral

density (spec.mx), frequency corresponding to maximum of spectral density (freq), es-

timates of the mean (acf.m), range (acf.r) and variance (v.acf) of the sample ACF

for the first 72 lags.

3.2.2 M2: Seasonal ARIMA-TGARCH-Student model

The ARIMA model aims to describe the autocorrelations in time series [Palma, 2016]. A

time series follows an ARIMA(p,d,q) process where p is the number of autoregressive (AR)

terms, d is the number of difference taken and q is the number of moving average (MA)

terms. Although ARIMA is flexible and powerful in forecasting, it is not able to manage the

continuous changing of variance and nonlinearity that some time series can have in their

behaviour [Roslindar et al., 2016].

If a time series follows an ARIMA process, the conditional variance must be constant.

When it is not constant, the process is known as a conditional variance process [Cryer and

Chan, 2008]. As a consequence the data is affected by nonlinear characteristics of the vari-

ance, often referred to as volatility or variance clustering [Laux et al., 2011]. Time series

with periods of high volatility and periods of low volatility are said to exhibit volatility

clustering and this implies unconditional standard deviations which are not constant [Laux

et al., 2011].

The most important models for studying volatility are the Autoregressive Conditional

Heteroskedasticity (ARCH) and Generalized ARCH (GARCH) models Engle [1982], Boller-

slev [1986], Engle and Bollerslev [1986]. Some types of GARCH are studied in Gha-

lanos [2020]. Among these models are the family GARCH model and Threshold GARCH

(TGARCH) model of Zakoian [1994b] which belongs to this family [Ghalanos, 2020].
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Thus, instead of using an ARIMA model to study the conditional mean of future values,

it is necessary to use a hybrid of the ARIMA and GARCH models which can simultaneously

analyze both the conditional mean and the conditional heteroscedasticity of the process

[Roslindar et al., 2016]. In recent years, hybrid models have been proposed to analyse

forecasting of rainfall [Yusof and Kane, 2013], of daily load patterns of energy (voltage)

[Hor et al., 2006], stock market value [Xing, 2011] and of the price of gold [Roslindar et al.,

2016].

The ARIMA-GARCH model is applied in two steps. In the first step, the most successful

ARIMA model is used to analyze the linear data of the time series. In the second step, the

most successful GARCH model is used to fit the nonlinear patterns of the residuals. In this

model, the error term of the ARIMA model is said to follow a GARCH process of orders

r and s [Weiss, 1984]. To check if the ARIMA-GARCH model applied, fits well for time

series data, the residuals of the ARIMA model and the residuals of the GARCH model need

to be analyzed [Weiss, 1984].

The Box-Jenkins methodology [Box and Jenkins, 1976] consists of three iterative steps:

the estimation of the parameters, the inspection of diagnostics and forecasting. A descrip-

tion of the two first steps is presented below.

Step 1 consists of three stages: Firstly, checking the condition of stationarity: A time

series is stationary if its statistical characteristics are preserved across the time periods. If

the mean and variance of the time series are constant and regardless of the moment at which

it is evaluated, the relative dependence of an observation remains the same in respect to past

values [Palma, 2016]. Stationarity is a crucial assumption in time series analysis [Palma,

2016]. Secondly, there are some techniques developed for transforming nonstationary data

into stationary data. Variance stabilization, trend estimation through linear regression and

differentiation of the series are often employed [Palma, 2016]. Variance stabilization is

usually obtained by a Box-Cox transformation of the data, Linear models are tools for

removing a deterministic trend from the data and differentiation is used to remove a trend

in the data when the underlying trend is assumed to be stochastic [Palma, 2016]. Thirdly,

determining the order of the ARIMA model: the values of Sample ACF and Sample PACF

of the observed time series are employed to determine the order (p, q) of the ARIMA model.

Step 2 consists of four stages: Firstly, verifying whether the residuals are white noise: a

time series follows a white noise process if the variance of the process is constant, its mean

is constant and its observations are not correlated [Palma, 2016]. Whiteness testing pro-

cedures do not usually involve checking for independence unless a time series is assumed

to have Normal distribution [Palma, 2016]. The Box-Ljung test can be employed to verify

whether the errors are white noise or not [Palma, 2016]. Secondly, checking the condition

of the residuals independently: if there is a significant autocorrelation between lags of the

square root (or square) of the residuals, there is evidence against the hypothesis of them

being independently and identically distributed [Cryer and Chan, 2008]. The slow decay

of the ACF of the square root (or square) of the residuals in the ACF plot suggests that

the distribution of the residual time series is not independent [Tsay, 2005]. The Box-Ljung

test [Zeileis, 2006b, Ljung and Box, 1978, Harvey, 1993] can be employed to check the

assumption that the errors (or squared errors) are not autocorrelated. Thirdly, determining

if Arch effects exist in the residuals: Volatility clustering can be analyzed using ACF plots

of the square root (or square) of the time series. If these plots slowly decay as a function

of time lag, then the time series is said to show volatility clustering. If the values of the

ACF decay are relatively slow, the effect of volatility clustering is high [Jie-Jun and Sai-

Ping, 2012]. The Lagrange Multiplier test [Engle, 1982] can be employed to examine the

conditional variance of the error and research whether Arch effects are present. Fourthly,

verifying distribution of the residuals: Q-Q normal scores plot, tests of normality (Shapiro-
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Wilk [Royston, 1982a,b] and Kolgomorov-Smirnov [Birnbaum and Tingey, 1951, Conover,

1994]) and values of kurtosis [Hein and Spudeck, 1988] were used to check whether the

distribution of the errors are Normal or not.

