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Abstract

Pocock et al. (2012) following Finkelstein and Schoenfeld (1999) popularized the win ratio for

analysis of controlled clinical trials with multiple types of outcome event. The approach uses pair-

wise comparisons between patients in the treatment and control groups using a primary outcome,

say time to death, with indeterminacies broken resolved where possible using a secondary outcome,

say time to hospitalization. Preferences assigned by this method may not be transitive. Intransitivity

occurs when potential follow-up time varies between patients and rankings based on primary events

differ from those based on secondary events. We derive some general properties of win-ratio pref-

erences and provide numerical illustrations under some simple models. Unless all follow-up times

are equal, see Oakes (2016) intransitivites are certain to occur in sufficiently large samples, but their

overall frequency is low and there is no simple remediation of the problem.

Key Words: cardiovascular trials, censored data, composite outcome, prioritized endpoints, sur-

vival analysis, win ratio

1. Introduction

The win ratio, introduced by Pocock et al. (2012), has become a popular method of anal-

ysis of comparative cardiovascular clinical trials involving a so-called composite outcome

measure, typically cardiovascular mortality or nonfatal cardiac event. It is usual to focus

on time to the first event, which may be analyzed by standard techniques for survival data.

This analysis will have greater power to detect a hazard ratio of a given magnitude that one

based on mortality alone. However it ignores information about deaths that follow non-

fatal events. The win ratio uses preferences between pairs of individuals from the active

treatment and control groups, determined by the following rule. First, ascertain whether the

data, in the form of the possibly censored survival times Ti and Tj of two individuals i and

j, determine whether Ti exceeds Tj or Tj exceeds Ti. If the comparison is indeterminate

examine whether the times to a non-fatal event, Xi and Xj , can be used to resolve the inde-

terminacy. Finally, to compare overall outcomes in two groups of patients, say n1 patients

randomized to active treatment and n0 to placebo, consider the ratio, among all n0n1 com-

parisons of a patient randomized to placebo and a patient randomized to active treatment,

of the number of comparisons that favor active treatment to the number that favor placebo,

discarding those that remain undetermined.

2. Notation and Conventions

We suppose that each individual i is associated with a triple (Ti,Xi, Ci) where Ti is the time

to the primary event, Xi is the time to the secondary event and Ci is the time to censoring,

assumed to be the same for Ti and Xi. It will be convenient mathematically to allow Xi

to exceed Ti. This cannot happen in the cardiovascular application discusssed above, but it

could happen in other examples, for example a study of an analgesics could consider times

to severe and to mild headaches. We will show below that if an individual experiences a

primary event prior to a secondary event, the subsequent timing of that secondary event
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after the primary event cannot affect any comparison. For simplicity we assume that there

are no exact ties between values of Ti or values of Xi. We distinguish between exact ties

in observed data and indeterminacy of preferences due to censoring.

We write Ti ≺ Tj , i ≺T j, or j ≻T i, if Ti < min(ci, cj , Tj), so that on the basis of

what is observed, Ti is known to be less than Tj . If either i ≺T j or j ≺T i we say that

i and j are T -orderable, otherwise, that is when min(Ci, cj) < min(Ti, Tj), they are not

T -orderable, written i |T j. Thus ≺T , |T and ≻T are mutually exclusive and exhaustive.

In an exactly analogous way we can define preference relations ≺ X and ≺Y based on the

times Xi to secondary events and the times Yi = min(Ti,Xi) to the first event. All these

relations are transitive, i ≺T j and j ≺T k together imply i ≺T k and similarly for ≺X

and ≺Y .

The win-ratio preference ≺ combines information from the Ti and Xi as follows:

i ≺ j if either Ti ≤ min(Ci, Cj , Tj) or both min(Ci, Cj) > min(Ti, Tj) and Xi <
min(Ci, Cj ,Xj).
Lemma 1. Replacing Xi by Yi and Xj by Yj does not change the definition.

Proof. If the comparison of (Ti,Xi) with (Tj ,Xj) is indeterminate then min(Ti, Tj) >
min(Ci, Cj) and min(Xi,Xj) > min(Ci, Cj) and so min(Yi, Yj) > min(Ci, Cj) and

the comparison of (Ti, Yi) with (Tj , Yj) is indeterminate. If (Ti,Xi) ≺ (Tj ,Xj) then

either (i) Ti < min(Ci, Cj, Tj), in which case (Ti, Yi) ≺ (Tj , Yj), or (ii) min(Ti, Tj) >
min(Ci, Cj) and Xi < min(Ci, Cj,Xj) in which case Xi < Ti and Yi = Xi. So Yi <
min(Ci, Cj ,Xj) and also Yi < min(Tj ,Xj) = Yj , and (Ti, Yi) ≺ (Tj , Yj). Similarly

(Tj ,Xj) ≺ (Ti,Xi) implies (Tj , Yj) ≺ (Ti, Yi). Since the three possibilities are mutually

exclusive and exhaustive the lemma is proved.

