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1 Abstract

Independent dual programming validation is very popular for analysis results
in clinical trials. This raises the question, what is the reliability of indepen-
dent dual programming validation? There is no research on the topic. This
paper uses the Poisson process to build a process model of validation in inde-
pendent dual programming, and computes probability of undetectable error in
independent dual programming validation. By discussing some properties of
the probability of undetectable error, this paper explains some phenomenon in
validation process by independent dual programming. This paper also uses the
number of discrepancies or detectable errors to estimate the expectation and
variance of undetectable errors, and the reliability of analysis results from out-
sourcing.

KEYWORDS: independent dual programming validation; undetectable error;
poisson process.

2 Introduction

A program could be considered as a process, and this process consists of a series
of basic unit processes. We assume that one unit process could have only one
error, and the results of correct programming and incorrect programming are
different. If one programmer makes a mistake in a unit process and the other
programmer is correct in the unit process, then this error could be detected by
comparing the two outputs. We call this detectable error. This method is called
independent dual programming validation , and it is very popular in statistical
programming for clinical trials.
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Programming errors usually come from programming syntax, algorithm, or data
handling convention. Algorithms and data handling conventions are usually
based on the statistical analysis plan, protocol, or case report form of a clini-
cal trial. Sometimes programmers will make mistakes understanding statistical
analysis plan, protocol, or case report form, and those mistakes will manifest in
programming processes.

If two programmers make the same mistake in the same unit process, and the
outputs of the two programs for the unit process are the same, then comparing
the two results would fail to detect the error. We call this undetectable error,
and it is a potential issue for dual programming validation.

3 Distribution of Undetectable Error

There are two programmers; one is the production programmer, and the other
is the validation programmer. They work independently on a program that
consists of m unit steps {t1, t2, . . . , tm−1, t}

u = t2 − t1 = t3 − t2 · · · = t− tm−1.

Only one error could occur in each unit process for each programmer.

Let (Ni(t), t ≥ 0) represents the total number of errors that occur by length
t of programmer i, t = m ∗ u, and the error counting process is a Poisson
process.

Theorem 3.1. Assume {N1(t), t = m ∗ u} and {N2(t), t = m ∗ u} are two
independent Poisson processes having respective rates λ1 and λ2, then the num-
ber of undetectable errors {N(m), t = m ∗ u} follows the Poisson distribution,
with error rate λ1λ2ue

−(λ1+λ2)u, where u is the length of unit process, m is the
number of steps, and (λ1

2λ2 + λ1λ2
2)u2 → 0.

Proof. For ∀k, 1 ≤ k ≤ m− 1,

P{N(tk + h)−N(tk) = 1}
= P{N1(tk + h)−N1(tk) = 1, N1(tk + u)−N1(tk + h) = 0,

N2(tk + u)−N2(tk) = 1}
= P{N1(tk + h)−N1(tk) = 1}P{N1(tk + u)−N1(tk + h) = 0}
P{N2(tk + u)−N2(tk) = 1}

= λ1he
−λ1he−λ1(u−h)(λ2ue

−λ2u)

= λ1λ2ue
−(λ1+λ2)uh

And,
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P{N(tk + h)−N(tk) = 2}
≤ P{N1(tk + h)−N1(tk) = 2, N1(tk + u)−N1(tk + h) = 0,

N2(tk + u)−N2(tk) = 1}
+ P{N1(tk + h)−N1(tk) = 1, N1(tk + u)−N1(tk + h) = 1,

N2(tk + u)−N2(tk) = 1}
+ P{N2(tk + h)−N2(tk) = 1, N2(tk + u)−N2(tk + h) = 1,

N1(tk + u)−N1(tk) = 1}
+ P{N2(tk + h)−N2(tk) = 2, N2(tk + u)−N2(tk + h) = 0,

N1(tk + u)−N1(tk) = 1}
= o(h) + (λ1

2λ2 + λ1λ2
2)u2e−(λ1+λ2)uh

= o(h)

Similarly,
P{N(tk + h)−N(tk) > 2} ≤ o(h)

Therefore, N(m) is the Poisson process having error rate λ1λ2ue
−(λ1+λ2)u,

where u is the length of unit process for a program.

Corollary 3.2. If group A has a production programmer and a validation pro-
grammer having error rate λa1 and λa2 of Poisson processes, respectively, and,
group B has a production programmer and a validation programmer having error
rate λb1 and λb2 of Poisson processes, respectively, if

λa1 ≤ λb1 ≤
1

u
and λa2 ≤ λb2 ≤

1

u
,

then the result of group A is more reliable than the result of group B.