Once it is identified that the ARCH effect exists in the residuals of the ARIMA model,

a GARCH model is fitted to the residuals. The GARCH model selected is adequate if its

parameters are statistically significant and its residuals satisfy step 2 [Tsay, 2005].

In this research the ARIMA-TGARCH models were fitted. In order to stabilize the vari-

ance of the time series before fitting the ARIMA models, data was transformed using the

logarithm transformation on RHh, rt = log(RHht
). Because the variability of the data

RHh becomes more homogeneous using logarithm transformation, the observed time se-

ries r was used Lütkepohl and Xu [2012]. Furthermore, regular differencing was applied to

remove the trend, i.e., W was used. After selecting the most successful ARIMA-TGARCH

model for each sensor, the Q-Q normal scores plots of the residuals displayed a heavy-tailed

distribution, the values of kurtosis are greater than three and the normality tests rejected the

hypothesis of the normality. Then, a Student distribution was used to fit the residuals of the

TGARCH model. Then, it is assumed that the time series rt follows the Seasonal ARIMA

(p, q) -TGARCH(s,m)-Student processes. It is also assumed that the time series rt can be

modelled as an ARMA(p, q) process whose error term, in turn, follows a TGARCH(s,m)-

Student model. The TGARCH model considered residuals with a Student distribution with

V as its parameter of shape. For each group, a common model was applied to the data of

each sensor. A brief introduction of the Seasonal ARIMA (p, q) -TGARCH(s,m)-Student

process is presented below.

1. The ARMA model: the time series rt follows an Autoregressive Moving Average process

with parameters p and q (denoted by ARMA(p, q) [Palma, 2016]) if it can be written as

equation 2, where B is the backshift operator.

φp(B)rt = θq(B)εt,

φp(B) = 1− φ1B − · · · − φpB
p,

θq(B) = 1 + θ1B + · · ·+ θqB
q,

(2)

and {εt} is a White Noise (WN) process with mean 0 and variance σ2. It can be written

as rt = φ1rt−1 + . . .+ φprt−p + εt + θ1εt−1 + . . .+ θqεt−q , where εt ∼ WN(0, σ2).

If the solution of the equation 0 = 1 − φ1x − . . . − φpx
p is outside the unit circle (unit

root tests) then rt is stationary [Hamilton, 1994].

2. The Seasonal ARIMA model: a Seasonal ARIMA model (p, d, q)(P,D,Q)S [Box and

Jenkins, 1976] has a non-seasonal component (p, d, q) and a seasonal component (P,D,Q)S ,

where S is the number of observations per day (S = 24). Thus, a multiplicative Seasonal

ARIMA model is obtained which has the form of equation 3, where B is the backshift op-

erator,

ΦP (BS)φp(B)∇D
S ∇

drt = ΘQ(BS)θq(B)εt, (3)

where φp(B) is the regular AR operator of order p, θq(B) is the regular moving average

operator of order q, ΦP (B
S) is the seasonal AR operator of order P , ΘQ(B

S) is the sea-

sonal moving average operator of order Q and {εt, t ∈ Z} is a WN process. Furthermore,

∇D
S = (1−BS)D represents the seasonal differences and ∇d = (1−B)d represents the

regular differences [Palma, 2016].
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The non-seasonal components (AR and MA) and the seasonal components (SAR and

SMA) are presented in equation 4, where B is the backshift operator.

φp(B) = 1− φ1B − · · · − φpB
p,

θq(B) = 1 + θ1B + · · ·+ θqB
q,

ΦP (BS) = 1− Φ1B
S − ΦPB

PS ,

ΘQ(BS) = 1 + Θ1B
S + · · ·+ΘQB

QS .

(4)

Furthermore, if wt = ∇D
S ∇

drt, is obtained by differentiating the series regularly d times

and D times seasonally, then wt follows a multiplicative Seasonal ARIMA process given

by equation 5 [Hyndman et al., 2020].

ΦP (BS)φp(B)wt = ΘQ(BS)θq(B)εt. (5)

In order to choose a Seasonal ARIMA model for each sensor (concerning selecting an

appropriate model order, that is the values p, q, P , Q, D and d) and the estimations of

the parameters of model, the arima function from stats package was used.

With the objective of estimating the parameters (for given values of p, d, q, P , D and Q)

of the Seasonal ARIMA model, the Maximum Likelihood Estimation (MLE) method was

applied. Furthermore, the corrected Akaike’s Information Criterion (AICc) was useful

for determining the order of a Seasonal ARIMA model. In this study, the values of D and

d that were used were those that accommodate D + d < 2 and d ≤ 1. The sampleACF

plot and the sample PACF plot of r were used to determine appropriate values for p, q,

P and Q. The most successful model for each time series was chosen according to the

lowest AICc value and the results from the analysis of the residuals from the chosen

models. The AICc values were compared for models which have the same orders of

differencing with the same values of d and D.

3. The TGARCH-Student model: statistical studies and papers have proposed several spec-

ifications for σt for the TGARCH process [Palma, 2016, Zakoian, 1994a, Kovalevsky,

2018]. It is beyond the scope of this report to explain them all. Instead, this study

will explain the particular conditionally heteroskedastic processes used. The innova-

tions {εt, t ∈ Z} follow a conditionally heteroskedastic process, if it can be written as

εt = σtǫt. Where errors {ǫt, t ∈ Z} are an i.i.d. process with mean 0 and variance 1. Fur-

thermore, the conditional mean (µt) and the conditional variance of process {εt, t ∈ Z}
can be written as µt = E(ǫt|ǫt−1, ǫt−2, . . .) and σ2

t = E(ǫ2t |ǫt−1, ǫt−2, . . .).

