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Abstract
In reliability engineering, the accelerated life test is not only getting increasingly popular but also

necessary as it quickly yields information on the lifetime distribution of a highly reliable product in
a short period of time by conducting the life test at more extreme stress levels than normal operating
conditions. Through extrapolation, the lifetime distribution at the usage stress is then estimated with
an appropriate regression model. In this work, we revisit the problem of the design optimization
for a general k-level step-stress accelerated life test under progressive Type-I censoring with an
equi-spaced step duration ∆ for the design simplicity. Allowing the intermediate censoring to take
place at each stress change time point (viz., i∆, i = 1, 2, . . . , k), the existence of the optimal stress
duration is demonstrated under various design criteria including A-optimality and E-optimality in
addition to D-optimality, T -optimality, and C-optimality. The existence of these optimal designs is
investigated in detail for exponential lifetimes with a single stress variable.

Key Words: accelerated life tests, design of experiment, Fisher information, order statistics, pro-
gressive Type-I censoring, step-stress loading

1. Introduction

Thanks to the ever improving manufacturing process and technology, products and
devices are becoming highly reliable with substantially long life-spans these days, which
makes the standard life tests at normal operating conditions practically unfeasible. For
gaining sufficient information about the lifetime distribution of a product or even a pro-
totype, such tests are too time-consuming and costly to the industrial markets. For these
reasons, the accelerated life test (ALT) is not only getting increasingly popular but also
necessary as it quickly yields information on the lifetime distribution of a highly reliable
product in a short period of time; see, for example, Chernoff [1], Nelson and Meeker [2],
Nelson [3], Meeker and LuValle [4], Meeker and Escobar [5], Bagdonavicius and Nikulin
[6]. By conducting the life test at more extreme stress levels than normal operating condi-
tions, more failures can be collected rapidly. The lifetime distribution at the usage stress is
then estimated with an appropriate stress-response regression model.

As a particular class of ALT, the (step-up) step-stress test implements a special stress
loading scheme where the stress levels are sequentially increased at some prefixed time
points until the termination time of the test. During the past decades, the inference and
design optimization for the step-stress ALT have attracted great attention in the statistical
reliability and engineering literature. Miller and Nelson [7] initiated a formal research in
this direction and studied the optimal planning of a simple step-stress ALT while Bai et al.
[8] investigated the optimization of a simple step-stress ALT with censoring. Later, Khamis
and Higgins [9, 10] extended their results to a three-step step-stress ALT. In the meantime,
Meeker and Hahn [11], Meeker [12] compared various ALT plans to estimate the relia-
bility function at a design stress with Type-I censored failure data from different lifetime
distributions including Weibull and lognormal. The optimal ALT with a non-constant scale
parameter was studied by Meeter and Meeker [13], and then, Escobar and Meeker [14]
explored planning ALT with two or more experimental factors while Yeo and Tang [15]
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researched designing a step-stress ALT with a target acceleration-factor. On the inferential
side, Balakrishnan and Han [16, 17], Han and Balakrishnan [18] studied the exact point
and interval estimations for a simple step-stress ALT with competing risks under Type-I
and Type-II censorings; see Liu and Qiu [19], Han and Kundu [20] as well. Lately, Zhang
and Meeker [21] developed the Bayesian methods for planning ALT while Meeker et al.
[22] used the ALT results to predict product field reliability. Lee et al. [23] also assessed
the lifetime performance index of exponential products with a step-stress ALT as an appli-
cation. More recently, Han and Ng [24], Han [25, 26] formulated the optimal designs and
compared the efficiency of a step-stress ALT against a constant-stress ALT under conven-
tional time and cost constraints.

As indicated by the reliability literature, time and budgetary constraints are practical
aspects of any life testing, and for these reasons, censored sampling is usually demanded
in practice. A generalized censoring scheme known as progressive Type-I censoring al-
lows functional test units to be successively removed from a life test at some prefixed
non-terminal time points. Those withdrawn, unfailed units can then be utilized in other
tests in the same or at a different facility; see, for example, Gouno et al. [27], Han et al.
[28], and Balakrishnan et al. [29]. Surprisingly, progressively censored sampling has not
gained much popularity in ALT despite its flexibility and efficient utilization of the avail-
able resources compared to the traditional censoring methods, partly due to its distributional
complexity rendering its statistical analysis rather difficult; see Cohen [30], Lawless [31].