Proof.

∂λ1λ2ue
−(λ1+λ2)u

∂λ1
= 0;

The solution is λ1 = 1
u . And, ∂2λ1λ2ue

−(λ1+λ2)u

∂λ1
2 < 0, where λ1 = 1

u ;

The Corollary 3.2 explains the better the programmer the less undetectable
errors.

Corollary 3.3. If group A has a production programmer and a validation pro-
grammer having error rates λa1 and λa2 of Poisson processes, respectively, and
Group B has a production programmer and a validation programmer having er-
ror rates λb1 and λb2 of Poisson processes respectively, and,

λa1 ≤ λb1 ≤ λb2 ≤ λa2, and λa1 + λa2 = λb1 + λb2 = C,
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then the result of group A is more reliable than the result of group B. Specifically,
if

λb1 = λb2 =
C

2

then the undetectable error rate λb1λb2ue
−(λb1+λb2)u of group B reaches its max-

imum.

Proof.

λa1λa2 =
C2

4
− (λa1 − λa2)

2

4

λb1λb2 =
C2

4
− (λb1 − λb2)

2

4

Therefore,
λa1λa2ue

−(λa1+λa2)u ≤ λb1λb2ue−(λb1+λb2)u

If group A and group B have the same total error rates, then per Corollary
3.3, the group with the smaller difference in error rates between programmers
would have a larger overall rate of undetectable errors. This explains the fact
that in dual programming validation, if the production programmer and valida-
tion programmer have similar programming styles, ability, and knowledge, then
the group would be more likely to have undetectable errors.

4 Using Detectable Error to Estimate Undetectable
Error

In clinical trial programming, we can know number of detectable errors in val-
idation activities. The number of discrepancies is the number of detectable
errors. We can use detectable errors to estimate the undetectable errors.

Lemma 4.1. Assume {N1(t), t = m ∗ u} and {N2(t), t = m ∗ u} are two in-
dependent Poisson processes having respective error rates λ1 and λ2, then the
number of detectable errors {N(m), t = m ∗ u} follows the Poisson distribution,
with error rate (λ1 +λ2)ue−(λ1+λ2)u, where u is the length of unit process, m is
the number of steps, and (λ1

2 + λ2
2)u→ 0

Proof. For ∀k, 1 ≤ k ≤ m− 1, and for ∀h,

P{(N1(tk + h)−N1(tk) = 1),

(N1(tk + u)−N1(tk + h) = 0), (N2(tk + u)−N2(tk) = 0)}
= P{(N1(tk + hu)−N1(tk) = 1)}P{(N1(tk + u)−N1(tk + hu) = 0)}
P{(N2(tk + u)−N2(tk) = 0)}

= λ1he
−λ1he−λ1(u−h)e−λ2u

= λ1e
−(λ1+λ2)uh
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P{(N2(tk + h)−N2(tk) = 1),

(N2(tk + u)−N2(tk + h) = 0), (N1(tk + u)−N1(tk) = 0)}
= P{(N2(tk + h)−N2(tk) = 1)}P{(N2(tk + u)−N2(tk + h) = 0)}
P{(N1(tk + u)−N1(tk) = 0)}

= λ2he
−λ2he−λ2(u−h)e−λ1u

= λ2e
−(λ1+λ2)uh

P{(N(tk + h)−N(tk) = 1) = (λ1 + λ2)e−(λ1+λ2)uh

And,

P{N(tk + h)−N(tk) = 2}
≤ P{N1(tk + h)−N1(tk) = 2, N1(tk + u)−N1(tk + h) = 0,

N2(tk + u)−N2(tk) = 0}
+ P{N1(tk + h)−N1(tk) = 1, N1(tk + u)−N1(tk + h) = 1,

N2(tk + u)−N2(tk) = 0}
+ P{N2(tk + h)−N2(tk) = 1, N2(tk + u)−N2(tk + h) = 1,

N1(tk + u)−N1(tk) = 0}
+ P{N2(tk + h)−N2(tk) = 2, N2(tk + u)−N2(tk + h) = 0,

N1(tk + u)−N1(tk) = 0}
= o(h) + (λ1

2 + λ2
2)ue−(λ1+λ2)uh

= o(h)

Similarly,
P{N(tk + h)−N(tk) > 2} ≤ o(h)

