
Using correlated binomial distribution in estimating 
error rates for forensic firearm identification 

Nien Fan Zhang 
 

National Institute of Standards and Technology, 100 Bureau Dr,  
Gaithersburg, MD 20899 

 

 

 

 
Abstract 
Estimating error rates for firearm evidence identification is a fundamental challenge in forensic 
science. The recently developed Congruent Matching Cells (CMC) method provides applications to 
firearm evidence identification. To estimate error rates, appropriate statistical models are needed for 
the CMC values. In this paper, in addition to the binomial probability distribution the correlated 
binomial distribution is proposed. For an image comparison, correlated binomial distribution can be 
applied to the cell pairs from CMC method. An application to an actual data set demonstrates that 
the correlated binomial distribution fits the relative frequency distribution of CMC values much 
better than the binomial distribution.  
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1. Introduction 
 
In firearm evidence identification, when bullets and cartridge cases are fired or ejected 
from a firearm, the parts of the firearm create characteristic tool marks called ballistic 
signatures. In general, tool marks have so called “class characteristics” that are common to 
certain brands of firearms and individual characteristics arising from random variation in 
firearm manufacturing. Recently, a quantitative approach known as the Congruent 
Matching Cells (CMC) method was developed to improve the accuracy of ballistic 
identifications and provide a base to estimating error rates [1]. This paper proposes 
statistical models and the corresponding methodology for estimating the model parameter 
and error rates. In Section 2, the CMC method and the proposed parameter estimation based 
on the binomial distribution is described. In Section 3, the correlated binomial distribution 
based on dependent Bernoulli trials is introduced. In Section 4, maximum likelihood 
estimators of the parameters of correlated binomial distribution is proposed and applied to 
an actual data set. In Section 5, the correlated binomial is combined with the beta 
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distribution to have a compound probability distribution called the beta-correlated binomial 
distribution followed by the conclusions.  
 
 
 

2. CMC methods for ballistic identification 
 
The CMC method deals with pairs of measured 2D or 3D topography images of breech 
face impressions whose similarity we wish to quantify. The CMC method divides each 
image into a rectangular array of cells. For each cell, a search for a matching cell is then 
made on a compared image [2]. Figure 1 shows the correlated and uncorrelated cell pairs 
in an image pair. The cell-by-cell analysis is done to determine whether each cell pair is a 
correlated call pair or not. 
 

                    
Figure. 1.  Schematic diagram of topographies A and B originating from the same firearm 
and registered at the position of maximum correlation. The six solid cell pairs in each image 
are located in three valid correlated regions (A1, B1), (A2, B2), and (A3, B3). The dotted cell 
pairs (a', b'), (a", b"), and (a'", b'") are located in the invalid correlation region [2].  
 
Congruent matching cell pairs, or CMCs are determined by three sets of identification 
parameters for quantifying both the topography similarity of the correlated cell pairs and 
the pattern congruency of the cell distributions. From a statistical point of view, the CMC 
method is based on pass-or-fail tests of individual cell pairs comprising an image pair of 
breech face impression. For a pair of images of breech face impressions, N   represents the 
number of correlated cell pairs in the image pair. For a given correlated cell pair, a random 
variable X  represents the outcome of the CMC method applied to the correlated cell pair. 
When the CMC method determines that the cell pair is a congruent matching cell pair, e.g., 

1 1( , )A B , then  X = 1; otherwise X  = 0. Symbol P  represents probability in general and 
the symbol p  represents the probability that X  = 1. That is ( 1)P X p= = , and 

( 0) 1P X p= = − .  
 
An approach was developed in [2] for estimating the expected error rates of ballistic 
identifications based on the CMC method. Error rates are discussed in detail in [2]. To 
estimate error rates, a key is to find the best probability distribution for the relative 
frequency distribution of the observed CMC values.  
 