In this work, we revisit the problem of the design optimization for a general k-level
step-stress ALT under progressive Type-I censoring. For the design simplicity, an equi-
spaced step duration ∆ is considered along with the popular log-linear relationship between
the mean lifetime parameter and stress level as well as the accelerated failure time (AFT)
model for the effect of changing stress. For deriving the analytical tractable results here,
the lifetimes of units are assumed to follow an exponential distribution at each stress level.
Although simple, the exponential distribution is a good approximate model for numerous
practical applications, including the decay time of a radioactive particle, the waiting time
for service calls, the default time in credit risk modeling, and the distance between muta-
tions on a DNA strand. In electrical and mechanical engineering, it has been successfully
used to model the lifetime of an electric circuit and a semiconductor. Reliability theory
and reliability engineering also make extensive use of the exponential distribution since its
memoryless property renders it well-suited for modeling the constant hazard rate portion of
the bathtub curve. More importantly, its statistical property serves as a theoretical proof of
concept for other popular lifetime distributions such as gamma and Weibull, which is also
the case based on the research outcomes of this study.

Allowing the intermediate censoring to take place at each stress change time point
(viz., i∆, i = 1, 2, . . . , k), the existence of the optimal stress duration is demonstrated
under five different design criteria including A-optimality and E-optimality in addition to
D-optimality, T -optimality, and C-optimality. The existence of these optimal designs is
investigated in detail with a single stress variable. Studying the existence of these optimal
designs is not only theoretically but also practically important in order to guarantee the
design feasibility under general settings as well as to develop and implement an efficient
computational search algorithm for the optimal designs. The rest of the paper is organized
as follows. Section 2 presents the model description for a general k-level step-stress ALT
under progressive Type-I censoring. From the (expected) Fisher information matrix of the
regression parameters, the behavior of the component of each entry is studied as a function
of the step duration ∆ in Section 3. In Section 4, various optimality criteria are defined
based on the Fisher information stated in Section 3. Understanding the functional behavior
of the Fisher information, the existence of the optimal step duration is also discussed under
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each optimality criterion.

2. Test Procedure & Joint Distribution

In a step-stress ALT, the stress levels are sequentially increased at some prefixed time
points during the experiment. To lay out the procedure of a general k-level step-stress ALT
under progressive Type-I censoring, let us first denote s(t) to be the given (transformed)
stress loading for ALT, which is a deterministic function of time. Also, let sH be an upper
bound of stress level and sU be the normal usage stress level. The standardized stress
loading is then defined as x(t) = (s(t) − sU )/(sH − sU ) for t ≥ 0 so that the range of
x(t) is [0, 1]. Now, let us define 0 ≡ x0 ≤ x1 < x2 < · · · < xk ≤ 1 to be the ordered
k standardized stress levels to be used in the ALT. It is further assumed that at any stress
level xi, the lifetime of a test unit is exponentially distributed with the probability density
function (PDF) and the cumulative distribution function (CDF) given by

fi(t) =
1

θi
e−t/θi , 0 ≤ t <∞, (1)

Fi(t) = 1− Si(t) = 1− e−t/θi , 0 ≤ t <∞, (2)

respectively. At any stress level xi, it is also assumed that the mean time to failure (MTTF)
of a test unit, θi, has a log-linear relationship with the corresponding stress level xi. That
is,

log θi = α+ βxi, (3)

where the regression parameters α and β are to be estimated. This log-linear link is a
commonly used and well-studied model for the accelerated exponential distribution model.
As Miller and Nelson [7] noted, the log-linear response is simple to understand but it also
represents several physics-based life-stress relationships; for instance, Arrhenius, inverse
power law, Eyring, temperature-humidity, and temperature-non-thermal.

Now, for i = 1, 2, . . . , k, let ni denote the number of units failed at stress level xi in
time interval [(i − 1)∆, i∆) while yi,l denotes the l-th ordered failure time of ni failed
units for l = 1, 2, . . . , ni. Also, let ci denote the number of units censored at time i∆
with Ni denoting the number of units operating and remaining on test at the start of stress
level xi. That is, Ni = n−

