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Abstract

Statistics makes an important impact on society by analyzing quantitative evidence re-
lated to public policy issues regarding socioeconomic well-being which must be based only on
non-experimental data. Suppes’ probabilistic causality theory establishes inequalities among
probabilities of events. Instead of events, our “cause” is a self-driven data generating process
(DGP). We develop three criteria based on properties residuals of flipped kernel regression
conditional expectation functions, E f�Xj SXi,Xk� and E f�XiSXj ,Xk�. Our unanimity in-
dex aggregates measures of four orders of stochastic dominance and new asymmetric partial
correlation coefficients, which yields decision rules for quantifying percent support for com-
peting causal paths Xi � Xj ,Xj � Xi,Xi � Xj . A simulation supports our decision rules
illustrated by many real world examples, including the causes of US recession, policies for
encouraging private investment in India and assessment of effective advertising media.

1. Introduction

Estimation and inference regarding causal directions is a fundamental challenge in
many sciences, which is linked to a long-standing need in Econometrics for testing
exogeneity, without exclusively relying on instrumental variables (IV). Philosophers
have debated causality concepts for over a millennium. For example, let the event
Xi represent a large change in barometric pressure, and let Xj represent a weather
storm. Now intuition suggests that a storm is more likely with barometric pressure
change than without. Hence, Suppes’ “probabilistic theory of causation,” Suppes
(1970), claims that if an event Xi causes Xj , the probability of Xj occurring must
increase when event Xi has occurred. That is, the causal path Xi �Xj requires:

P �Xj SXi� A P �Xj� a.e., (1)

where a.e. denotes “almost everywhere” in a relevant measure space. Vinod (2019)
provides a new proof of a known result that Suppes’ condition is logically flawed–
neither necessary not sufficient.

Vinod (2019) replaces probabilities of “events” by data generating processes
(DGPs) and proves the following theorem implying new empirical approaches for
causal paths and extending Koopmans (1950)-type exogeneity testing. Let us state
it without proof.

Theorem 1: Stochastic Causality
(a) Assuming data on all confounding and control variable(s) denoted as Xk are
available, the causal path Xi �Xj holds if and only if (iff)

�P �Xj SXi,Xk� � P �Xj SXk�� A �P �XiSXj ,Xk� � P �XiSXk��, a.e. (2)
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(b) Assuming data on all controls Xk defined in Remark 3 are available, the causal
path Xi �Xj holds iff

�P �Xj SXi,Xk� � P �Xj�� A �P �XiSXj ,Xk� � P �Xi��, a.e. (3)

Upon replacing above probabilities of events P �Xi,Xj ,Xk� by densities f�Xi,Xj ,
Xk� of DGPs the iff conditions in the Theorem 1 replace P �.� by f�.�, and mea-
sure numerical differences between resulting f�.� expressions. An R package, Vinod
(2016), uses nonlinear, nonparametric kernel regression residuals to measure in-
equalities between f�.� expressions.

1.1 Pearson correlation coefficient underestimates dependence by 91%

Consider a simple example showing that the traditional Pearson correlation coeffi-
cient can be a very poor measure of dependence when the variables have a perfect
nonlinear relation, such as y � sin�x�.
x=1:20; y=sin(x)

reg=lm(y~x)

yhat=fitted(reg)

matplot(cbind(x,y,yhat), main="Plot of x=1:20 and sin(x)", typ="l",

xlab="sequence number", ylab="x, y and OLS fitted y",lwd=2)

nam=c("x", "y", "OLS fitted y")

legend(x=1,y=17,legend=nam, lty=c(1:3), col=1:3,lwd=2)

cor(x,y)# simple correlation between x and y

coef(reg)

The graphical output of the above R code in Figure 1 depicts the sequence plot of
x as a solid line and y � sin�x� as a dashed line, showing the nonlinear relation
between x and y. The figure also contains a dotted line representing ordinary
least squares (OLS) fitted straight line with a small positive intercept (0.1735) and
barely visible very small negative slope (-0.0118). The graph reveals a well-known
fact that when the relationship is nonlinear, OLS fit can be very poor. By contrast,
the fitted values ŷ based on cross-validated bandwidths of the R package ‘np’ for
nonparametric kernel estimation, Hayfield and Racine (2008), visually coincide with
y in the data. Although Figure 1 cannot depict y and np package ŷ as distinct lines,
we do have nonzero vectors of residuals for further analysis.

The output of the last part of the above code is

> cor(x,y)# simple correlation between x and y

[1] -0.0948372

> coef(reg)

(Intercept) x

0.17352349 -0.01177261

> cor(y,yhat)^2 #squared correlation between y and fitted y

[1] 0.008994095

> summary(reg)$r.sq

[1] 0.008994095

The above output shows that the squared Pearson correlation coefficient r2xy equals

the R2 of the OLS regression of y on x, and also of the flipped regression of x on y.

The R function ‘cor.test(x, y)’ tests the null hypothesis ρxy � 0, that the popu-
lation correlation coefficient is zero yields the following output.

 
3145



5 10 15 20

0
5

10
15

20

Plot of x=1:20 and sin(x)

sequence number

x,
 y

 a
nd

 O
LS

 fi
tte

d 
y

x
y
OLS fitted y

Figure 1

Pearson's product-moment correlation

t = -0.40418, df = 18, p-value = 0.6908

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval: -0.5157148 0.3629142

sample estimates: cor -0.0948372

Fox (2009) package ‘car’ helps create a scatterplot between our x and y in Figure
2 depicts the scatter diagram. A slightly downward sloping solid line depicts the
linear regression of y on x. A locally best fitting zig-zag fit snaking around the
linear fit and its 95% confidence band are also seen in Figure 2.
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Figure 2

Since Pearson correlation coefficient rxy � �0.09 underestimates dependence by
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as much as 91% for our simple example, it highlights a long-standing need for a
generalized correlation coefficient between variables related by nonlinear relations.