3. The binomial distribution based on dependent Bernoulli trials 
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In [2], for CMC method, the random variable X  is assumed to be a Bernoulli trial. 
Namely, the trials results 1{ ..., }NX X  are N  dichotomous items. Namely, the comparisons 
between cell pairs are independent from each other and with a common probability p . 
Denote the sum of the CMC values for the comparisons of the first image pair by 1Y  with 

N  cell pairs. 1 1
1

N

i
i

Y X
=

=∑ . In probability, 1 ( , )Y Bin N p  is a binomial distributed random 

variable (r.v.) with the probability mass function  
 
                [1] ( ) (1 )k k N k

NP Y k C p p −= = −  for 0,1,...,k N=                                                                (1) 
 
Similarly, for the M image pairs, we have 1,... MY Y  correspondingly. When 
{ 1,..., }jY j M=  are independent from each other, we have a sequence of independently 

binomial distributed  r.v.’s. That is, 
1

N

j ji
i

Y X
=

=∑  and 1,...,j M=  and ( , )jY Bin N p . For 

observed values of { , 1,..., }jy j M=  the maximum likelihood estimator of p  is given by

1
ˆ .

M

j
j

p y MN
=

=∑   

 
However, the assumption of independence among cell pair comparisons may be invalid. 
For various reasons, for example, the physical similarity between the cell pairs may lead 
that the comparisons considered are not be statistically independent with each other in 
general. In addition, two cell pairs may have a duplicate cell, for example, (A1, B1) vs. (A2, 
B4).  In this case, we consider a model for dependent Bernoulli trials proposed by Bahadur 
[3], which sometimes is called Bahadur-Lazarsfed model. Similar to the Bernoulli trials, 
for a sequence of 1{ ..., }NX X , with each iX  equal to 0 or 1 with ( 1)P X p= = , and 

( 0) 1P X p= = −  for 1,...,i N= . However, 1{ ..., }NX X  may not be mutually 
independent. We define the second order correlation between iX  and jX  by 

2 2

Cov[ , ] [( )( )]i j i j
ij

X X E X X
r

µ µ

σ σ

− −
= = ,                                             (2)                                             

where µ  is the marginal mean and σ  is the marginal standard deviation of iX . Higher 
order correlations are similar. For simplicity, we only consider the second order correlation 
and assume that the correlations are symmetric [3]. In this case, (2)ijr r=  for , 1,..., .i j N=

As discussed in [3], the probability mass function of the sum of  1{ ..., }NX X  denoted by 
Y  can be approximated by  
                          [2] [1] (2) 2( ) ( )[1 ( , )]P Y P Y r g Y p= +                                                                                 (3) 

where (2)r  is the second order correlation. [1] ( )P Y  is the probability mass function when 
{ , 1,..., }iX i N=  is a sequence of Bernoulli trials given in (1), and the function 2 ( , )g Y p  is 
a second order polynomial in Y , 

2

2
( ) (1 2 )( ) (1 )( )

2 (1 )
Y Np p Y Np Np pg Y

p p
− − − − − −

=
−

.                                                        (4) 
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In this case, we say the r.v. Y  has a correlated binomial distribution. The details of 

 in (4) and the case for higher order, for example the third order approximation 
can be found in [4]. Figure 2 shows the probability mass functions of [1] ( )P Y  and [2]( )P Y
with 26N = , 0.6p = , and (2)r = 0.02. The two r.v.’s have the same mean = 15.6 while 
the r.v. with a correlated binomial distribution has a variance = 9.36, which is larger than 
the variance of 6.24 for the r.v. with the binomial distribution.  

            
Figure 2. Probability mass functions for binomial (blue) and correlated binomial 
distribution (red) with 26N = . 
 

4. Estimating the parameters of the correlated binomial distribution 
 
When the CMC method applies to a set of cartridge cases, the result, in general, includes 
certain known matching (KM) image pair comparisons and certain known non-matching 
(KNM) image pair comparisons. In [2], statistical models are fitted to the cases of KM and 
KNM, respectively. In either case, we assume that for M  image pairs, the random 
variables for the sums of the CMC values for each image comparison are denoted by 

1,..., MY Y . As discussed in Section 3, we assume that 1,..., MY Y  are independent from each 
other while for each image comparison, we have a sequence of N dependent Bernoulli 
trials. Maximum likelihood is used to estimate the parameters of the correlated binomial 
distribution. The likelihood function for given p  and (2)r  is given by 

                    [2] (2) 2
1 1

( | , (2)) (1 ) [1 ( , )]i i i
M M

y y N y
i iN

i i
L p y p r C p p r g y p−

= =

= = − +∏ ∏ .                (5) 