∑i−1
j=1 nj −

∑i−1
j=1 cj . Under this setup, a step-stress ALT under

progressive Type-I censoring with a uniform step duration ∆ proceeds as follows. A total of
N1 ≡ n test units is initially placed at stress level x1 and tested until time ∆ at which point
c1 surviving items are arbitrarily removed from the test and the stress is changed to x2. The
test is continued onN2 = n−n1−c1 units until time 2∆, when c2 items are removed from
the test and the stress is changed to x3, and so on. Finally, at time k∆, all the surviving items
are removed, thereby terminating the life test. Since n ≡

∑k
i=1(ni + ci), the number of

withdrawn items at time k∆ is ck = n−
∑k

i=1 ni−
∑k−1

i=1 ci = Nk−nk. As a special case,
when there is no intermediate censoring (viz., c1 = c2 = · · · = ck−1 = 0), this situation
corresponds to the k-level step-stress ALT under traditional Type-I right censoring. When
there is no right censoring (viz., nk = Nk), this situation corresponds to the k-level step-
stress ALT under complete sampling. Since the stress-loading is non-constant for the step-
stress ALT, an additional model to explain the effect of changing stress is required. In
reliability engineering for the exponential distribution, often a suitable choice is the AFT
model, also known as the additive accumulative damage model. It generalizes a number
of well-known models such as the basic (linear) cumulative exposure model and the PH
model.
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Based on the AFT model along with (1) and (2), the PDF and CDF of a test unit for the
step-stress ALT are

f(t) =

[
i−1∏
j=1

Sj(∆)

]
fi
(
t− (i− 1)∆

)
if
{

(i− 1)∆ ≤ t < i∆ for i = 1, 2, . . . , k − 1
(k − 1)∆ ≤ t <∞ for i = k

(4)

F (t) = 1−

[
i−1∏
j=1

Sj(∆)

]
Si
(
t− (i− 1)∆

)
if
{

(i− 1)∆ ≤ t < i∆ for i = 1, 2, . . . , k − 1
(k − 1)∆ ≤ t <∞ for i = k

, (5)

respectively. Upon using (4) and (5), the joint distribution function of the failure counts
n = (n1, n2, . . . , nk) and the set of failure times y = (y1,y2, . . . ,yk) with yi =
(yi,1, yi,2, . . . , yi,ni) is derived as

fJ(y,n) =

[
k∏
i=1

Ni!

(Ni − ni)!

][
k∏
i=1

θ−ni
i

]
exp

(
−

k∑
i=1

Ui
θi

)
, (6)

where

Ui =

ni∑
l=1

(
yi,l − (i− 1)∆

)
+ (Ni − ni)∆

is the Total Time on Test statistic at stress level xi for i = 1, 2, . . . , k. Applying the log-
linear link in (3) to (6), the log-likelihood of (α, β) is obtained as

l(α, β) = −α
k∑
i=1

ni − β
k∑
i=1

nixi −
k∑
i=1

Ui exp
[
− (α+ βxi)

]
, (7)

and by differentiating (7) with respect toα and β, the maximum likelihood estimates (MLE)
α̂ and β̂ can be obtained as simultaneous solutions to the likelihood equations. Since the
MLE α̂ and β̂ do not exhibit explicit formulae, a numerical procedure such as the fixed
point iteration, the Newton-Raphson method, or the expectation-maximization (EM) al-
gorithm is required for estimation. More importantly, due to the non-linear nature of the
MLE, statistical inferences with these MLE are based on the asymptotic result that (α̂, β̂)
is approximately distributed as a bivariate normal with mean (α, β) and dispersion matrix
I−1
n (α, β), where In(α, β) is the expected Fisher information matrix of (α, β).

3. Censoring Scheme & Fisher Information

Unlike progressive Type-II censoring scheme, there is an inherent mathematical lapse
by prefixing the progressive Type-I censoring scheme c = (c1, c2, . . . , ck−1) as pointed
out by Balakrishnan and Han [17], Balakrishnan et al. [29]. It is due to the fact that there
is a positive probability that all the units could fail before reaching the last stress level
xk, resulting in an early termination of the ALT as well as failing to fully implement the
censoring scheme. To get around this issue, Gouno et al. [27] assumed a large sample
size, small global censoring proportions, and a small number of stress levels so that the
prefixed number of surviving units could be withdrawn at the end of each stress level. As a
consequence, however, they had to restrict the search region for the optimal step duration to
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{∆ : Ai(∆) > 0, i = 2, 3, . . . , k}, whereAi(∆) =
[
1−
∑i−1

j=1 πj/Gj(∆)
]
Gi−1(∆)Fi(∆)