An important consequence of this lemma is the timing of secondary event that has not

occurred prior to the primary event to the same individual does not influence any compar-

ison. So there is no loss in generality in assuming that Xi ≤ Ti, even in situations where

values of Xi > Ti can be observed. Here is another useful result:

Lemma 2. For all pairs (i, j), i | j if and only if i |Y j. A comparison is indetermi-

nate under the win-ratio preference if and only if it is indeterminate under the first event

preference.

Proof. A comparison is indeterminate under ≺ if and only if min(Ti, Tj) > min(Ci, Cj)
and min(Xi,Xj) > min(Ci, Cj). It is indeterminate under ≺Y if and only if min(Yi, Yj) >
min(Ci, Cj). Since Yi = min(Xi, Ti) and Yj = min(Xj , Tj) these conditions are equiva-

lent.

3. Properties

Unlike ≺T and ≺Y , the win ratio preference is not necessarily transitive, Figure 1 illustrates

a cyclic triplet with i ≺ j ≺ k ≺ i and Figure 2 a weaker form of intransivity in which

i ≺ j ≺ k but i | k. In these Figures occurrences of primary events, secondary events and

censorings are represented by �, × and ◦ respectively. We will shortly characterize the

possible configurations of observations that lead to these intransitivities. We first present

some further lemmas.

Lemma 3. If i ≺T j then i ≺ j.

Proof. Immediate from the definition.

Lemma 4. If i ≺ j then either Ti < Ci or Xi < Ci or both.

Proof. Immediate from the definition.

Lemma 5. If min(Ti,Xi) < Ci and min(Tj ,Xj) < Cj then i and j are orderable.

Proof. Since Yi < Ci and Yj < Cj we have min(Yi, Yj) < min(Ci, Cj) so the result

follows from Lemma 2. Note however that the preference established by ≺Y may not
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agree with that established by ≺T .

Definition If i ≺ j ≺ k · · · ≺ i then ijk . . . i is a cyclic loop

We know that ≺, unlike ≺T or ≺Y , allows the possibility of cyclic loops. However the

following lemma shows that exclusion of cyclic triplets suffices to exclude cyclic loops of

any higher order.

Lemma 6. Any cyclic loop contains a cyclic triplet.

Proof. Let i ≺ j ≺ k · · · ≺ i be a cyclic loop. Since every element precedes the following

element, Yi, Yj, . . . must all be observed. Hence, by Lemma 5, any two elements of the

loop must be orderable. Consider the elements i ≺ j ≺ k. Either k ≺ i, in which case ijki
is a cyclic triplet, or i ≺ k, in which case we may omit element j obtaining a new cyclic

loop with one fewer element than the original. Proceeding inductively we may reduce the

original cyclic loop to a cyclic triplet.

4. Cyclic Triplets

We now characterize the structure of cyclic triplets. Suppose that i ≺ j ≺ k ≺ i. Since

≺T is transitive it is not possible for all the win-ratio preferences to be determined by the

times to the primary events. Nor is it possible for two of the three preferences in the loop

to be so determined. For if either (i) Ti ≺ Tj and Ti ≺ Tj so that i ≺ j and i ≺ k or if (ii)

Ti ≻ Tj and Ti ≻ Tk, so that i ≻ j and i ≻ k, then ijki cannot be a cyclic loop. Finally,

if (iii) Tj ≺ Ti and Ti ≺ Tk then Ti ≺ Tk by the transitivity of ≺T , so that i ≺ j, ≺ k
and i ≺ k and again ijki cannot be cyclic. We also cannot have all preferences determined

by the times to secondary events Xi since ≺X is transitive. So for ijki to be cyclic exactly

one of the three preferences must be determined by the primary events.

Suppose, then, that Ti ≺ Tj . Then we must have Xj ≺ Xk and Xk ≺ Xi. We must also

have Tj | Tk and Tk | Ti. This configuration is achievable, see Figure 1, but imposes severe

constraints on the ordering of the nine relevant occurrences - the six primary and secondary

event times and the three censoring times. Suppose for example that i = 1, j = 2 and

k = 3. Then X2 ≺ X3, X3 ≺ X1, T1 ≺ T2, T2 | T3 and T3 | T1. These relations are

equivalent to the following inequalities X2 < min(X3, C2, C3), X3 < min(X1, C3, C1),
T1 < min(T2, C2, C1), min(C2, C3) < min(T2, T3), and min(C3, C1) < min(T3, T1).
These are equivalent to the set

X2 < min(X3, C2, C3,X1, C1, T1, T3, T2),

X3 < min(X1, C1, C3, T1, T3, T2, C2),

C3 < min(T3, T1, T2, C2, C1),

T1 < min(T2, C2, C1).