1.2 Asymmetric Matrix of Generalized Correlations

In addition to providing superior fits, kernel regressions using cross-validation to
determine bandwidths can allow us to define a non-symmetric matrix of generalized
correlation coefficients. We shall see that generalized correlations can be useful for
distinguishing causal paths Xi �Xj from Xj �Xi.

Generalized measures of correlation (GMC) defined by eq. (2) in Zheng et al.
(2012) are:

GMC�Xj SXi� � �1 � E�Xj �E�Xj SXi��2
var�Xj� �, (4)

GMC�XiSXj� � �1 � E�Xi �E�XiSXj��2
var�Xi� �, (5)

which are computed simply as the R2 values of flipped kernel regressions. Since
R2 values cannot be negative, any GMC is not a proper generalization of often
negative Pearson’s correlation coefficient, rij > ��1,1�. Vinod (2014) overcomes the
range problem by defining a generalized correlation coefficient (distinguished by an
asterisk) from the GMC�XiSXj� as:

r�XiSXj
� r�iSj � sign�rij�»GMC�XiSXj�, (6)

where the square root of the GMC is assigned the sign of the Pearson correlation
coefficient.

In general, the R2
� GMC�XiSXj� of kernel regression of Xi on Xj is distinct

from the R2
� GMC�Xj SXi� of kernel regression of Xj on Xi. Note that r�iSj x r

�

iSj ,

and that �r�iSj� > ��1,1� must hold. Assuming that we have data on Xi, i � 1,2, . . . p

variables, we can construct a p � p asymmetric matrix R�

� �r�iSj� of generalized

correlation coefficients. The computation of R� regards Xi, the left-hand-side vari-
able, as the “response” named along the rows of �r�iSj�, whereas the right-hand-side

regressor Xj is, in some sense, the “cause.” How to compute the R� matrix? An R
function ‘gmcmtx0(mtx)’ of the package “generalCorr” is the answer.

The R code to compute a generalized correlation matrix R� for our simple ex-
ample (y � sin�x�) is:

library(generalCorr);x=1:20; y=sin(x)

options(np.messages=FALSE)

gmcmtx0(cbind(x,y)) #R* matrix

The output of the above code is a 2�2 matrix R� below.

x y

x 1 -0.04847292

y -1 1.00000000

In our simple example, we know that x � 1 � 20 is the (driver) “cause” of y �

sin�x�, implying the causal path x � y. Rounding to 3 places the output above
states that r�xSy � �0.048, r�ySx � �1. That is the kernel regression y of x has near-

perfect fit, �r�ySx�2 � 1, whereas the flipped regression of x on y has a poor fit.
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The asymmetry of the matrix of generalized correlation coefficients R� provides a
preliminary indicator of the correct causal path x� y.

Next, let us implement the two flipped kernel regressions called k1 and k2 in the
following code, and evaluate the size of the absolute residuals. The following code
reports the maximum absolute residual values for both k1 and k2.

k1=kern(dep.y=y, reg.x=x,residuals=TRUE)

max(abs(y-fitted(k1)))# this is very small only 1.16*10^{-16}

k2=kern(dep.y=x, reg.x=y,residuals=TRUE)#flipped kernel regression

max(abs(x-fitted(k2)))# this is large 9.5

The following output of the above code shows that fitted values ŷ of kernel regression
model k1 [when the dependent variable (dep.y=y)] is very close to the correct y. The
largest error is near zero, max�Sy� ŷS� � 0.0000, rounded to four digits. By contrast,
the alternate model k2 [when the dependent variable (dep.y=x)] the residuals x� x̂
are large, with a relatively huge maximum, max�Sx � x̂S� � 9.5. Clearly, the kernel
regression k2 with RHS variable y is a poor choice. The model k1 with x as the
‘cause’ on the RHS is better.

> max(abs(y-fitted(k1)))

[1] 1.110223e-16

> max(abs(x-fitted(k2)))

[1] 9.5

A comparison of absolute values of generalized correlation coefficients is seen to
be a plausible indicator of the causal path x � y. Since R��ij� matrix, is always
between Xi and Xj or only two variables. Two variables do not suffice when we
want the study causal paths in the presence of control variables Xk. In general, we
need to extend causal identification to remove the effect of a set of control variables
before measuring the generalized correlation between variable pairs.

1.3 Generalized Partial Correlations

Since the kernel causality theorem involves Xk variables (confounders or controls)
this subsection allows for them by generalizing partial correlation coefficients. Recall
the definition of the partial correlation between (X1,X2), after removing the effect
of (X3):

r12;3 �
r12 � r13r23»�1 � r213�

»�1 � r223�
. (7)

Since r12;3 � r21;3 holds, traditional partial correlations cannot reveal causal direc-
tions. We need asymmetric generalized partial correlation coefficients.

Kendall and Stuart (1977) show that an alternative definition of r12;3 is a simple
correlation between residuals of the regression: X1 � f1�X2,X3�� ε1S2,3, and similar
residuals of the regression: X2 � f2�X1,X3� � ε2S1,3. We use this method in our
generalization as follows.

We consider the generalized correlations between Xi and Xj after removing the
effect of a set of variable(s) in Xk. Define eiSk as the observable residual of kernel
regression of Xi on all control variable(s) Xk (but not Xj). Similarly, define ejSk as
the residual of kernel regression of Xj on all control variable(s) Xk. Next, we define

 
3148



a preliminary (symmetric) generalized partial correlation coefficient in the presence
of control variable(s) as:

e�iSj,k �
cov�eiSk ejSk�
σ�eiSk�σ�ejSk� . (8)

This formula computes the usual (symmetric) correlation coefficient between two
relevant residuals. Denote the sign of the symmetric correlation in eq. (8) as
sign(e�iSj,k), which also equals sign(e�jSi,k).