with Gj(∆) =
∏j
i=1 Si(∆) and πi = ci/n is the overall censoring proportion at xi. A

careful analysis of this search region reveals that it guarantees the availability of a sufficient
number of live units to be censored at the end of each stress level only on average but not
for each sample. Reliability testing, on the other hand, usually runs on a small sample size
and may require severe censoring due to cost constraints and facility requirements, which
violates the assumptions of Gouno et al. [27]. This calls for a practical modification of
the progressive censoring scheme in order to ensure its feasibility. A simple suggestion is
to decide on fixed proportions of remaining items to be censored at the end of each stress
level xi, say π∗ = (π∗1, π

∗
2, . . . , π

∗
k−1) with 0 ≤ π∗i < 1. One could also define π∗k = 1

since all the remaining units are removed from the ALT at time k∆. The actual number
of units censored at the end of xi is then determined by ci = Υ((Ni − ni)π

∗
i ) with a

discretizing function of choice Υ(·). This allows the ALT to terminate before reaching
the last stress level xk without any mathematical inconsistency. Also, under the proposed
censoring mode, the actual censoring scheme c is random since the number of live units
at the end of each stage before censoring takes place is random. As a special case, when
π∗ = (0, 0, . . . , 0) = 0k−1, we have c = 0k−1, which corresponds to the general k-level
step-stress ALT under traditional Type-I censoring.

For mathematical derivations, ci defined above nevertheless makes it difficult to dis-
cover the distributional characteristics of the associated quantities, and thus, for i = 1, 2, . . . , k−
1, ci = (Ni − ni)π∗i is assumed for simplicity as Υ((Ni − ni)π∗i ) ≈ (Ni − ni)π∗i . Based
on the log-likelihood obtained in the preceding section, Balakrishnan and Han [17] then
derived the Fisher information matrix In(α, β) as

In(α, β) = n

(
Iα(∆) Iαβ(∆)
Iαβ(∆) Iβ(∆)

)
= n


k∑
i=1

Ai(∆)

k∑
i=1

Ai(∆)xi

k∑
i=1

Ai(∆)xi

k∑
i=1

Ai(∆)x2
i

 , (8)

where

Ai(∆) = Fi(∆)
i−1∏
j=1

Sj(∆)(1− π∗j ), (9)

by utilizing the distributional property that ni givenNi follows a binomial distribution with

parameters Ni and
F (i∆)− F

(
(i− 1)∆

)
1− F

(
(i− 1)∆

) = Fi(∆). Analyzing the function Ai(∆) in (9)

reveals that with ∆ > 0, Ai(∆) > 0 for i = 1, 2, . . . , k. Differentiating it with respect to
∆, we also observe that

A′i(∆) = Ai(∆)

[
1

θi

Si(∆)

Fi(∆)
− 1

δi−1

]
= Ai(∆)

[
1

θiFi(∆)
− 1

δi

]
,

where δi =
(∑i

j=1 1/θj
)−1

> 0 for i = 1, 2, . . . , k. By recursion, one can express

δi =
(
1/θi + 1/δi−1

)−1. Since lim
∆→0+

Fi(∆)

∆
=

1

θi
using L’Hôpital’s rule, we have

lim
∆→0+

Ai(∆) = 0 and lim
∆→0+

Ai(∆)

∆
=

1

θi

i−1∏
j=1

(1− π∗j ) > 0.
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Therefore, we see that

lim
∆→0+

A′i(∆) = lim
∆→0+

Ai(∆)

∆

[
1

θi

∆

Fi(∆)
− ∆

δi

]
=

1

θi

i−1∏
j=1

(1− π∗j ) > 0,

implying that Ai(∆) initially increases from 0 as ∆ increases from 0. With higher cen-
soring proportions π∗, it would grow more slowly. Since A1(∆) = F1(∆), we also see
that

lim
∆→∞

A1(∆) = 1 and lim
∆→∞

Ai(∆) = 0

for i = 2, 3, . . . , k as well as

lim
∆→∞

A′1(∆)

A1(∆)
= 0 and lim

∆→∞

A′i(∆)

Ai(∆)
= −δ−1

i−1 < 0

for i = 2, 3, . . . , k. Finally, we have lim
∆→∞

A′i(∆) = 0, meaning that except for A1(∆),

Ai(∆) eventually decreases and asymptotically approaches 0 as ∆ gets substantially large.
On the other hand, A1(∆) keeps increasing and asymptotically approaches 1 as ∆ in-
creases.