The rate (λ1 + λ2)e−(λ1+λ2)u is based on t. Let’s convert it to m = t/u, then
the rate of detectable error {N(m), t = m ∗ u)} is (λ1 + λ2)ue−(λ1+λ2)u

Theorem 4.2. Assume a program with total step number m and unit length
u. If the mean of detectable error number is E(Nd(m)) in validation, and
o((λ1 +λ2)2)→ 0, then the expectation E(Nud(m)) and variance V ar(Nud(m))
of undetectable errors Nud(m) in the validation process have the estimation

E(Nud(m)) ≤ λ2ue−2λum, V ar(Nud(m)) ≤ λ2ue−2λum

where λ =
1

4u
− 1

4u

√
1− 4

E(Nd(m))

m

Proof. Assume, the production programmer has error rate λ1, and the validation
programmer has error rate λ2. Per Lemma 4.1, we have detectable error rate
(λ1 + λ2)ue−(λ1+λ2)u, where u is the unit length of the program. Therefore

(λ1 + λ2)ue−(λ1+λ2)um = E(Nd(m))
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(λ1 + λ2)− (λ1 + λ2)2u+ o((λ1 + λ2)2) =
E(Nd(m))

mu

Let λ = λ1+λ2

2 , then

2λ− 4λ2u =
E(Nd(m))

mu

One solution is

λ =
1

4u
− 1

4u

√
1− 4

E(Nd(m))

m
, where

E(Nd(m))

m
≤ 1

4

Per Corollary 3.3,

E(Nud(m)) ≤ λ2ue−2λum

which proves the theorem.

5 Estimating Reliability of Clinical Analysis Re-
sults from Outsourcing

Nowadays many companies outsource clinical analysis programming to vendors.
To check the quality of results, some important results will be selected and val-
idated again. Based on the validation discrepancy numbers from the selected
results, we can estimate the reliability of analysis results from vendors.

Assume the total number of programs for analysis is w, and the number of
programs chosen for validation is s, and those results are randomly selected for
validation. After validation, let Sd(j), j = 1, . . . , s, denote the detected errors in
the selected s results, respectively; let Sud(j), j = 1, . . . , s, denote undetectable
errors for selected s programs; let tj denote the length of jth selected program,
and uj , j = 1, . . . , s, denote the unit length of jth selected program, respectively.
Also, let Nud(i), i = 1, . . . , w, denote undetectable errors for all programs, and
more we define I(i) as below

I(i) =

{
1 if the ith program is selected

0 otherwise

then we have ∑w
i=1Nud(i)I(i) =

∑s
j=1(Sud(j) + Sd(j))

E
∑w

i=1Nud(i)I(i)
 = E

∑s
j=1(Sud(j) + Sd(j))

∑w
i=1E(Nud(i))E(I(i)) =

∑s
j=1(E(Sud(j)) + E(Sd(j)))

 
3228



Assume total number of errors in analysis programming is N, then∑s
j=1E(Sd(j)) ≤ s

w

∑w
i=1E(Nud(i)) ≤

∑s
j=1

λj2uje−2λjujmj + E(Sd(j))


w
s

∑s
j=1E(Sd(j)) ≤ E(N) ≤ w

s

∑s
j=1

λj2uje−2λjujmj + E(Sd(j))


where λj = 1
4uj
− 1

4uj

√
1− 4E(Sd(j))

mj

Similarly, we have

V ar
∑w

i=1Nud(i)I(i)
 = V ar

∑s
j=1(Sud(j) + Sd(j))


s
w

∑s
j=1 V ar(Sd(j)) ≤ V ar(N) ≤ w

s

∑s
j=1

λj2uje−2λjujmj + V ar(Sd(j))


where λj = 1
4uj
− 1

4uj

√
1− 4E(Sd(j))

mj

6 Simulation

To verify theorem 3.1, we simulate undetectable error rate by below steps.