The innovations {εt, t ∈ Z} follow a process of the family GARCH model (fGARCH)

[Kovalevsky, 2018] if it can be written as equation 6, where the conditional mean and

variance are used to scale the residuals zt =
ǫt−µt

σt
.

εt = σtǫt,

σλ
t = (ω +ΣN

j=1ςjVjt)

+ Σq
j=1αjσ

λ
t−j(|zt−j − η2j | − η1j(zt−j − η2j))

δ

+Σp
j=1βjσ

λ
t−j .

(6)

Equation 6 is a Box-Cox transformation for the conditional standard deviation whose

shape is determined by λ, and the parameter δ transforms the absolute value function,

which subjects it to rotations and shifts through the η1j and η2j parameters respectively.
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N represents the number of external regressors Vj (which are passed pre-lagged) [Ko-

valevsky, 2018]. If λ = δ = 1, η2j = 0, |η1j | ≤ 1 the innovations {εt, t ∈ Z}
can be written as equation 7 and {εt, t ∈ Z} follows a Threshold Generalized Au-

toregressive Conditional Heteroskedastic process with parameters s and m (denoted

TGARCH(s,m)). In this work, external regressors were not considered [Kovalevsky,

2018].

εt = σtǫt,

σt = ω +Σm
j=1αjσt−j(|zt−j | − η1jzt−j) + Σs

j=1βjσt−j .
(7)

In this study, zt =
ǫt
σt

and external regressors were not considered, thus σt can be writ-

ten as equation 8. Furthermore, it was considered that ǫt follows a Student distribution

with parameter v. The TGARCH-Student model was used as an alternative to Normal

distribution for fitting the standarized errors (ǫt) [Kovalevsky, 2018].

σt =





ω +Σm
j=1αjǫt−j(1− η1j) + Σs

j=1βjσt−j if ǫt−j ≥ 0

ω − Σm
j=1αjǫt−j(1 + η1j) + Σs

j=1βjσt−j if ǫt−j < 0
(8)

The analyses were carried out separately for various groups: winter 1, winter 2, and spring

and summer, for both 2008 and 2010. The final model was applied to each group. The

models are detailed according to equations 5 and 8 below.

� For winter 1 (2008): the time series rt follows a Seasonal ARIMA (1, 1, 0) (2, 0, 0)24
-TGARCH-Student (1, 1) process.

The Seasonal ARIMA(1, 1, 0)(2, 0, 0)24 process is given by:

Φ2(B
24)φ1(B)wt = εt,

AR : φ1(B) = 1− φ1B,

SAR : Φ2(B
24) = 1− Φ1B

24 − Φ2B
2(24).

Thus, wt follows the process wt = −Φ2φ1wt−49+Φ2wt−48−Φ1φ1wt−25+Φ1wt−24+
φ1wt−1 + εt and εt follows a TGARCH-Student (1, 1) process given by

εt = σtǫt,

σt =





ω + α1ǫt−1(1− η11) + β1σt−1 if ǫt−1 ≥ 0

ω − α1ǫt−1(1 + η11) + β1σt−1 if ǫt−1 < 0

ǫt ∼ Student(v),

� For winter 1 (2010): the time series rt follows an ARIMA (1, 1, 2)−TGARCH-Student(1, 1)
process.

The ARIMA(1, 1, 2) process is given by:

φ1(B)wt = θ2(B)εt,

AR : φ1(B) = 1− φ1B,

MA : θ2(B) = 1 + θ1B + θ2B
2.
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Thus, Wt follows the process wt = φ1wt−1 + θ2εt−2 + θ1εt−1 + εt and εt follow a

TGARCH-Student (1, 1) process.

� For winter 2 (2008 and 2010): the time series rt follows a Seasonal ARIMA (1, 1, 1) −
(2, 0, 0)24-TGARCH-Student(1, 1) process.

The ARIMA (1, 1, 1)− (2, 0, 0)24 process is given by

Φ2(B
24)φ1(B)wt = θ1(B)εt,

AR : φ1(B) = 1− φ1B,

MA : θ1(B) = 1 + θ1B,

SAR : Φ2(B
24) = 1− Φ1B

24 − Φ2B
2(24).

Thus, Wt follows the process wt = −Φ2φ1wt−49+Φ2wt−48−Φ1φ1wt−25+Φ1wt−24+
φ1wt−1 + θ1ǫt−1 + ǫt and εt follows a TGARCH-Student (1, 1) process.

� For spring (2008 and 2010): the time series rt follows a Seasonal ARIMA (1, 1, 2) −
(0, 0, 2)24-TGARCH-Student(1, 1) process.

The ARIMA(1, 1, 2)− (0, 0, 2)24 process is given by

φ1(B)wt = Θ2(B
24)θ2(B)εt,

AR : φ1(B) = 1− φ1B,

MA : θ2(B) = 1 + θ1B + θ2B
2,

SMA : Θ2(B
24) = 1 + Θ1B

24 +Θ2B
2(24).

Thus, Wt follows the process wt = φ1wt−1 + θ2Θ2εt−50 + θ1Θ2εt−49 + Θ2εt−48 +
θ2Θ1εt−26 + θ1Θ1εt−25 +Θ1εt−24 + θ2εt−2 + θ1εt−1 + εt and εt follows a TGARCH-

Student (1, 1) process.