This makes intuitive sense since each entry of the Fisher information matrix In(α, β)
in (8) is a linear combination of Ai(∆)’s in (9). Hence, the larger Ai(∆) is, the larger the
information content is for (α, β). As ∆ increases, the test duration gets longer, which gives
a higher chance to collect more failures and hence, more information about the lifetime
distribution of a test unit. This translates to increasing Ai(∆) in the beginning. However,
when ∆ becomes substantially large, the test duration in the first stress level x1 becomes
too long, and all the test units could fail there. This means that given the sample size n,
only θ1 can be estimated with the highest precision but (α, β) cannot be estimated jointly
since no failures could be observed at the stress levels higher than x1. As noted in Han
and Bai [32], at least one failure needs to be observed from at least two different stress
levels to guarantee the existence of

(
α̂, β̂

)
. Otherwise, the parameters are not estimable.

Thus, if ∆ becomes too large, the joint information for (α, β) starts decreasing and so does
Ai(∆) back to 0 except for A1(∆). The behavior of A1(∆) is expected to be different as
it represents the information from the first stress level x1. Increasing ∆ would raise the
chance to collect more failures at x1, hence more information from x1. Hence, increasing
∆ would only increase A1(∆) to its maximum 1. Furthermore, we have

A′′i (∆) = −Ai(∆)

[
1

θi

Si(∆)

Fi(∆)

(
1

θi
+

2

δi−1

)
+

1

δ2
i−1

]
.

For i = 2, 3, . . . , k, when A′i(∆
∗
i ) = 0, or equivalently, ∆∗i = θi log(δi−1/δi), we see that

A′′i (∆
∗
i ) = −Ai(∆∗i )δ

−1
i−1δ

−1
i < 0, meaning that Ai(∆) achieves the unique maximum at

∆∗i = θi log(δi−1/δi). It is also observed that δi < ∆∗i < δi−1 since the basic analysis
reveals that

z

z + 1
< log(z + 1) < z for all z > 0. Since δk < δk−1 < · · · < δ1 = θ1 with

Ai(∆) > 0, this result implies that excluding A1(∆), any linear combination of (the cross
products of) Ai(∆)’s with non-negative coefficients achieves its global maximum when ∆

is in the range of
[

min
i=2,...,k

∆∗i , max
i=2,...,k

∆∗i

]
= [∆∗k,∆

∗
2].

If this linear combination of (the cross products of) Ai(∆)’s with non-negative coef-
ficients includes A1(∆), it is a little more complicated to analyze since A1(∆) = F1(∆)
strictly increases to 1 asymptotically. Let’s say, the derivative of this linear combination
is expressed in the form of w1A

′
1(∆) +

∑k
i=2wiA

′
i(∆) with wi being a non-negative co-

efficient, which can be a function of ∆, for i = 1, 2, . . . , k. Then, it can be shown that
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the maximum for this combination exists for ∆ ≥ ∆∗k if w1A
′
1(∆) +

∑k
i=2wiA

′
i(∆) < 0

for all ∆ > ∆U , where ∆U is some ∆ ≥ ∆∗2. Otherwise, the linear combination is
non-decreasing in the end and the maximum may not exist. Similarly, it can be shown
that under the same condition, the reciprocal of a linear combination of (the cross prod-
ucts of) Ai(∆)’s, including A1(∆), with non-negative coefficients attains its minimum for
∆ ≥ ∆∗k. As a special case, let us define a linear combination in the form of

∑k
i=1wiAi(∆)

with wi being a non-negative coefficient, independent of ∆. This combination can be
decomposed into

∑2
i=1wiAi(∆) +

∑k
i=3wiAi(∆). Based on the previous argument,

it is clear to see that the second sum achieves its maximum when ∆ is in the range of[
min

i=3,...,k
∆∗i , max

i=3,...,k
∆∗i

]
= [∆∗k,∆

∗
3] ⊂ [∆∗k,∆

∗
2]. Besides, it is apparent that the first sum

of this linear combination is an increasing function of ∆ in the beginning. If its first deriva-
tive turns negative when ∆ > ∆U for some ∆U ≥ ∆∗2, it ensures that the first sum also has
a maximum, and therefore, the entire linear combination