Now, we are ready to define an asymmetric matrix of generalized partial cor-
relation coefficients using the R2 of nonparametric kernel regression between two
residual vectors: eiSk � f�ejSk� � ε, as GMC�eiSkSejSk�. In general, GMC�eiSkSejSk� x
GMC�ejSkSeiSk�, means that generalized measures of partial correlation are asym-
metric.

Thus, a generalized partial correlation coefficient for a kernel regression having
Xi on the left hand side (LHS) and Xj ,Xk on the right hand side (RHS) is defined
as:

r�iSj,k � r
��XiSXj ;Xk� � sign�e�iSj,k�

¼�GMC�eiSkSejSk��. (9)

Its counterpart on the other side of the diagonal, upon interchanging i and j as
a part of the matrix of generalized partial correlations is:

r�jSi,k � r
��Xj SXi;Xk� � sign�e�iSj;k�

¼�GMC�ejSkSeiSk��. (10)

Recalling our y � sin�x� example, let us create a random control variable z from
the uniform density with the code:

library(generalCorr);x=1:20; y=sin(x)

set.seed(99); z=runif(20)

options(np.messages=FALSE)

parcor_ijk(xi=x, xj=y, xk=z)

The following output of the above code reports ‘ouij’ denoting generalized par-
tial correlation of Xi with Xj (=cause) after removing the effect of Xk, and ‘ouji’
denoting generalized partial correlation of Xj with Xi (=cause) after removing the
effect of Xk.

$ouij

[1] -7.505178e-06

$ouji

[1] -0.7304486

Note that absolute values for partial correlation coefficients satisfy SouijS @ SoujiS,
supporting the correct causal path Xi �Xj or x� y � sin�x� in our context.

1.4 Kernel Causality Criteria Cr1 to Cr3

Consistency is a basic requirement in both OLS and kernel regressions. A regression
is consistent only when RHS variables are ‘exogenous’ or uncorrelated with the error
terms. For brevity, let us denote the conditional expectation E f�Xj SXi,Xk� by gjSik,
where the subscripts after the bar remind the reader that variables (Xi,Xk) are on
the RHS. Now, gjSik is consistently estimated, provided the vector of true unknown
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errors εjSik is uncorrelated with (Xi,Xk). The well-known Hausman-Wu exogeneity
test, Wu (1973), also states the same condition and is called the first criterion,
Cr1, implemented in Vinod (2016). Assume we have t � 1,2,�, T observations on
all variables and observable residuals are a good approximation to true unknown
errors.

Since the implicit causal direction of a regression model is always (RHS � LHS),
the model where Xi is on the LHS while (Xj ,Xk) are on the RHS is associated with
the causal path (Xj � Xi). The consistency of this model requires that each RHS
variable be uncorrelated with the error vector. Hence, each (causal) RHS variable
should have a “smaller” correlation with the regression residuals.

(Cr1) The first criterion for kernel causality path Xi �Xj has Xi on RHS involving
conditional expectation function gjSi,k. We want the correlation between the
RHS variable Xi and residuals ejSi,k to be relatively more close to zero, or
“smaller” in absolute value, than the correlation between the flipped path RHS
variable Xj and its residuals eiSj,k. That is, we want to satisfy the inequalities:

S�Xit�e�iSj,k�tS @ S�Xjt�e�jSi,k�tS, (11)

as often as possible.

(Cr2) The second criterion incorporates the idea that path Xi � Xj having Xi

on the RHS should have “smaller” absolute residuals (superior fit) than those
from the flipped path Xj �Xi with Xj on the RHS. Hence, upon inserting a
subscript for t-th observation, we write:

�Se�jSi,k�tS� @ �Se�iSj,k�tS� (12)

(Cr3) The generalized partial correlations for the path Xi �Xj should satisfy:

Sr��jSi,k�S A Sr��iSj,k�S, (13)

where generalized partial correlation coefficients defined in eq. (10) removes
the effect of the control variable(s), if any.

The inequalities of equations (11) and (12) are fuzzy in the sense that we do
not expect them to be satisfied for each t. One can think of a kernel density
as a smoothed histograms. Now kernel densities of all absolute value expressions
appearing in (11) and (12) are smoothed histograms. We want the density on
the “larger” side of each inequality to be “larger,” in some sense. The concept
of one density being “larger” than another density, despite overlapping areas, is
formalized by requiring that the “larger” density should stochastically dominate the
other density.

1.5 Stochastic Dominance and Fuzzy Inequalities

Financial economists need to decide whether to invest in one stock or another, for
example, in IBM or GE, based on their forecast returns, (RIBM ,RGE). Unfortu-
nately, sometimes (RIBM A RGE) while at other times (RIBM @ RGE). That is, we
want to choose even though the return densities overlap. How to choose between
the two streams of returns when the inequality is fuzzy? A well-known sophisticated
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solution to this old problem suggests choosing the investment which stochastically
dominates the other, Levy (1992). The tools solving the investment problem can be
tell us the extent to which any fuzzy inequality holds true, despite partly overlapping
densities of the two sides.

Let us briefly describe stochastic dominance (SD) tools without attempting to
summarize the vast and growing published and unpublished literature motivated by
financial economists’ portfolio choice problem as explained in (Vinod, 2008, ch.4).
A density f�x� dominates f�y� in the first order (SD1) if their respective empirical
cumulative distribution functions (ecdf) satisfy: F �x� B F �y�. This is a well-known
slightly counter-intuitive result stating that the cumulative density F �x� of the
dominating density f�x� must be smaller than the cumulative density F �y� of the
dominated density f�y�. It is also well known that SD1 provides a comprehensive
picture of the ranking between two probability distributions focusing on a vector of
‘locally-rolling data-based’ first moments (means, or moving averages).