� For summer (2008 and 2010): the time series rt follows a Seasonal ARIMA (1, 1, 1) −
(1, 0, 0)24-TGARCH-Student(1, 1).

The ARIMA(1, 1, 1)− (1, 0, 0)24 process is given by

φ1(B)Φ1(B
24)wt = θ1(B)εt,

AR : φ1(B) = 1− φ1B,

MA : θ1(B) = 1 + θ1B,

SAR : Φ1(B
24) = 1− Φ1B

24.

Thus, Wt follows the process wt = Φ1wt−24 − φ1Φ1wt−25 + φ1wt−1 + θ1εt−1 + εt and

εt follows a TGARCH-Student (1, 1) process.

In this study, the Dickey-Fuller stationarity test [Fuller, 1996] was applied to residuals from

the model. In this test, the H0 is: ”the errors from the models are not stationary”. The test

was computed using the adf.test function from the aTSA package. Also, the Ljung Box

serial autocorrelation test [Box and Pierce, 1970, Ljung and Box, 1978], with H0: ”the er-

rors from the models do not have serial autocorrelation” applied to the residuals. The test

was computed using the Box.test function from the stats package. The Shapiro Wilk

normality test [Royston, 1982a,b] with H0 : ”the errors from the model are distributed nor-

mally” was applied to the residuals. The test was computed using the shapiro.test
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function from the stats package. Furthermore, the Lagrange Multiplier test (LM) was

applied to the square root of the residuals from the chosen model to determine Autoregres-

sive Conditional Heteroscedasticity (Arch effects) [Tsay, 2010]. The H0 is: ”the errors

from model do not have an Arch effect”. The test was computed using the arch.test

function from the aTSA package. The ugarchfit function from the rugarch package

was used to fit the TGARCH-Student model for the residual of the Seasonal ARIMA model.

When analyzing the residuals of the ARIMA-TGARCH-Student models for 2008 and

2010, there were some models that did not satisfy the conditions of step 2. To extract the

information that the models did not capture, some features of the residuals were computed.

The classification variables for the this method corresponds to the estimates of parameters

and features from residuals: (1) Estimates of parameters of ARIMA model: the first pa-

rameter of the autoregressive component (ar1), the first parameter of the moving average

component (ma1), the first parameter of the seasonal autoregressive component (sar1),

the second parameter of the seasonal autoregressive component (sar2), (2) Estimates of

parameters of TGARCH model: the ARCH parameter (alpha1), the rotation parameter

(eta11), the GARCH parameter (beta1), the variance intercept parameter (omega) and

the Student parameter of the residuals (shape), and (3) Features calculated from residu-

als: maximum of spectral density (spec.mx), frequency corresponding to maximum of

spectral density (freq), variance of the sample ACF (acf.v), mean of the sample ACF

(acf.m), median of the sample ACF (acf.md), range of the sample ACF (acf.r) and

variance of the residuals (res.v).

3.2.3 M3: Additive Seasonal Holt-Winters (SH-W) prediction function

The Holt-Winters (H-W) method [Holt, 2004] is an extended Holt’s method [Winters, 1960].

This method is an algorithm for producing point forecasts only [Hyndman et al., 2008]. The

Seasonal H-W (SH-W) method is based on three smoothing equations: for the level compo-

nent (at) at time t, the trend component (bt) at time t, and for seasonality components (St)

at time t. Each component corresponds smoothing parameters α, β and γ. Furthermore, s
denotes the frequency of the seasonality [Hyndman et al., 2008]. On the other hand, there

are two different SH-W methods, depending on whether seasonality is modeled in a multi-

plicative or additive way [Hyndman et al., 2008]. The estimates of parameters a, b, S were

determined by minimizing the squared prediction error [Holt, 2004, Winters, 1960].

In this study an Additive SH-W prediction function for each observed time series r was

studied for winter (1 and 2), spring and summer (2008 and 2010). The Additive SH-W

method was fitted to both the observed time series r and RHh. The best results were

obtained with r. The frequency of the seasonality considered was 24 hours.

The Additive SH-W prediction function (for observed time series r with period length

s) is given by

r̂t+h|t = at + hbt + St⊕h,

t⊕ h = t− s+ 1 + (h− 1) mod s,

where at, bt and St are given by

at = α(rt − St−s) + (1− α)(at−1 + bt−1),

bt = β(at − at−1) + (1− β)bt−1,

St = γ(rt − at) + (1− γ)St−s,

where 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and 0 ≤ γ ≤ 1. The previous equations were computed

where t is greater than s. When presenting outcomes from the algorithm, a corresponds
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to the last level of at and b is the last slope of bt and S1 to S24 are the last seasonal of St,

t = 1, . . . , 24.

The HoltWinters function from the stats package was used to fit the Additive

SH-W model. The shapiro.test function from the stats package and ks.test from

the dgof package were used to apply the normality tests.

According to the analyses of the residuals for all groups, for at least 80% of the cases

the hypothesis that the errors from the method do not have serial autocorrelation (lag: from

2 to 49) was rejected. Also, the normality tests rejected the normality of the errors for at

least 80% of the cases. In order to extract more information, some features of the residuals

were calculated.

The classification variables for this method correspond to the estimates of the param-

eters and features from residuals: (1) Estimates of parameters of the SH-W method: level

component (a), trend component (b), and seasonal component (s1, s2, ..., s24).