The maximum likelihood estimator (MLE) of p  and (2)r  are obtained when the respected 
log( )L  reaches the maximum. We evaluated the models on a set of cartridge cases created 
by Weller et al. [5]. The cartridge cases were obtained from a set of eleven slides produced 
by the same manufacturer. The data set includes 370 KM image pairs. For illustration, 
based on the KM data set with 47N = , the MLE of the parameters of the correlated 
binomial distribution are obtained with ˆ 0.7823p =  and (2) 0.0191.r =  In this case, For 
comparison, the parameter p  for the binomial distribution is estimated by 0.7864. Figure 
3 shows the relative frequency distribution of the observed CMC numbers and the 
probability mass functions for the binomial and correlated binomial distributions with the 
corresponding estimates of the parameters, respectively. It is clear that the correlated 
binomial is a much better fit to the CMC values than that for the binomial distribution. 

2 ( , )g Y p
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In addition, nonlinear regression models can also be used to estimate the parameters of 
correlated binomial distributions [4]. 

       
Figure 3. Relative frequency distribution in blue of CMC numbers for KM image pairs 
and the green and red curves represent the binomial and correlated binomial probability 
mass functions for the KM data 
 

5. Use of the beta-correlated binomial distribution for CMC measurements 
 
In [2], it was proposed to relax the assumption of a fixed probability of congruency for the 
binomial distribution when modeling the CMC measurements. This revised model allows 
one to vary p  for different image pair comparisons. In this case, we assume that within 
one image pair comparison, the probability p  for all the Bernoulli trials is the same while 
for different image pair comparisons, p  varies. See [6]. As in the framework of Bayesian 
statistics, we assume that the parameter p  is a random variable with a beta distribution. 
For the first image pair with N  cell pairs, we have a sequence of Bernoulli trials:

11 1,..., NX X , which are independent from each other and have a common probability of 

1p p= . The sum of the CMC values for the first image pair is 1Y , which for given 1p   has 
a binomial distribution. Namely, 1 1 1| ( , )Y p Bin N p . In general, for M  image pairs, we 
have | ( , ),i i iY p Bin N p  1,...,i M= , where p   has a beta distribution, i.e., ( , )p Beta α β

 
with positive α  and β  as parameters to be fitted to the data. The probability mass 
function of the beta-binomial random variable Y  for given N , α , and β  is then given 
by 

   

1
[1] 1 1

0
1

1 1

0

( , )
( | , , ) (1 )

( , )
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( , )

( , ) ,
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P Y k N p p dp

B

C p p dp
B

B k N kC
B

α β

α β

α β
α β

α β

α β
α β

− −

+ − − + −

= = −

= −

+ − +
=

∫

∫                                                   (6)                                                                           

                                                                   
where ( , )B α β  is a beta function with parameters α  and β  , and [1]( , )P k p  is the 
binomial probability mass function in (1) when Y k= .  
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In [2], comparisons of the fits of the beta-binomial probability model and the binomial 
probability model for data sets including the Weller data set for the cartridge cases were 
made. Here we need to emphasize that although using the beta-binomial distribution can 
relax the assumption for the same p  for all image pairs, it still assumes that within each 
image pair, all cell pair comparisons are independent from each other. We check this 
assumption by considering correlations among cell pair comparisons.  
 
Now instead of the independent Bernoulli trials, we assume that the cell pair comparisons 
within each image pair are dependent Bernoulli trials. The corresponding probabilities of 
the sum are approximated by [2]( )P Y  as given by (3) when only the 2nd order correlation 

with a constant (2)r  is assumed. Assume that p  in the correlated binomial distribution is 

random with a beta distribution. Namely,  (2) (2)| , . ( , , )i i iY p r corr Bin N p r , 1,...,i M=  
where p  has a beta distribution, i.e., ( , )p Beta α β

. Similar to (6), the probability mass 

function of Y  for given N , α , β , and (2)r  is given by 
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where 2 ( , )g k p  is given by (4). In this case, the marginal probability 

(2)( | , , , )P Y k N rα β=   for 0,1,...,k N=  has no explicit expression. However, it can be 
calculated by numerical integration. In this case, the random variable Y  has a compound 
probability distribution called a beta-correlated binomial distribution.   
 

6. Conclusions 
 
Estimating error rates is an important part for firearm identifications. To evaluate error 
rates, a key is to determine the appropriate statistical model for the CMC values for image 
comparisons. The proposed correlated binomial distribution is reasonable for the settings 
of the actual image comparisons and demonstrates a good fit to the CMC data. 
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