The underlying computation requires bringing the two densities on a common x-
axis known as ‘support,’ requiring ecdf’s to have up to 2T possible jumps or steps.
Hence there are 2T estimates of F �x� � F �y� denoted by a 2T � 1 vector (sd1).
Anderson (1996) provides a convenient (trapezoidal) numerical integration tool so
that a cumulative sum summarizes SD1.

Second order dominance (SD2) of f�x� over f�y� requires further integrals of
ecdf’s to satisfy a fortunately analogous inequality: R F �x� B R F �y� providing a
cumulative sum summarizing SD2. Analogous cumulative sums and higher-order
integrals summarize SD3 and SD4 for locally moving skewness and kurtosis mea-
sures.

We consider decision rules based on a summary of quantified SD1 to SD4 de-
scribed next.

1.6 Derivation of Causality Decision Rules

By analogy with two streams of investment returns, stochastic dominance measures
(SD1 to SD4) of four orders allow us to study fuzzy inequalities of (11) for Cr1 and
those of (12) for Cr2. These four orders are roughly associated with the first four
locally defined rolling moments (mean, standard deviation, skewness, and kurtosis)
yielding four numbers each for Cr1 and Cr2. The signs of these four numbers
suggest the causal path direction implied by the four moments of the underlying
kernel density. Using appropriate weights for the reliability of sample moments
while allowing an option to change weights, Vinod (2016) first obtains an index
of the sign implied by Cr1 and another index for Cr2. Our Cr3 based on partial
correlation in (13) also yields a comparable sign of. Sr��iSj,k�S� Sr��jSi,k�S, indicating the
direction of the causal path.

We cannot assume that sample estimates of the three distinct criteria will suggest
the same causal direction. Hence we need a sample measure of the unanimity among
the three criteria, denoted by (ui). Denote the corresponding population unanimity
index as (UI) shown to lie in the intuitive closed interval: ��100,100�. It measures
both the direction and “unanimity strength” of the indicated causal path.

Individual application determines the threshold τ so that SuiS @ τ means ui � 0.
Choosing a 5% threshold, τ � 5, say, our Decision Rules are:

Ru.1: If (ui @ �τ) the causal path is: Xi �Xj

Ru.2: If (ui A τ) the causal path is: Xj �Xi
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Ru.3: If (SuiS B τ) we obtain bi-directional causality: Xi �Xj , that is, the variables
are jointly dependent.

Simulations showing the success of such causality tools are reported in Vinod
(2017).

2. Simulation for Checking Decision Rules

We assume that X1 is exogenous, and generate it independent of any other variable.
Next, we generate our X2 variable which depends on X1 and also involves adding
a noise term, defined from the standard normal deviate, ε � N�0,1�. Our decision
rules are known to perform better in the absence of normality and linearity. We
hope to create conservative and robust experiments by using ε values designed to
handicap (not favor) our decision rules.

In the following experiments, X1 is an independently generated (exogenous)
DGP, and hence the causal path is known to be X1 � X2, by construction. We
use sample sizes: T � 50,100,300, to check if our decision rules correctly assess the
causal path, despite the handicap of linearity, normality, or both.

Let m denote the count for indeterminate signs when we repeat the experiments
N � 1000 times. Define the success probability (suPr) for each experiment as:

�suPr� � �count of correct signs�
N �m

. (14)

The simulation considers four sets of artificial data where the causal direction is
known to be X1 �X2.

1. Time regressor: X1 � �1,2,3,�, T�
X2 � 3 � 4X1 � ε

2. Unit root Quadratic:

X1 has T random walk series from a cumulative sum or standard normals.
X2 � 3 � 4X1 � 3X2

1 � ε

3. Two Uniforms:

X1, Z1 each have T uniform random numbers
X2 � 3 � 4X1 � 3Z1 � ε

4. Three Uniforms:

X1, Z1, Z2 each have T uniform random numbers
X2 � 3 � 4X1 � 5Z1 � 6Z2 � ε

The simulation required about 36 hours on a Dell Optiplex Windows 10 desktop
running Intel Core i5-7500, CPU at 3.40 GHz, RAM 8 GB, R version 3.4.2.

The large success proportions (suPr) reported in row 7 (for T=50), row 15 (for
T=100) and row 23 (for T=300) of Table 1 assume the threshold τ � 0. The results
for the four experiments in four columns show that our decision rules using a ‘ui’
from Cr1 to Cr3 work well. The effect on success probabilities of the choice of the
threshold is studied for the T � 300 case by using τ � 0,15,20,25, respectively, along
rows 21 to 24.

Moreover, since the success probabilities ‘suPr’ for τ � 0 along rows 7, 14
and 21 increase as T � 50,100,300 increases, this suggests a desirable asymptotic
convergence-type property. Thus, our decision rules are supported by the simula-
tion.
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Table 1: Summary statistics for results of using the ‘ui’ measure for correct iden-
tification of causal path indicated by its positive sign using N=1000 repetitions,
T=50, 100, 300 sample sizes along three horizontal panels. Success probabilities
(suPr) show convergence as T increases in the three panels.