Figure 1:A Cyclic Triplet
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i  precedes j

j precedes k

k precedes i

Figure 2: A Weakly Intransitive Triplet
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k and i are not orderable
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5. Weakly Intransitive Triplets

Transitivity in the usual sense also fails when (T1,X1) ≺ (T2,X2) ≺ (T3,X3) but (T3,X3) |
(T1,X1) as in Figure 2. We now characterize the structure of such loops, called weakly

intransitive triplets. Of the two definite preferences one must be based on the T ’s, the other

on the X’s else the transitivity of ≺T or ≺X would imply that (T1,X1) ≺ (T3,X3). Also,

the third observation can have no observed outcome, T3 > C3, X3 > C3, else (T3,X3)
and (T1,X1) would be orderable by Lemma 5. Suppose first that T2 ≺ T3 and X1 ≺ X2

with T1 | T2. We may assume that X2 ≤ T2, so we have X1 < X2 ≤ T2 < T3 < C3,

which would imply that X1 ≺ X3, so that 3 and 1 would be orderable, a contradiction.

SoX2 ≺ X3 and T2 | T3 and T1 ≺ T2. These relations imply the following inequalities,

X2 < C3, min(X1,X3) > C3, min(T1, T2) > C3, T1 < min(C1, C2), T3 > C3. These

are equivalent to the set

X2 < min(X1,X3, C1, C2, C3, T1, T2, T3),

C3 < min(X1,X3, C1, C2, T1, T2, T3),

T1 < min(T2, C1, C2).

The value of X1 is irrelevant, so long as it exceeds C3.

6. A Model

A simple but instructive model is to allow all 9! = 362880 permutations of the orderings

of the nine occurrences for a single triplet (123 say) to be equally likely. The 27 possible

selections of one of the three symbols ≺, ≻ and | for the ? in 1?2, 2?3 and 3?1 give rise to

the following 3× 3× 3 classification of these permutations

Table 1: Classification of Potential Win-Ratio Preferences

≺ | ≻
≺ | ≻ ≺ | ≻ ≺ | ≻

≺ 630 1260 26670 1260 13440 24360 26670 0 26670

| 1260 13440 0 13440 40320 13440 24360 13440 1260

≻ 26670 24360 26670 0 13440 1260 26670 1260 630

The top left and bottom right entries correspond to the two possible cyclic loops, 1 ≺
2 ≺ 3 ≺ 1 and 1 ≻ 2 ≻ 3 ≻ 1 giving a total of 1260 of the 362880, a probability of

1/288. The number at the center of the table, 40320, 1/9 of the total, is the number of

permutations where all preferences are indeterminate. The table has many symmetries, due

to the exchangeability of the item labels, and three structural zeros to be discussed next.

Lemma 7. If i ≺ k and j ≺ k then i and j are orderable.

Proof. By Lemma 4, Yi < Ci and Yj < Cj . Hence i and J are orderable by Lemma 5.

Lemma 7 applies also to the the preference relations ≺Y , ≺T and ≺X . It does not apply if

≺ is replaced by ≻ throughout. Lemma 7 explains why configurations such as |≺≻ do not

appear in the Table above.

We can group the 27 configurations into eight types based on the number of observed

preferences among the three pairs and the degree of transitivity or intransitivity. We obtain

the following relative frequencies, where ABC denotes any permutation of 123. The first

two rows yield three observed preferences, rows 3,4 and 5 yield two, row 6 yields one and

row 7 yields none.
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We may now derive these expressions directly. First we consider the distribution of the

Table 2: Classification of Win-Ratio Triplets

FT Fully Transitive A ≺ B, B ≺ C , A ≺ C 0.4410

CT Cyclic Triplet A ≺ B, B ≺ C , C ≺ A 0.0035

PI1 Partly Transitive(i) A ≺ B, B | C , A ≺ C 0.2014

PT2 Partly Transitive(ii) A ≺ B, C ≺ B, C | A 0

WI Weakly Intransitive A ≺ B, B ≺ C , C | A 0.0208

SP Single Preference A ≺ B, B | C , C | A 0.2222

NP No preference A | B, B | C , C | A 0.1111

number of preferences, irrespective of direction. By Lemma 2, these numbers are the same

if we work with ≺Y instead of ≺. Let us write Zi = min(Yi, Ci) for the times of the

first occurrence (first event or censoring) for individual i, Ei for the indicator 1[Yi < Ci],
Z(i) for the ordered values of the Zi and E(i) for the corresponding Ei. So, for example

E(1) = 1 if and only if the first occurrence in the triplet is an event and not a censoring.