(2) Features obtained from residuals: mean of the sample ACF (acf.m), median of the

sample ACF (acf.md), range of the sample ACF (acf.r) and variance of the sample

ACF (acf.v), sum of squared estimate of errors (sse) [Holt, 2004, Winters, 1960], max-

imum of spectral density (spec.mx), frequency corresponding to maximum of spectral

density (freq), statistic of the Shapiro-Wilk normality test (shap.w) and statistic of the

Kolgomorov-Smirnov normality test (kolg.d).

In this research the classification data consists of the values of the classification vari-

ables determined by the three aforementioned methods (per year). In 2008 the order of the

data sets (number of sensors × number of variables) by methods 1, 2 and 3 are as follows

23×60, 23×141, 23×49. In 2010 the order of the data sets are 20×60, 20×141, 20×49
respectively. The following classification method uses the classification data sets.

3.3 Method of classification Sparse PLS-DA

The sPLS-DA is a special variation of the sPLS and this in turn is a variation of the PLS.

The sPLS performs simultaneous variable selection in the design and response matrix us-

ing a penalization in the PLS. In this study, the response matrix Y only has one column.

When applying the sPLS-DA, the response Y (that is qualitative) is modified as a dummy

block matrix called Z. The sPLS regression is then run as if Z is a continuous matrix. A

description of the sPLS-DA is presented below using PLS and sPLS as references as well as

a description of the prediction distances, algorithm of imputation, M-fold cross validation

and classification error rate.

3.3.1 Model

1. The Partial Least Squares (PLS) regression: regression [Wold, 1966] is a popular al-

ternative to OLS when handling multicollinearity. Let X ∈ R
n×p be a design matrix

whose elements correspond to the values of the p variables and n sensors from the clas-

sification data, and Y ∈ R
n×q is a response matrix. PLS sequentially finds 2 lists of H

orthonormal vectors, (u1, . . . , uH) and (v1, . . . , vH), such that the pair (uh, vh) solves

max
u,v

cov(Xh−1u,Yh−1v), s.t. ‖u‖2 = ‖v‖2 = 1, (9)

where Xh−1 is the orthogonal projection of X on span{ξ1, . . . , ξh−1}
⊥ and ξh = Xh−1uh.

It can be shown that uh and vh are equal to the 1st left and right singular vectors of

Mh−1 = cov(Xh−1,Yh−1). Once Ξ = [ξ1, . . . , ξH ] is computed, the matrices Y and

X are modelled as X = ΞC + E1 and Y = ΞD + E2, where C and D are regres-

sion coefficients, while E1 and E2 are random errors. From this perspective, PLS can
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be understood as another dimensionality reduction technique. However, unlike similar

methods like PCA, PLS takes the covariance between covariates and the responses into

account.

2. The Sparse PLS (sPLS): although PLS achieves a dimensionality reduction, its output is

difficult to interpret, because each component of Ξ is a combination of all the original

variables. This problem can be solved by adding sparsity-promoting penalties (e.g. lasso

penalties) to the objective function of problem (9). However, this naive approach pro-

duces a difficult problem to solve. Recall, however, that the 1st left and right singular

vectors of a matrix are also related to the their rank-1 approximation. Indeed, consider

the problem

min
u,v

‖Mh−1 − uv⊤‖2F , s.t. ‖u‖2 = 1.

It can be shown that one solution to this problem is û = uh and v̂ ∝ vh [Lê Cao et al.,

2011].

Exploiting this, Lê Cao et al. [2011] suggested replacing the pair (uh,vh) with the solu-

tion of the following problem:

min
u,v

‖Mh−1 − uv⊤‖2F + Pλ1(u) + Pλ2(v), s.t. ‖u‖2 = 1,

where Pλ1 and Pλ2 are given by Pλj
(.) = sign(.)(|.| − λj)+, j = 1, 2. Lê Cao et al.

[2011] show that this problem can be solved in a fairly efficient way. From now on, here

it will be assumed that λ2 = 0.

3. Sparse PLS-DA (sPLS-DA): An indicator matrix Z ∈ {0, 1}n×K was created, where

zik = I(Yi = k), with k = 1, 2, . . . ,K. PLS-DA correspond to compute the PLS as if Z

were the response matrix and Ξ as the design matrix [Lê Cao et al., 2011].

There are two version of Sparse SPLS [Lê Cao et al., 2011, Rohart et al., 2017b,a].

Lê Cao et al. [2011], Rohart et al. [2017a] proposed a version that use one-step procedure

and Rohart et al. [2017a] developed a version of sPL-DA with the penalty ℓ1 (Lasso) on

the loading vector u to shrink some coefficients to zero. The latter is applied in this

research.

In this study, the number of classes (K) is 3 and their corresponding values are: 1 is

F , 2 is RC and 3 is W . The elements used to apply sPLS-DA were: (1) a matrix with

dimension n× p called X where p is the number of classification variables and n is the

number of the time series and X is the classification data, (2) a factor vector of length

n called Y , this vector indicates the class of each time series (or sensor), (3) a dummy

matrix called Z with dimension n × K, where n the number of the time series and K
the number of classes. The matrix Z is defined using the vector Y . The values for each

column of Z are either 0 or 1. For the first column, if a sensor is in position RC the

value is 1 otherwise it is 0. For the second column, if a sensor is in position F the value

is 1 otherwise it is 0 and finally, in the third column, if a sensor is in position W the

value is 1 otherwise it is 0. Furthermore, the main outputs from the analysis were: (1)

a set of components associated with X and Z, (2) a set of loading vectors. Each of

their components are assigned to a variable to define each component. Loading vectors

are obtained to maximize the covariance between a linear combination of the variables

from X (the X − component) and from Z (the Z − component), (3) a list of selected

variables from X that are associated with each component, (4) the values of the BER
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for each component and (5) the prediction class for each time series. In the R software,

the sPL-DA can be computed with the functions tune.splsda and splsda from the

mixOmics package.