Row stat. Expm=1 Expm=2 Expm=3 Expm=4

1 Min.T=50 31.496 -100.000 -100.000 -100.000
2 1st Qu. 63.780 31.496 31.496 -31.496
3 Median 100.000 31.496 31.496 37.008
4 Mean 82.395 33.725 24.386 27.622
5 3rd Qu. 100.000 100.000 37.008 37.008
6 Max. 100.000 100.000 100.000 100.000

7 suPr 1.000 0.793 0.808 0.712

8 Min.T=100 31.496 -100.000 -100.000 -100.000
9 1st Qu. 63.780 31.496 31.496 31.496

10 Median 81.102 31.496 31.496 37.008
11 Mean 74.691 33.106 32.822 35.879
12 3rd Qu. 100.000 100.000 37.008 37.008
13 Max. 100.000 100.000 100.000 100.000

14 suPr 1.000 0.787 0.892 0.803

15 Min.T=300 31.496 -100.000 -31.496 -63.780
16 1st Qu. 81.102 31.496 31.496 37.008
17 Median 81.102 31.496 31.496 37.008
18 Mean 80.357 43.020 42.973 42.117
19 3rd Qu. 100.000 100.000 37.008 37.008
20 Max. 100.000 100.000 100.000 100.000

21 suPr,τ � 0 1.000 0.829 0.987 0.963
22 suPr,τ � 15 1.000 0.833 0.988 0.970
23 suPr,τ � 20 1.000 0.835 0.989 0.971
24 suPr,τ � 25 1.000 0.836 0.989 0.971

3. A Bootstrap for Inference

Statistical inference regarding causal paths and exogeneity uses ui for estimating
the population parameter UI.

Bootstrap Percentile Confidence Interval: We suggest a large number
J of bootstrap resamples of �X,Y,Z� data to obtain (Nall�j and (ui)j using any
bootstrap algorithm. These (j � 1,�J) values provide an approximation to the
sampling distribution of ‘sum’ or ‘ui.’ We can easily sort the J values from the
smallest to the largest and obtain the ‘order statistics’ denoted as (ui)�j�, with
parenthetical subscripts. Now a �1 � α�100 percent confidence interval is obtained
from the quantiles at α~2 and 1 � α~2. For example, if α � 0.05, J � 999, 95%
confidence interval limits are: (ui)�25� and (ui)�975�.

Recalling the decision rules Ru.1 to Ru.3 of Section 1.6, if both confidence limits
fall inside one of the two half-open intervals, we have a statistically significant
conclusion. For example, Ru.1 states that: If (ui @ �τ) the causal path is: Xi �Xj .
If instead of a point estimate we have two limits, we want both confidence limits
of ui lie in the same half-open interval: ��100,�5�. Then, we have a statistically
significant conclusion that Xi �Xj , or equivalently that Xi is exogenous.
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This paper uses the maximum entropy bootstrap (meboot) R package described
in Vinod and López-de-Lacalle (2009) because it is most familiar to me, retains the
dependence structure in the data, and is recently supported by simulations in Yalta
(2016), Vinod (2015) and elsewhere. An advantage of meboot is that it permits
bootstrap inference even if the variables in the model are not stationary. Following
Stock (1987) such specification in data levels (without differencing or de-trending)
allows the estimators to be super-consistent.

3.1 Summarizing Sampling Distribution of ui

One can use J (=999) resampled estimates of ui to approximate the sampling dis-
tribution f�ui�. The usual summary statistics of these J values yield preliminary
information about its quantiles. We will illustrate this with the help of examples
later such as in Table 4.

Another way of studying f�ui� involves computing bootstrap proportion of sig-
nificantly positive or negative values. Let m denote the bootstrap count of inde-
terminate signs when (ui)> ��τ, τ�. A researcher can change the threshold τ � 5
depending on the problem at hand. Now define a bootstrap approximation to the
proportion of significantly positive signs as:

P ���1� � �count of uij A τ�
J �m

. (15)

Similarly, a bootstrap approximation to the proportion of significantly negative signs
is:

P ���1� � �count of uij @ �τ�
J �m

. (16)

4. Application to US Macroeconomic Policy

This section discusses an application of our tools for predicting a downturn of the US
economy. Since the US economy has had one of the longest stretches of steady eco-
nomic growth, this is a matter of great topical interest. Macroeconomists and Fed-
eral Reserve Bank researchers being aware of their failure to forecast the last great
recession of 2007-2008 have developed a new data series. For example, Gilchrist
and Zakrajek (2012) excess bond premium (EBP ) series has been shown to predict
recession risk. The term-spread, defined as the difference between long term yield
(10-year) and short term yield (1-year) on government securities is shown by Bauer
and Mertens (3/5/2018) to be an excellent predictor of recessions.

Instead of directly predicting discrete events like recessions, we are attempting
to study what macroeconomic variables drive EBP and term-spread themselves.
Our term-spread is denoted as Dyld or difference in yields on 10-year and 6-month
government securities and discussed later in subsection 4.1. A negative Dyld is
sometimes called the inverted yield curve and described as a predictor of recessions
in the popular press. We use the Federal Reserve Bank’s fairly long quarterly data
set from 1973Q1 to 2017Q1.

The RHS of the following nonparametric regression lists variables which can
‘cause’ or explain the EBP .

EBP � f�Yld10, eFFR,CrCrea,CrDstr,UnemR,M2,MbyP,YbyHrs,JD,JC�, (17)
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where self-explanatory symbols are: yield on 10-year treasury bonds (Y ld10, not sea-
sonally adjusted), effective federal funds rate (eFFR), and credit creation (CrCrea,
not seasonally adjusted), credit destruction (CrDstr, not seasonally adjusted), un-
employment rate (UnemR), money stock (M2, seasonally adjusted billions of dol-
lars), ratio of M to PGDP or real money supply (MbyP ), ratio of GDP to employee
hours, or productivity, (Y byHrs), job destruction (JD)), and job creation (JC).

Certain arguments for using separate variables for CrCrea and CrDstr are
found in Contessi and Francis (2013), who provide additional references for inter-
ested readers. Next, we apply the decision rules of Section 1.6 to check whether
the RHS variables in eq. (17) are indeed exogenous with independent self-driving
DGP’s.