Then the E(i) are independent of each other and of the Y(i), with pr(E(i) = 1) = 2/3.

The number of preferences under ≺Y is determined by the values of E(1) and E(2). IF

E(1) = E(2) = 0, an outcome with probability 1/3 × 1/3 = 1/9, then all comparisons

will be indeterminate. If E(1) = 0 and E(2) = 1, then both comparisons involving Y(1)

will be indeterminate but that between Y(2) and Y(3) will be determined, yielding a single

preference, with associated probability 1/3 × 2/3 = 2/9. Similarly, if E(1) = 1 and

E(2) = 0 then both comparisons involving Y(1) are determined, but not that between Y(2)

and Y(3). The associated probability is 2/3 × 1/3 = 2/9. Finally, if E(1) = E(2) = 1,

an outcome with probability 2/3 × 2/3 = 4/9, all three preferences among the Y(i) are

determined.

Cyclic triplets (row 2) and weakly intransitive orderings (row 5) cannot occur under

≺Y but they do occur, with low probability, under ≺. We can complete the verification

of the entries by evaluating the probabilities of these two configurations. This requires

separate consideration of the configuration of the full data (Ti,Xi, Ci) rather than just of

the (Yi, Ci).
Consider first the probability of a cyclic triplet. The right sides of the four equations

above are nested so that the joint probability that all the stated inequalities hold is the

product of the conditional probabilities of each given all the preceding ones. Under our

assumption that all permutations of the nine occurrences are equally likely, the conditional

probabilities of each of the four statements in given the truth of all the preceding statements

(if any) are simply 1/9, 1/8, 1/6, 1/4. Since there are six possible permutation of the indices

(1, 2, 3) the proportion of possible triplets that form a cyclic loop is 6× 1/9× 1/8× 1/6×
1/4 = 1/288 = .0035 as asserted.

A similar but simpler argument applies to the weakly intransitive triplets. The condi-

tional probabilities of each of the three statements given the truth of the preceding ones

are respectively 1/9, 1/8 and 1/4. Allowing for the six possible permutations of the indices

gives the joint probability as 6× 1/9× 1/8 × 1/4 = 1/48 = 0.0208 as asserted.

7. Reversals

Lemma 2 shows that the only possible differences between preferences ≺ assigned by the

win ratio and and those ≺Y assigned by time of the first event arise from reversals, that

is when Xi ≺ Xj but Tj ≺ Ti. For a reversal, the first occurrence of the six must be a
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secondary event, and the first primary event or censoring following that secondary event

must be a primary event for the other member of the pair. These considerations lead to the

following joint distribution under the assumption that the 6! = 720 permutations of the six

occurrences are equally likely. In practice reversals tend to be much less common than this

Table 3: Joint distribution of ≺Y and ≺ under random permutations

≺ | ≻
≺Y 7/24 0 1/24

|Y 0 8/24 0

≻Y 1/24 0 7/24

calculation would suggest. Usually a secondary event increases the risk of a subsequent

primary event, resulting in a positive correlation between 1[X1 ≺ X2] and 1[T1 ≺ T2].
This correlation will usually be strengthened when the joint distribution of (X,T ) varies

among pairs. Also, reversals cannot occur if all individuals are followed for the same length

of time—often called Type I censoring. See Oakes (2016).

8. More General Models

Lemmas 1-7 concern the properties of ≺ and hold whatever the distribution of C and the

joint distribution of (T,X), so long as these are absolutely continous. However these

distributions will affect the probabilities in Table 2.

We suppose now that the times to the nine (potential) occurences in a triplet of ob-

servations {(Ti,Xi, Ci); i = 1, 2, 3} are independent exponential random variables, with

parameters ρ1 . . . , ρ9, where ρ1, ρ2, ρ3 correspond to T1,X1, C1 respectively ρ4, ρ5, ρ6 to

T2,X2, C2 and ρ7, ρ8, ρ9 to T3,X3, C3. When the ρi are all equal, all permuations of the

nine occurrence times are equally likely so that the calculations of the previous section

apply.