3.3.2 Prediction distances

To predict the position of the sensors the following prediction distances can be used: the

maximum distance, centroid distance and Mahalanobis distance. In this study, centroid

distance was selected. A brief description of this distance is presented below.

The matrix Z is a dummy matrix of size n × K. Furthermore, Znew and Xnew are

derived from the X and Z training data sets with new observations (nnew). The prediction

Ẑnew from a model with H components can be estimated as:

Ẑnew = XnewΞ
∗(C∗⊤Ξ∗)−1D∗,

where Ξ∗, C∗ and D∗ are derived from the X and Z training data sets. Ξ∗ is a P × H
matrix containing the loading vectors associated to X, C∗ is a P × H matrix containing

the regression coefficients of X on its H latent components and D∗ is a H × K matrix

containing the regression coefficients of Z on the H latent components associated with X

[Rohart et al., 2017a, Lê Cao et al., 2011].

The predicted components Tpred of size nnew ×H are given by:

Tpred = XnewΞ
∗(C∗⊤Ξ∗)−1,

and the prediction distance centroid is given by:

dist(Tpred,Gk) =

√√√√
H∑

h=1

((Tpred)h − (Gk)h)
2,

where Gk is a centroid of all the learning set samples belonging to the class k ≤ K based

on the H latent components associated with X. The predicted position of a new time series

is the result from the following equation:

argmin1≤k≤Kdist(Tpred,Gk).

Details of Mahalanobis and maximum distances can be viewed in [Rohart et al., 2017a].

3.3.3 Algorithm of imputation

In this research, each anomalous value of the each classification variable was considered

as a missing value when applying the sPLS-DA. The outlier and anomalous values were

identified using box plots for each variable.

In 2008: 1.04% (M1), 1.06% (M2) and 1.24% (M3) correspond to the percentage of

the missing values of the classification data sets. In 2010 the corresponding percentages

were 1.39%, 0.49% and 0.5%. Before carrying out the sPLS-DA, classification data sets

were normalized and missing values were imputed.

The missing values were substituted using the Non linear estimation by iterative partial

least squares (NIPALS, [Wold, 1966]). The NIPALS is applied internally with the functions

splsda and tune.splsda in R software. Details of the algorithm NIPALS can be found

in [Tenenhaus, 1998, Rohart et al., 2017b].
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3.3.4 M-fold cross validation and classification error rate

In order to evaluate the results of the sPLS-DA method, repeated M-fold cross-validation

[Rohart et al., 2017a] was applied for the maximum number of ten components. It was

performed with stratified subsampling where all positions (RC, F and W) are represented

in each fold, where M = 3. Thus, M-fold cross-validation was repeated 1,000 times for

each fold.

With the objective of assessing the optimal number of components, a plot with results

from the sPLS-DA was used. The plot outputs are the mean of the Overall classifica-

tion error rate and Balanced classification error rate (BER) [Rohart et al., 2017b] and the

standard deviation according to three prediction distances (maximum, centroid and Maha-

lanobis) [Rohart et al., 2017b]. BER calculates the average proportion of wrongly classified

samples in each class, weighted by the number of samples in each class. BER is less biased

towards majority classes during the performance assessment. Each result was carried out

with M-fold cross -validation repeated 1,000 times for each component.

The optimal number of components was achieved by determining the best performance

(the lowest error), based on BER and centroid distance. Also, the optimal number of varia-

bles for each component was obtained using a grid of the number of variables to keep

values that will be assessed on each component in X − loadings, (one component at a

time. Similar to above, M-fold cross-validation, repeated 1,000 times) with a centroid

distance prediction. Based on the results of the optimal number of components and the

optimal number of variables, the final sPLS-DA model was applied.

4. Results

4.1 Methods to determine classification variables

In respect to the residual analysis: (1) For the Arima-TGARCH-Student models for 2010

and 2008 (in brackets) at least 70% (53%) of time series satisfied all tests in the residual

analysis. (2) For the Additive SH-W methods the hypothesis of the stationarity of the errors

(Dickey Fuller test) was accepted for all groups. However, the hypothesis of serial non-

correlation of errors (Ljung Box test) was rejected for all groups.

The significance level values used for each statistical test were: 0.02 for winter 1 and

spring (2008), 0.05 for winter 2 and summer (2008). As well as 0.05 for winters 1 & 2 and

summer (2010) and 0.02 for spring (2010).

4.2 sPLS-DA

The final model for M2 and M3 (2008) includes 1 component, and 5 and 10 selected vari-

ables respectively. The final model for M1 (2008) includes 2 components and 15 selected

variables for both components. The final model for M1, M2 and M3 (2010) includes 1

component, and 15 selected variables for all components (see Table 1).

Table 1 shows the values of the BER from the sPLS-DA for both years 2008 and 2010.

When applying sPLS-DA for each method (M1, M2 and M3), all the variables (for each

season and year) were used. In this table, the variables which were determined for each

of the components were ordered from highest to lowest, according to the absolute value

of their loading weights. Variables with loadings of negative values are shown in blue.