Table 2 explicitly reports for each flipped pair the ‘cause’ and ‘response’ such
that the LHS variable EBP in eq. (17) is present in all pairs. The column entitled
‘strength’ reports the absolute value of the unanimity index SuiS. The sign of ui
determines the direction of the causal path, that is, the variable name in ‘cause’
column, and also the variable name in the ‘response’ column. For example, line 6
has M2 in the ‘cause’ column and EBP in the ‘response’ column, because ui @ 0
implies that M2 is exogenous or causal. The column entitled ‘corr’ of Table 2 reports
Pearson’s correlation coefficient with EBP . The column entitled ‘ p-value’ reports
the p-value for testing the null of zero correlation. Of course, Kernel causality and
exogeneity need not agree with traditional correlation inference, since the latter
assumes linearity and normal distributions.

Whenever ui A 0, we place EBP in the ‘cause’ column. Table 2 line 1b reports
that ui is positive and smaller than that for Y ld10 along row 1. We have focused
more on EBP than Dyld because EBP has greater independent innovations than
Dyld according to line 1b, whereDyld does not ‘cause’ EBP . The simple correlation
between EBP and Dyld is statistically insignificant and lower than the correlation
between EBP and Y ld10 reported along row 1.

Note that only M2, Y byHrs, JD and JC are likely to be self-driven (exogenous)
causing the excess bond premium, while all other variables seem to be endogenous,
being caused by EBP .

Table 2: Excess Bond Premium and possible causes

cause response strength corr. p-value

1 EBP Yld10 47.244 0.0866 0.25161
1b EBP Dyld 31.496 0.0416 0.58258
2 EBP eFFR 31.496 0.0902 0.23248
3 EBP CrCrea 31.496 -0.0606 0.42322
4 EBP CrDstr 31.496 0.2617 0.00043
5 EBP UnemR 31.496 0.1108 0.14222
6 M2 EBP 31.496 -0.0536 0.47843
7 EBP MbyP 31.496 0.0195 0.79659
8 YbyHrs EBP 31.496 -0.0588 0.43693
9 JD EBP 31.496 0.47 0

10 JC EBP 31.496 -0.1323 0.07915
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4.1 Variables affecting term spread Dyld

Before we turn to statistical inference associated with the results we include ad-
ditional tables created by choosing Dyld as the dependent variable. New causal
paths and their strengths when the dependent variable in (17) is Dyld, or the term
spread measured by the difference in yields, not EBP. Our matrix ‘mtx’ as a part
of the R function call ‘causeSummary(mtx)’ now has Dyld as the first column and
the remaining ten columns have the variables listed in equation (18). The resulting
Table 3 has ten rows when the ten variables are paired with the first variable Dyld.

Dyld � f�Yld10, eFFR,CrCrea,CrDstr,UnemR,M2,MbyP,YbyHrs,JD,JC�. (18)

Table 3: Term Spread between 10-yr to 6-month treasury yields and possible causes

cause response strength corr. p-value

1 Yld10 Dyld 31.496 -0.1862 0.0131
2 Dyld eFFR 100 -0.5463 0
3 Dyld CrCrea 37.008 -0.1666 0.02668
4 Dyld CrDstr 100 0.3107 3e-05
5 Dyld UnemR 31.496 0.5149 0
6 M2 Dyld 31.496 0.2412 0.00122
7 MbyP Dyld 31.496 -0.0014 0.98522
8 YbyHrs Dyld 31.496 0.2718 0.00025
9 Dyld JD 37.008 -0.0403 0.5939

10 Dyld JC 100 -0.1359 0.07121

The results in Table 3 show that independent variation in Dyld, similar to EBP ,
drives that in variables: �eFFR,CrCrea,CrDtr,UnemR,JD,JC�. By contrast,
Dyld is driven by variables �Y ld10,M2,MbyP,Y byHrs�. This contrasts with the
driver variables �M2, Y byHrs, JDandJC� in Table 2. The common drivers in both
tables are money supply M2 and productivity Y byHrs.

4.2 Bootstrap inference on Estimated Causality Paths for EBP

What about sampling variability of ui? We resample the data 999 times using the
‘meboot’ package to keep the time-series properties of the data unchanged. We
report the the summary statistics using the 999 estimates of ui for the first five
variables in Table 4 and the last five variable in Table 5.

Table 4: Summary statistics of 999 bootstrap estimates of causal directions and
strengths, Part 1

Yld10 eFFR CrCrea CrDstr UnemR

Min. -31.50 -100.00 -31.50 -31.50 -31.50
1st Qu. 31.50 -31.50 -31.50 31.50 -31.50
Median 47.24 -31.50 31.50 31.50 -31.50

Mean 55.18 -4.88 6.36 29.32 -10.84
3rd Qu. 81.10 31.50 31.50 31.50 31.50

Max. 100.00 100.00 100.00 100.00 100.00
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Table 5: Summary statistics of 999 bootstrap estimates of causal directions and
strengths, Part 2

M2 MbyP YbyHrs JD JC

Min. -31.50 -31.50 -31.50 -31.50 -100.00
1st Qu. -31.50 31.50 -31.50 -31.50 -31.50
Median -31.50 31.50 -31.50 -31.50 -31.50

Mean -31.50 32.77 -31.50 -1.29 -29.55
3rd Qu. -31.50 31.50 -31.50 31.50 -31.50

Max. -31.50 100.00 -31.50 100.00 100.00

Table 6 shows that our approximate sampling distribution results provide a dis-
tinct piece of information not covered by the results about the strength or the p-value
in Table 2. The table contains the proportion of negative or positive (whichever is
most prevalent) in each column described as bootstrap success rates, defined in
equations (16) and (15).