∑k
i=1wiAi(∆) has a maximum

for ∆ ∈ [∆∗k,∆U ]. Solving for ∆U , it is observed that

w1A
′
1(∆) + w2A

′
2(∆) < 0 ⇐⇒ ∆ > ∆U ,

where ∆U = ∆∗2−θ2 log(1−W ) is a non-sharp bound withW =
w1

w2

1

1− π∗1
. If 0 ≤W <

1, or equivalently, 0 ≤ w1/w2 < 1− π∗1 , there exists ∆U ≥ ∆∗2 and thus, the entire linear
combination is guaranteed to have a maximum at ∆ ∈ [∆∗k,∆U ]. Otherwise, the linear
combination may not have a maximum point. On the other hand, if a linear combination is
composed of the reciprocals of (the cross products of)Ai(∆)’s, includingA1(∆), with non-
negative coefficients, it is assured that the global minimum for this combination exists for
∆ ≥ ∆∗k since 1/A1(∆) = 1/F1(∆) decreases from∞ to 1 asymptotically while 1/Ai(∆)
decreases from∞ to its minimum and then increases back to∞ for i = 2, 3, . . . , k. This
result is particularly useful when searching for the optimal step duration ∆∗ under certain
optimality criteria using a numerical procedure.

4. Design Criteria & Optimal Step Duration

Various design criteria were considered in this study for determining the optimal stress
duration ∆∗. These objective functions are formulated based on the Fisher information ma-
trix In(α, β) presented in the preceding section. UnlikeAi(∆) in Gouno et al. [27], Ai(∆)
in (9) is positive for all ∆ > 0, ensuring that In(α, β) has a positive determinant and the
variance functions are also positive when In(α, β) is inverted. With the suggested change
in the censoring scheme, progressive censoring is performed based on the number of units
remaining at the end of each stress level, and thus, censoring beyond what is available on
the ALT is prohibited. As a result, there is no restriction on the search region for the optimal
step duration ∆∗ > 0. Under each design criterion, we formally discuss the existence of
the optimal step duration ∆∗ for a general k-level step-stress ALT under progressive Type-I
censoring. Studying the existence of these optimal stress durations is both theoretically and
practically important to ensure the design feasibility under general conditions as well as to
develop and implement an efficient computational search algorithm. Every design optimal-
ity criterion considered in this study, as well as some other information-based criteria, have
been applied extensively in the design selection process for linearly designed experiments.
In the practitioner’s point of view, the choice of the optimality criterion is guided by the
objective of the ALT. For further elaboration on the advantages and disadvantages of each
design criterion, interested readers may refer to Wu and Hamad [33], Montgomery [34].
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4.1 D-optimality

A design optimality criterion often used in planning the ALT is based on the reciprocal
of the determinant of the Fisher information matrix In(α, β), or equivalently, the determi-
nant of the asymptotic variance-covariance matrix. It is well-known that at a fixed level
of confidence, the overall volume of the Wald-type joint confidence region of (α, β) is
proportional to |I−1

n (α, β)|1/2, or inversely proportional to |In(α, β)|1/2. Accordingly, the
larger the determinant of In(α, β) is, the smaller the asymptotic joint confidence ellipsoid
of (α, β) is and the higher the joint precision of the estimators of α and β would be. Under
the D-optimality criterion, the objective function is formulated based on this as

φD(∆) = n2|In(α, β)|−1 = 2

[
k∑
i=1

k∑
j=1

Ai(∆)Aj(∆)(xi − xj)2

]−1

, (10)

and theD-optimal stress duration ∆∗
D

is obtained by minimizing (10) for the maximal joint
precision of

(
α̂, β̂

)
. In the case of a simple step-stress ALT (viz., k = 2), the objective

function in (10) reduces to

φD(∆) =
[
A1(∆)A2(∆)(x2 − x1)2

]−1
.

Theorem 1. In the case of a general k-level step-stress ALT under progressive or con-
ventional Type-I censoring, there exists the D-optimal step duration ∆∗

D
in the range of

[∆∗k,∆U ], where ∆∗k = θk log(δk−1/δk) and ∆U = θ1 log(1 + δ1/δk). It is the solution to
the equation

∑k
i=1

∑k
j=1A

′
i(∆)Aj(∆)(xi − xj)2 = 0.