The three most important variables for the first component for each method are: (2008)

For M1 they were spec.mx, res.v and omega, for M2 they were sse, spec.mx and

kolg.d and for M3 they were spec.mx, rMh and rVh. (2010) for M1 they were res.v,
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spec.mx and omega, for M2 they were spec.mx , sse and kolg.d, for M3 they were

spec.mx , rMd and rMh.

The classification variables selected for M2 and M3 were: (from the residuals) res.v,

sse, kolg.d, shape, spec.mx, acf.m and acf.md and (from the models) omega,

alpha, b, s18, s19, s20 and s24 (see Table 1). From the residuals, the first two features

are aimed at explaining the variance that wasn’t explained by the models, the second and

third features study the distribution of residuals, and the three last features are intended to

represent the dynamic structure of each time series. When looking at the models, for M1,

the first feature aimed to explain the changes in the mean of the volatility and the second

feature aimed to quantify the impact of the rotation on the volatility. For M2, the third

feature is related to the trend component of the time series and the fourth to the seventh

features are related to the seasonal components of the time series.

The classification variables selected for M1 were: rMh, rMd, rVh, rVd, spec.mx,

freq, pacf1, pacf2, pacf3, pacf4, acf.v and acf.r (see Table 1). The two first

features are aimed at explaining the changes in the mean of the time series and the third

and fourth features are intended to explain the changes in the variance of the time series.

Finally, the fifth to the twelfth features represent the dynamic structure of each time series.

In 2008, the values of the BER from M1, M2 and M3 are as follows: 30.02%, 22.60%

and 24.05% and in 2010, the values of the BER are: 24.08%, 12.81% and 21.17% (see

Table 1a).

Table 1: Results from sPLS-DA (2008 and 2010): variables selected per component (C)

and per Method (M). Optimal number of components and of variables, when using all vari-

ables (Wr1 stands for winter 1, Wr2 for winter 2, Sp for spring and Sm for summer).

The variables which determine each of the components are ordered from highest to lowest,

according to the absolute value of their loading weights. Variables with weights of neg-

ative values are shown in blue. For each component it shows the values of the Balanced

classification Error Rate (BER).

M C Variables BER

1 1st Wr1spec.mx, Wr1rMh, Wr2rMh, SprMh, SmrMh, Wr1rV h,Wr2rV h 30.02%

SprV h, SmrV h, Wr1rMd, Wr2rMd, SprMd, SmrMd, Wr1rV d, Wr2rV d

1 2nd Wr2pacf3, Sppacf1, Smacf.r , Smacf.v , Smpacf1, Smfreq ,Smacf.r , Smacf.v

Wr2pacf2,Smpacf4, Smspec.mx ,Smpacf2, Wr1pacf2, Spspec.mx, Wr2pacf4
2 1st Wr1spec.mx,Wr1res.v , Wr2spec.mx, Wr2res.v , Wr1omega 22.60%

3 1st Wr1sse, Wr1spec.mx,Wr2sse,Spsse, Wr1kolg.d, Spspec.mx, Wr2kolg.d 24.05%

Smkolg.d, Smsse, Smspec.mx

(a) Results from sPLS-DA (2008).

M C Variables BER

1 1st Wr1spec.mx, Wr1rMd, Wr2rMd, SprMd ,SmrMd, Wr1rMh, Wr2rMh 24.08%

SprMh, SmrMh, Wr1rV h, Wr2rV h, SprV h ,SmrV h, Wr2spec.mx, Wr2pacf2
2 1st Spres.v , Smres.v , Smspec.mx, Wr1res.v , Wr2res.v , Spspec.mx, Spomega 12.81%

Smomega, Wr1spec.mx,Wr2omega, Wr2spec.mx, Wr1alpha, Wr1shape
Spacf.md,Spacf.m

3 1st Wr2spec.mx, Smsse, Spkolg.d,Spsse, Wr1kolg.d, Wr2s1, Smkolg.d, Wr2sse 21.17%

Wr2s24, Smspec.mx, Sms19, Sms18 ,Wr1b, Sms20, Sps24

(b) Results from sPLS-DA (2010).

Components from the sPLS-DA are linear combinations of variables that might corre-

spond to different groups either winter 1 or winter 2, or spring or summer. For the three

methods (M1, M2 and M3) the results from sPLS-DA only had one component, except

for M1 (2008). In the following paragraphs the variables that determine component 1 are

explained.
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(a) 2008 M1. (b) 2010 M1.

(c) 2008 M2. (d) 2010 M2.

(e) 2008 M3. (f) 2010 M3.

Figure 3: Column 1 corresponds to 2008 and column 2 to 2010. The positions are Frescoes

(F), Cornice and Ribs (RC) and Wall (W). F is in gray, the RC is in orange, W is in blue.

Graphics correspond to estimates of comparisons of the sample representation using the

first 2 latent variables from the sPLS-DA when using all variables for one year for each

method. A star plot displays arrows from each group centroid, towards each sensor. The

results are presented by method, as follows: (a) y (b) M1, (c) y (d) M2 and (e) y (f) M3.

M1 (2008): component 1 is a linear combination of variables from the four groups. In

these groups, the common variable are rMh, rVh and rMd. The variable rVd is a common

variable in winter 1 and winter 2. The variable spec.mx is only seen in winter 1. In 2010,

rMh, rMd and rVh are the common variables in the four groups, spec.mx is the common

variable in winter 1 and winter 2. pacf2 is only found in winter 2 (see Table 1a).