Table 6: Bootstrap success rates for causal direction using 999 resamples

variable P(�1)

1 Yld10 0.9737
2 eFFR 0.6232
3 CrCrea 0.537
4 CrDstr 0.951
5 UnemR 0.7124
6 M2 1
7 MbyP 0.964
8 YbyHrs 1
9 JD 0.5486

10 JC 0.9758

We recommend careful analysis of each causal pair with the help of scatterplots.
We include only two plots here for brevity: (i) EBP -UnemR pair where UnemR is
found to be endogenous, and (ii) EBP -M2 pair where M2 is found to be exogenous.
Histograms of the two variables are seen in the diagonal panels of Figures 3 and 4.
The South West panels have a scatter diagram and locally best fitting free hand
curve. The number in the North East panels is the ordinary correlation coefficient
whose font size suggests its statistical significance.

Figure 3 depicts a scatterplot having a mildly up-down-up pattern. This may
explain why the Pearson correlation coefficient of 0.11 is statistically insignificant,
since it does not capture nonlinear relations. Endogeneity of unemployment rate
suggests that it is likely an effect of recessions and not a cause. Note that Figure
4 suggests that the variation in M2 is weakly exogenous. Its scatterplot is U-
shaped and quite noisy, confirming highly insignificant and small Pearson correlation
coefficient. Thus a decline in M2 may help predict recessions.

 
3157



x

De
ns

ity

EBP

4 5 6 7 8 9 10

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0.11

 

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

4
5

6
7

8
9

10

●●
● ●

● ●

●

●

●

●

●
●

●
●

●●
●

●
●

●

●

●●● ●
●
●●

●

●

●
● ● ●●

●

●

●

●

●

●
●

●

●

●

●●
●●● ●

●●
●

●
●

●

●
●

●
●

●●
●
● ● ●

●●●

●

●

●
●●
●

●
●●

●
●●

●
●●

●
●

●
●
●● ●●●

●●●
●

●
●●

●
● ●

●● ●
● ● ● ● ●

●
●

●

●
●

● ●
●●

●●

●
●●

●●
●

●
● ●

●●●
●●●

●
●

●

●

●

●

●

●

●

● ●
●
●●

●●●

●

●●
●
● ●

●

●

●
●

●
●

●
●

●

● ● ●●●
● ●

x

De
ns

ity

UnemR

Figure 3: Scatterplot with nonlinear curve: EBP-UnemR
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Figure 4: Scatterplot with nonlinear curve: EBP-M2
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5. Application to Indian Govt. Infrastructure Investment Policy

In Indian macroeconomic policy, there is considerable debate regarding whether
Government expenditures on infrastructure and other investments whether they
“crowd out” private sector investments. Vinod et al. (2019) use macro data for
fiscal years 2011-2016 and find evidence in support of “crowding in” of private in-
vestment through public investment. They find that public infrastructure invest-
ment is significant in determining private investment and that a low-interest rate
encourages private corporate investment. When the government commits resources
for infrastructure, it creates incentives for enhancing private investment.

Table 7: Symbols using up to 7 characters for variables in alphabetic order used
in reporting causality paths in Table 8.

Code Description

FornInv Log Foreign Investment
LongCPI Long-term 10 year yield Rate adjusted by CPI
LongWPI Long-term 10 year yield Rate adjusted by WPI
LongYld 10 Year Long Term Yield
Ogap Output Gap
PbNnInf Log Public Non-Infrastructure Investment
PubInfr Log Public Infrastructure Investment
PubInv Log Public Investment
PvtInv Log Private Investment
ReLngY Real 10 years Long Term Yield Rate
ReTbill Real 91 Treasury Bills Rate
ShrtCPI real short-term T-bill Rate adjusted by CPI
ShrtRat 91-day Treasury Bills rate
ShrtWPI real short-term T-bill Rate adjusted by WPI

Causal paths between thirteen variables paired with private investment using
symbols (up to seven characters in length) listed in Table 7 are reported in Table
8. The R function ‘causeSummary’ of the ‘generalCorr’ package mentioned earlier
yields these results.

Table 8: Causal paths between selected variables using symbols in Table 7

cause response strength corr. p-value

1 PvtInv ShrtRat 100 -0.672 0.00032
2 LongYld PvtInv 31.496 -0.6862 0.00021
3 Ogap PvtInv 100 0.0118 0.95626
4 PvtInv PubInv 100 0.9868 0
5 PvtInv PubInfr 100 0.9595 0
6 PvtInv PbNnInf 100 0.9733 0
7 PvtInv ReTbill 31.496 0.5854 0.00265
8 PvtInv ReLngY 31.496 0.6745 3e-04
9 PvtInv FornInv 31.496 0.4027 0.05103

10 PvtInv ShrtCPI 31.496 0.5854 0.00265
11 PvtInv LongCPI 31.496 0.6745 3e-04
12 PvtInv ShrtWPI 100 0.7766 1e-05
13 PvtInv LongWPI 100 0.8393 0
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The numbers in the column entitled ‘corr.’ of Table 8 are Pearson correlation
coefficients. These are the usual symmetric correlation coefficients, measuring the
nature of ‘linear’ dependence between the variables named in the first two columns.
Since all p-values are near zero except for the output gap along line 3 of Table 8, all
relations in the table have statistically significant Pearson correlation coefficients.
However, the symmetry of the matrix of Pearson correlation coefficients means that
they cannot suggest anything about the underlying causal directions.

When the value in the ‘strength’ column of Table 8 exceeds 15, the causal direc-
tion determination is strong enough to be believed as a preliminary indicator of the
true causal direction. The DGP representing private investment is the most impor-
tant exogenous driver of the Indian economy. It stands to reason that all variables
except LongY ld and Ogap along lines 2 and 3 of Table 8 show that long-term yield
and output gap influence the private investment, PvtInv, but all other variables
are sensitive to independent variation in PvtInv. It is interesting that ‘real’ short
term or long term interest rates adjusted by the consumer price inflation (CPI)
or wholesale price inflation (WPI) give same causal path from PvtInv to various
interest rates along rows 10 to 13.