4.2 T -optimality

This design optimality criterion is based on the total marginal Fisher information terms
of the model parameters, which is identical to the sum of the diagonal elements or trace
of In(α, β). Like the D-optimality, the T -optimality criterion is a general measure of the
size of the Fisher information In(α, β). Based on (8), the T -optimal step duration ∆∗

T

minimizes the objective function defined by

φT (∆) = n tr−1
(
In(α, β)

)
=

[
k∑
i=1

Ai(∆) +

k∑
i=1

Ai(∆)x2
i

]−1

=

[
Iα(∆) +

k∑
i=1

Ai(∆)x2
i

]−1

=

[
k∑
i=1

Ai(∆)(1 + x2
i )

]−1

. (11)

In the case of a simple step-stress ALT, the objective function in (11) simply becomes

φT (∆) =
[
A1(∆)(1 + x2

1) +A2(∆)(1 + x2
2)
]−1

.

Theorem 2. In the case of a general k-level step-stress ALT under progressive Type-I cen-
soring, if 0 ≤ π∗1 < (x2

2−x2
1)/(1+x2

2), the T -optimal step duration ∆∗
T

exists in the range

of [∆∗k,∆U ], where ∆∗i = θi log(δi−1/δi) and ∆U = ∆∗2 − θ2 log

(
1 − 1 + x2

1

1 + x2
2

1

1− π∗1

)
.

It is the solution to the equation
∑k

i=1A
′
i(∆)(1 + x2

i ) = 0. Otherwise, ∆∗
T

may not exist.
In the case of a general k-level step-stress ALT under the conventional Type-I censoring,
the T -optimal step duration ∆∗

T
is guaranteed to exist in the range of [∆∗k,∆U ], where

∆U = ∆∗2 − θ2 log

(
x2

2 − x2
1

1 + x2
2

)
.
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4.3 C-optimality

An aim of the ALT is often to estimate the parameters of interest with maximum pre-
cision and minimum variability as possible. For the step-stress ALT, such a parameter of
interest is the MTTF of a test unit under the normal usage condition (viz., θ0 at stress level
x0). Based on (8), the objective function to serve this purpose is defined as

φC (∆) = n AVar
(

log θ̂0

)
= n AVar

(
α̂+ β̂x0

)
= n AVar

(
α̂
)

(∵ x0 ≡ 0)

= n (1 0)I−1
n (α, β)

(
1

0

)
= φD(∆)

[
φ−1

T
(∆)− Iα(∆)

]
= 2

[
k∑
i=1

Ai(∆)x2
i

][
k∑
i=1

k∑
j=1

Ai(∆)Aj(∆)(xi − xj)2

]−1

, (12)

where AVar stands for the asymptotic variance. The C-optimal step duration ∆∗
C

is the
one that minimizes the objective function in (12). It is worthwhile to mention that when
the interest lies in estimation of the p-th lifetime quantile under the normal usage condition
(viz., tp = −θ0 log(1− p) with 0 < p < 1), the objective function to minimize is identical
to (12). It is due to the fact that the MLE of the p-th quantile is t̂p = −θ̂0 log(1− p) by the
invariance property, and thus, the objective function defined as φp(∆) = n AVar

(
log t̂p

)
eventually becomes φp(∆) = φC (∆) with the property of the variance operator. Conse-
quently, the C-optimal results based on (12) are applicable to any parameter of interest
which can be expressed as a scalized function of θ0 (i.e., wθ0 with w ∈ <). In the case of
a simple step-stress ALT, the objective function in (12) gets simplified to

φC (∆) =
A1(∆)x2

1 +A2(∆)x2
2

A1(∆)A2(∆)(x2 − x1)2
=

(1 + ξ0)2

A1(∆)
+

ξ2
0

A2(∆)
,

where ξ0 = x1/(x2 − x1).

Theorem 3. In the case of a general k-level step-stress ALT under progressive or conven-
tional Type-I censoring, there exists the C-optimal step duration ∆∗

C
, which is the solution

to the equation

[
k∑
i=1

A′i(∆)x2
i

][
k−1∑
i=1

k∑
j=i+1

Ai(∆)Aj(∆)(xi − xj)2

]
=

[
k∑
i=1

Ai(∆)x2
i

]
[

k∑
i=1

k∑
j=1

A′i(∆)Aj(∆)(xi − xj)2

]
.