M2 (2008): the variables that determined the component, correspond to the groups

winter 1 and winter 2. In both, winter 1 and winter 2, the common variables are spec.mx

and res.v. While omega is only a variable for winter 1 (see Table 1a). While in 2010
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this component for the same method is a linear combination of variables from all groups:

winter 1, winter 2, spring and summer. For these four groups the common variables are

spec.mx and res.v. For winter 2, spring and summer the common variable is omega.

The variables alpha and shape only correspond to winter 1. The variables acf.md and

acf can only be found in spring (see Table 1b).

M3 (2008): the variables that determined the component correspond to the groups win-

ter 1, winter 2, spring and summer. In the these groups, the common variable is sse. The

variable kolg.d is a common variable in winter 1, winter 2 and summer. A common

variable for winter 1, spring and summer is spec.mx. In 2010, kolg.d is a common

variable in winter 1, spring and summer, s24 is a common variable in winter 2, spring and

summer, the variable spec.mx is a common variable in winter 2 and summer. While, the

variable b only corresponds to winter 1, the variable s1 is only found in winter 2, and the

variables s18, s19 and s20 can only be found in summer (see Table 1a).

In the results for M1 (2008) from sPLS-DA a second component was necessary. Com-

ponent 2 is a linear combination of variables from the four groups. The variable pacf2 is

the common variable in winter 1, winter 2 and summer. The variable pacf4 is the common

variable in winter 2 and summer. The variables spec.mx, pacf1, acf.r and acf.v

are the common variables in spring and summer. The variable pacf3 is only found in

winter 2 and freq is only seen in summer (see Table 1a).

The results shown in the Figure 3 correspond to the sample plots on the first two com-

ponents from the sPLS-DA applied to classification data sets. Confidence ellipses for each

class are plotted to highlight the strength of the discrimination (confidence level is 95%). In

2008, the first component for each method showed that two groups of sensors were discrim-

inated, RC from W . In 2010, the first component for M2 displayed a clearer discrimination

between sensors located on the three positions RC, F and W . While, for M3 and M1, two

groups of sensors were discriminated, RC from W (see Figure 3).

5. Discussion

In this article, a methodology for classifying time series has been proposed. The method-

ology consists of the following two steps. For step 1, three methods are used to obtain

the classification variables. Method 1 (M1) utilizes functions such as sample ACF, sample

PACF and spectral density to calculate features of the time series. Method 2 (M2) employs

the ARIMA-TGARCH-Student model and its parameters are estimated and features from

the residuals are calculated (e.g., mean, variance or range of the values of the ACF, among

others). Method 3 (M3) computes the Additive S-HW, its parameters are estimated, features

from the residuals are obtained (i.e., functions such as sample ACF, sample PACF, spectral

density and statistics from Kolgomorov’s test are employed to calculate the features). For

step 2, the classification variables determined in step (1) are used to apply the sPLS-DA.

According to M2 and M3, a low percentage of the parameters of models were consid-

ered as essential in the classification of the time series, while most of the essential variables

were features from the residuals of models. This is most likely due to the similarity of

the time series studied. In consequence, the characteristics that weren’t explained by the

models were decisive for capturing the differences between the time series. In relation to

the BER from M2 and M3, M2 showed better performance than M3, possibly because the

analysis of the residuals of M2 was better than the same analysis for M3. The features

calculated from the residuals of the models were insufficient to capture the information the

model didn’t recognise. The variables from these methods explain the variance, the mean,

the distribution of residuals and the dynamic structure of the time series.

In respect to M1, where a model-free approach is used, the classification variables

 
130



explain the changes in the mean and the variance of the time series. This method had

the lowest performance. This might be due to the method capturing less information than

methods M2 and M3.

One limitation of M2 is using a unique Seasonal-ARIMA-TGARCH-Student model to fit

all of the time series for the same group. Selecting a unique model may not achieve the best

estimates of the parameters. One limitation of method M1 is that if the time series require

dividing by periods for analysis, the number of parameters grows considerably. This might

make the results difficult to interpret.

In respect to the advantages of the methods: for M2, Seasonal ARIMA-TGARCH-

Student captures more information about different characteristics of the time series than

other methods. For M3, Additive SH-W is easier to fit than in method M1. For M1, the cal-

culation of the characteristics from the common functions that are applied to the time series

allows quick and easy calculations. The three methods use known functions and models in

the time series that allow their easy computational implementation.

In the preliminary study Zarzo et al. [2011] about RH in Valencia’s Cathedral, the time

series were clustered according to the mean of RH and rVd (they called this DMV ). In this

study, the classification of the time series was improved for method M1, which also used

the variable rVd. This might be a consequence of using: sPLS-DA and features related

to sample ACF, sample PACF, spectral density and frequency corresponding to spectral

density.

In respect to classification technique, one disadvantage of using the sPLS-DA is that

it is only applicable to cases where the context of the problem of group classification is

possible for each time series. However, this method makes it possible to classify time

series that have very similar characteristics.

The proposed methodology might be improved by adding classification variables re-

lated to model predictions and other features of the time series such as spectral features.

Additionally, penalties different from the ones proposed for the sPLS-DA could be ex-

plored, then the selection of essential classification variables for clustering time series

could be evaluated. Additionally, it would be advisable to carry out a study in controlled

scenarios, where time series can be simulated and different characteristics of the time series

are controlled.

The methodology proposed here might be a good option to consider when there are

no major differences between the time series of different groups. As, according to the

characteristics and context of the problem it is possible to indicate the categories of the

time series. This methodology can lead to the discovery of interesting patterns in time

series datasets. Furthermore, it might help researchers understand the structure of data,

clusters, anomalies, and other regularities in datasets, to develop prediction models, among

others.
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