Of course, the true causal direction is unknown in the absence of double-blind
controlled experiments. This is the best we can assess using certain nonparametric
kernel regressions and stochastic dominance of four orders from passively observed
data. The estimated path (PvtInv � PubInfr with the strength of 100) along line 5
of Table 8 suggests that the growth in PvtInv drives public infrastructure spending.
Thus, government infrastructure spending on politically glamorous projects will not
help grow the PvInv. On the other hand, a focus on infrastructure items directly
used by the private sector is expected to achieve long-run growth of the Indian
economy.

6. Application to Microeconomic Advertising Policy

Advertising research has long relied on linear regressions between sales (Sal) and
advertising expenditures on cold remedies. Our scattergrams of data on sales and
32 advertising media outlets, Adx, for seven retailers show nonlinear ups and downs.
We allow for two control variables, all other ad media (Oad) and total ad expen-
ditures (TD). Next, we compute the ui to assess the strength of the causal path
Adx� Sal for each advertising media identifying the effective ones. If, on the other
hand, the data support the path Sal � Adx, there may be potential savings in those
advertising media expenditures.

The results in Table 9 have Adx identify the rows. The columns refer to a
particular retailer, whose names are slightly abridged. If the available number of
observations is inadequate for reliable kernel regression estimation, the unanimity
index ui values in the body of the Table (along some rows and columns) are left
blank. Recall that the control variable Oad is a generic notation for all advertising
other than Adx, and the second control variable TD is short for ‘total distribution,’
which is separately computed for TV and Print media.

As can be seen in Table 9 there is no advertising media having a consistent causal
impact among all the retailers under consideration. It appears that TVCBEFR (TV
cable early fringe), TVCBMOR (TV cable morning), TVNTMOR (TV network
morning) and TVSPMOR (TV sports during morning hours) are the ones with the
majority of ui have the desirable negative sign. For these cases, we can argue that
the preponderance of evidence supports the causal path Adx� Sal. An interesting
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Table 9: Causal Path Sign Unanimity Index or ui.

CVS KMAR MEIJ RAID TARG WALG WALM ALL
TVCBDAY -31 -31 37 -100 -31 37 100 31
TVCBEFR -66 -100 16 -100 -100 -31 100 -100
TVCBLFR 31 100 -31 -31 -31 37 100 66
TVCBLNW -37 31 37 31 100 -31 31 37
TVCBMOR -31 -37 31 -37 -100 50 31 -31
TVCBONG -31 31 100 -31 37 100 -31 66
TVCBPRM 100 31 37 31 100 31 37 66
TVCBPRA 66 100 3 31 31 31 66 -66
TVNTDAY 37 -3 37 39 100 100 100
TVNTEFR
TVNTLFR
TVNTLNW
TVNTMOR -100 -31 -37 -3 -100 -100 92 -66
TVNTPRM -31 31 37 13 -37 -37 -31 66
TVNTPRA
TVSPDAY 47 -31 100 -66 31 -37 -3
TVSPEFR -3 37 100 -66 37 -31 -3
TVSPLFR 37 31 100 3 -100 31 -31
TVSPLNW 31 100 100 -37 -31 37 100
TVSPMOR -37 -31 -50 31 -3 -37 31 -37
TVSPONG -3 -92 37 -13 100 31 100
TVSPPRM 100 -31 100 64 100 -66 -31
TVSPPRA 31 -31 37 37 3 -31 37
TVSYTDY -31 -31 100 37 29 -31 48
PRGPBHG 3 37 3 100 37 66 37 75
PRGPGOO
PRGPOPR
PRGPPEO
PRGPFAM 66 3 37 100 3 3 100 100

PRSIFIT 3 100 100 66 66 3 66 3
PRSIPAR 29 66 37 3 3 66

FSI

This table presents the Causal Path unanimity index Results based on decision rules from
Section 1.6.

result is that only early fringe and morning advertising appear to have a causal
impact on units sold. All entries in Table 9, which are positive are where potential
savings are possible by spending less on those media.

7. Final Remarks

This paper suggests extending Suppes’ probabilistic causality theory by replac-
ing inequalities among probabilities of events by inequalities among densities of
data generating processes. We first define kernel regression residuals ejSi,k � Xj �

E f�Xj SXi,Xk� and eiSj,k � Xi � E f�XiSXj ,Xk�, where we flip Xi and Xj , with
details available in Vinod (2019). The causal path Xi � Xj should satisfy by our
first criterion Cr1 the inequality:

S�Xit�e�iSj,k�tS @ S�Xjt�e�jSi,k�tS
based on a formal consistency requirement for regression models. Criterion Cr2
compares the goodness of fit via absolute values of residuals, �Se�jSi,k�tS� @ �Se�iSj,k�tS�.
Citerion Cr3 requires generalized partial correlations satisfy: Sr��jSi,k�S A Sr��iSj,k�S.
Since Cr1 to Cr3 are co-equal criteria, we aggregate their empirical values (Cr1
and Cr2 use four numbers for four orders of stochastic dominance) into a unanimity
index, ui. The index yields our decision rules to help choose between causal paths
Xi � Xj , Xj � Xj , and Xi � Xj . Bootstrap inference tools are also available in
the R package ‘generalCorr.’
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We claim easy computation of ui and decision rules for assessing causal path
directions and strengths by using very few lines of R code. We illustrate the claim
by using examples from macroeconomic and micro-economic data. The ability to
incorporate control variables in our analysis is new and particularly valuable for
causality estimation and testing using observational data. There are several poten-
tial applications in all scientific areas, including exploratory hypothesis formulation,
Big Data, and artificial intelligence.

One recent paper, Lister and Garcia (2018), uses our decision rules to conclude
that global warming causes anthropod deaths. Another paper, Allen and Hooper
(2018), uses them to explore the causes of volatility in stock prices.
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