The probabilities of each permutation of the order of the nine occurrence times can be

calculated using the lack of memory property of the exponential distribution. Consider a

typical permutation P = (P (1), . . . P (n)) of (1, . . . , n) The probability that the nine oc-

currences occur in the order P (so that P (i) is the position of the i’th event in the sequence)

is
9
∏

i=1

ρi
∑

k:P (k)≥P (i) ρk
=

9
∏

j=1

ρQ(j)
∑

l≥j ρQ(l)
,

where Q is the inverse permutation to P This factor depends on P but is easily computed.

The formula extends to a Cox model with common baseline hazard for the nine occurrence

times—it is the same as the “marginal likelihood” of the ordering, when there are no ties

or censoring. We present three examples,

In the case that the the triplets are identically distributed but the three component rates

are ρT , ρX and ρC (in an obvious notation) the probabilities of a cyclic triplet are

ρX
ρX + ρY + ρC

×
2ρX

2ρX + 3ρT + 3ρT
×

ρC
3ρC + 3ρT

×
ρT

2ρT + 2ρC
.

In the case that ρX = ρY = 1, ρC = 2, the calculation gives 1
4 × 2

11 × 2
9 × 1

6 = 1
594 =

0.00168, as in Table 4. Similarly, the probability of a weakly intransitive triplet is

ρX
ρX + ρC + ρT

×
2ρC

3ρC + 2ρX + 3ρT
×

ρT
2ρT + 2ρC

.
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Table 4: Relative Frequencies of Triplet Types;ρT = ρX = 1, ρC = 2

FT Fully Transitive A ≺ B, B ≺ C , A ≺ C 0.2483

FI Cyclic Triplet A ≺ B, B ≺ C , C ≺ A 0.0017

PI1 Partial Transitive(i) A ≺ B, B | C , A ≺ C 0.2348

PT2 Partial Transitive(ii) A ≺ B, C ≺ B, C | A 0

PI Weakly Intransitive A ≺ B, B ≺ C , C | A 0.0152

SP Single Preference A ≺ B, B | C , C | A 0.2500

NP No preference A | B, B | C , C | A 0.2500

Table 5: Relative Frequencies of Triplet Types;ρT (i) = ρX(i) = i, ρC(i) = 2

FT Full Transitive A ≺ B, B ≺ C , A ≺ C 0.4249

FI Cyclic Triplet A ≺ B, B ≺ C , C ≺ A 0.0026

PI1 Partial Transitive(i) A ≺ B, B | C , A ≺ C 0.2205

PT2 Partial Transitive(ii) A ≺ B, C ≺ B, C | A 0

PI Weakly Intransitive A ≺ B, B ≺ C , C | A 0.0187

SP Single Preference A ≺ B, B | C , C | A 0.2201

NP No preference A | B, B | C , C | A 0.1132

which yields
1

4
×

4

11
×

1

6
=

1

66
= 0.01515,

for the parameter values in Table 4

9. Effect of Correlation Between X and T

Suppose now that occurrence of a secondary event increases the risk of a subsequent pri-

mary event by a factor κ. The probability of a permutation P is now

9
∏

i=1

ρi,P (i)
∑9

j=1 ρi,j

where

ρij =







0 if P (i) < j,

κρi if i ≤ 3, P (i) ≥ j and P (i+ 3) < j,

ρi otherwise.

However this model does not yield simple formulas for the probabilities associated with

pairwise comparisons. We know of no parametric models for the dependence of X and T
that allow simple interpretations of the win ratio under arbitrary patterns of censorship.

Oakes (2016) addressed the simpler situation when interest centers only on follow-up to a

specific time horizon.

10. Discussion

In realistic scenarios, the proportion of triplets that are fully or partially intransitive is

usually low. Since there are O(n3) triplets, O(n4) quadruplets, etc. but only O(n2) pairs,

the likelihood of any particular orderable pair being part of at least one cyclic loop increases
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Table 6: Relative Frequencies of Triplet Types;ρT (i) = i, ρX(i) = (3− i), ρC(i)) = 2

FT Full Transitive A ≺ B, B ≺ C , A ≺ C 0.4407

FI Cyclic Triplet A ≺ B, B ≺ C , C ≺ A 0.0037

PI1 Partial Transitive(i) A ≺ B, B | C , A ≺ C 0.1987

PT2 Partial Transitive(ii) A ≺ B, C ≺ B, C | A 0

PI Weakly Intransitive A ≺ B, B ≺ C , C | A 0.0236

SP Single Preference A ≺ B, B | C , C | A 0.2222

NP No preference A | B, B | C , C | A 0.1111

to unity as n → ∞. It may be useful in applications to calculate the number of reversals

between ≺ and ≺Y as this will largely determine the extent of any intransitivity.
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