4.4 A-optimality

Another design optimality criterion considered in this study is based on the trace of the
first-order approximation of the variance-covariance matrix of the MLE, or the sum of the
diagonal entries of I−1

n (α, β). This A-optimality criterion provides an overall measure of
the average variance of the parameter estimates and gives the sum of the eigenvalues of the
inverse of the Fisher information matrix In(α, β). The A-optimal stress duration ∆∗

A
is the

one that minimizes the objective function defined as

φA(∆) = n tr
(
I−1
n (α, β)

)
= φD(∆)/φT (∆)

= 2

[
k∑
i=1

Ai(∆)(1 + x2
i )

][
k∑
i=1

k∑
j=1

Ai(∆)Aj(∆)(xi − xj)2

]−1

. (13)

3248



In the case of a simple step-stress ALT (k = 2), the objective function in (13) reduces to

φA(∆) =
A1(∆)(1 + x2

1) +A2(∆)(1 + x2
2)

A1(∆)A2(∆)(x2 − x1)2
=

ξ2
2

A1(∆)
+

ξ2
1

A2(∆)
,

where ξi =
√

1 + x2
i /(x2 − x1) for i = 1, 2.

Theorem 4. In the case of a general k-level step-stress ALT under progressive or conven-
tional Type-I censoring, theA-optimal stress duration ∆∗

A
exists as the solution to the equa-

tion

[
k∑
i=1

A′i(∆)(1 + x2
i )

][
k−1∑
i=1

k∑
j=i+1

Ai(∆)Aj(∆)(xi− xj)2

]
=

[
k∑
i=1

Ai(∆)(1 + x2
i )

]
[

k∑
i=1

k∑
j=1

A′i(∆)Aj(∆)(xi − xj)2

]
.

4.5 E-optimality

This design optimality criterion aims to minimize the maximum variance of all possi-
ble normalized linear combinations of the parameter estimates. TheE-optimal design point
maximizes the minimum eigenvalue of the Fisher information matrix In(α, β), or equiv-
alently, minimizes the maximum eigenvalue of the asymptotic variance-covariance matrix
I−1
n (α, β). Hence, the E-optimal step duration ∆∗

E
minimizes the objective function de-

fined by

φE (∆) = n λmax

(
I−1
n (α, β)

)
=

1

2

[
φA(∆) +

√
φ2

A
(∆)− 4φD(∆)

]
=

[
k∑
i=1

Ai(∆)(1 + x2
i ) +

√
Q(∆)

][
k∑
i=1

k∑
j=1

Ai(∆)Aj(∆)(xi − xj)2

]−1

,(14)

where λmax stands for the maximum eigenvalue, and

Q(∆) =

k∑
i=1

k∑
j=1

Ai(∆)Aj(∆)(1 + xi − xj + xixj)(1− xi + xj + xixj).

In the case of a simple step-stress ALT, the objective function in (14) reduces to

φE (∆) =
A1(∆)(1 + x2

1) +A2(∆)(1 + x2
2) +

√
Q(∆)

2A1(∆)A2(∆)(x2 − x1)2

=
1

2

[
ξ2

2

A1(∆)
+

ξ2
1

A2(∆)
+

√
ξ4

2

A2
1(∆)

+
ξ4

1

A2
2(∆)

+ 2
ξ2

21

A1(∆)

ξ2
12

A2(∆)

]
,

where

Q(∆) = A2
1(∆)(1 + x2

1)2 +A2
2(∆)(1 + x2

2)2

+2A1(∆)A2(∆)(1 + x1 − x2 + x1x2)(1− x1 + x2 + x1x2)

and ξij =
√

1 + xi − xj + x1x2/(x2 − x1) for i = 1, 2.
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Theorem 5. In the case of a general k-level step-stress ALT under progressive or conven-
tional Type-I censoring, there exists the E-optimal step duration ∆∗

E
, which is the solution

to the equation

[
k∑
i=1

A′i(∆)(1+x2
i )+

1

2

Q′(∆)√
Q(∆)

][
k−1∑
i=1

k∑
j=i+1

Ai(∆)Aj(∆)(xi−xj)2

]
=[

k∑
i=1

Ai(∆)(1 + x2
i ) +

√
Q(∆)

][
k∑
i=1

k∑
j=1

A′i(∆)Aj(∆)(xi − xj)
2

]
, where Q′(∆) =

2

k∑
i=1

k∑
j=1

A′i(∆)Aj(∆)(1 + xi − xj + xixj)(1− xi + xj + xixj).
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