1. Divide length of program process to m units.

2. Generate 1st Poisson process with error rate R1 to represent production
programmer process

3. Generate 2nd Poisson process with error rate R2 to represent validation
programmer process

4. Count the number of units having errors from both programmers

5. The undetectable rate is the number of units with concurrent errors (from
both programmers) divided by m.

In Table 1, the number of steps m is 6000, the length of unit u is 0.5, R1 (error
rate 1) is from 0.01 to 0.04, and R2 (error rate 2) is from 0.01 to 0.09 increased
by 0.01. Undetectable error rates are the average of 5000 simulation results
for each pair R1 and R2. If a unit step has more than one error, and the other
process has at least one error in the same unit step, then we count the maximum
as the number of undetectable error steps. These cases are very few if length of
unit step is small enough. The simulated undetectable error rate from each pair
of R1 and R2 follows the formula R1R2ue

−(R1+R2)u well. Also, the simulated
detectable error rate follows the formula (R1 +R2)ue−(R1+R2)u well too.
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Simulated Simulated Calculated Calculated Estimated
Error Error Undetectable Detectable Undetectable Detectable Undetectable
Rate 1 Rate 2 Error Rate Error Rate Error Rate Error Rate Error Rate

0.01 0.01 0.0000496 0.0099 0.0000495 0.0099 0.0000494
0.02 0.0000999 0.0148 0.0000985 0.0148 0.0001113
0.03 0.0001478 0.0197 0.0001470 0.0196 0.0001981
0.04 0.0001935 0.0246 0.0001951 0.0244 0.0003106
0.05 0.0002462 0.0295 0.0002426 0.0291 0.0004485
0.06 0.0002913 0.0344 0.0002897 0.0338 0.0006137
0.07 0.0003385 0.0393 0.0003363 0.0384 0.0008071
0.08 0.0003869 0.0442 0.0003824 0.0430 0.0010259
0.09 0.0004318 0.0491 0.0004281 0.0476 0.0012754

0.02 0.01 0.0000991 0.0148 0.0000985 0.0148 0.0001109
0.02 0.0001953 0.0196 0.0001960 0.0196 0.0001951
0.03 0.0002933 0.0244 0.0002926 0.0244 0.0003061
0.04 0.0003842 0.0292 0.0003882 0.0291 0.0004392
0.05 0.0004862 0.0340 0.0004828 0.0338 0.0005990
0.06 0.0005731 0.0388 0.0005765 0.0384 0.0007835
0.07 0.0006651 0.0436 0.0006692 0.0430 0.0009972
0.08 0.0007657 0.0484 0.0007610 0.0476 0.0012341
0.09 0.0008424 0.0532 0.0008518 0.0521 0.0014994

0.03 0.01 0.0001482 0.0197 0.0001470 0.0196 0.0001974
0.02 0.0002945 0.0244 0.0002926 0.0244 0.0003062
0.03 0.0004305 0.0291 0.0004367 0.0291 0.0004371
0.04 0.0005800 0.0338 0.0005794 0.0338 0.0005921
0.05 0.0007261 0.0385 0.0007206 0.0384 0.0007746
0.06 0.0008674 0.0433 0.0008604 0.0430 0.0009814
0.07 0.0009978 0.0479 0.0009988 0.0476 0.0012122
0.08 0.0011380 0.0526 0.0011358 0.0521 0.0014681
0.09 0.0012789 0.0573 0.0012714 0.0565 0.0017529

0.04 0.01 0.0001943 0.0246 0.0001951 0.0244 0.0003105
0.02 0.0003900 0.0292 0.0003882 0.0291 0.0004412
0.03 0.0005805 0.0338 0.0005794 0.0338 0.0005929
0.04 0.0007691 0.0384 0.0007686 0.0384 0.0007666
0.05 0.0009649 0.0431 0.0009560 0.0430 0.0009720
0.06 0.0011478 0.0477 0.0011415 0.0476 0.0011975
0.07 0.0013297 0.0522 0.0013251 0.0521 0.0014472
0.08 0.0015046 0.0568 0.0015068 0.0565 0.0017212
0.09 0.0016838 0.0615 0.0016867 0.0609 0.0020270

Table 1. Simulation for Undetectable and Detectable Error Rates
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Figure 1: Simulated Probability Mass Function of Undetectable Error

7 Conclusion

1. The better the programmers, the less undetectable errors there will be.

2. If two programmers have similar error distributions, undetectable errors
are more likely to occur. In reality, most undetectable errors are from the
programming algorithm, and data handling conventions which are based
on statistical analysis plan, protocol and case report form. To reduce unde-
tectable errors, a validation programmer has to understand the statistical
analysis plan, protocol and case report form of a study independently.

3. We can use number of detectable errors to estimate number of unde-
tectable errors. The number of detectable errors is correlated to the
number of undetectable errors. In a validation process, if there are more
discrepancies, then there are probably more undetectable errors in the
process.

4. By validating randomly selected results from outsourcing, we can estimate
the reliability of outsourcing analysis results.
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