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Abstract

This paper proposes an algorithm of simultaneous robust estimation for the generalized ratio
model proposed by Wada and Sakashita (2017) with an implemented R function. It helps to abbre-
viate the model selection process prior to imputation in the course of survey data processing.

Wada and Sakashita (2017) robustify the ratio model by introducing homoscedastic quasi-error
term to determine robust weights for each observation based on the idea of M-estimation. They also
extended the ratio model so that the errors are proportional to the explanatory variable to a different
powers. The algorithm we propose is to estimate the power of the explanatory variable together
with the ratio of objective variables robustly.

The estimate of power may not be very accurate as with the weighted two-stage least squares;
however, the accuracy of ratio matters for imputation, since the value of the power is not used for
estimation of the objective variable. Therefore, the proposed algorithm could be of use as long as
the estimation of the ratio has good accuracy regardless of the power.
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1. Introduction

Imputation is an unavoidable task in survey data processing, and ratio imputation is widely
used in the field of official statistics among a variety of methods. One of the reasons is the
ratio model has a heteroscedastic error term. Survey variables are often heteroscedastic and
need data transformation prior to a linear regression model; however, such transformation
makes some important estimations such as mean and total unstable. The ratio model is
capable to accommodate heteroscedastic errors proportional to the explanatory variable to
the power one-half.

The conventional ratio model is,

yi = βxi + εi, (1)

regarding the explanetory variable xi which has highly correlated with the objective vari-
able yi, where β is the ratio of yi to xi and a heteroscedastic error term εi ∼ N(0, xiσ

2)
with a constant variance σ2 (e.g. Cochran (1953)). A simple regression model without
intercept,

yi = βxi + εi, (2)

looks identical with the model (1); however, the error term of the regression model is
homoscedastic as εi ∼ N(0, σ2). Figure 1 shows the appearence of datasets following
these two models. Their different error terms have the relation, εi = ε

√
xi.

Wada and Sakashita (2017) proposes generalization of this conventional ratio model
using the relation between the above mentioned error terms, and the error term of the gen-
eralized model is εi ∼ N(0, xγi σ

2). They distribute the corresponding R functions for the
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Figure 1: Data images following a ratio model and a regression model.

robustified estimators at the repository http://github.com/kazwd2008/IRLS as
files named RrT.r and RrH.r regarding a few prescribed γ values.

The proposed robustified estimator was adopted with γ = 1/2 for imputing major
corporate accounting items of the 2016 Economic Census for Business Activities in Japan.
It required a model selection process regarding different γ values preceded the imputation
step in the course of statistics production. The research objective of this paper is estimating
γ together with β to omit the model selection step.

We propose an algorithm of simultaneous robust estimation for β and γ. The cor-
responding R function is distributed at the above mentioned repository as a file named
RBreds.r. The file includes the following two functions: RBred is the robust version
and Bred, non-robust version which is for comparative evaluation. We confirmed Bred
has better performance regarding accuracy of β compared to the estimation using optime
function in R, which is a general-purpose optimization based on Nelder-Mead algorithms.
The robust version RBred naturally outperforms Bred with contaminated datasets, and
would be of use for the purpose of imputation.

We first summarize the idea of Wada and Sakashita (2017) in section 1.1 and then
describe about the computation in section 1.2.

1.1 Generalized Ratio Model and Its Robustified Estimator

Wada and Sakashita (2017) reformulate the ratio model (1) yi = βxi +
√
xiεi with a

homoscedastic error term as with a regression model. It is essential to robustify the ratio
model by means of M-estimation. A generalized ratio model,

yi = βxi + xγi εi. (3)

is also proposed by them. The new homoscedastic error term εi in this model is called
“quasi-error term,” and has the relation εi = xγi εi with the heteroscedastic error term in
the conventional ratio model. The corresponding generalized ratio estimator and its ho-
moscedastic quasi-residuals are as follows:

β̂ =

∑n
i=1 yix

1−2γ
i∑n

i=1 x
2(1−γ)
i

. (4)
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ři =
yi − β̂xi
xγi

. (5)

Please note the generalized estimator (4) comes down to the conventional ratio estimator,

β̂ =

∑n
i=1 yi∑n
i=1 xi

, (6)

which corresponds to model (1) when γ = 1/2.
The robustified version of the estimator (4) is,

β̂rob =

∑
wiyix

1−2γ
i∑

wix
2(1−γ)
i

, (7)

where wi is computed according to a weight function using quasi-residuals ř obtained by
the eq. (5). Weights usually have values between 0 to 1, and a selected weight function
reduces weights of outliers if any to alleviate their influence on the parameter estimation.

1.2 Computation of the Robustified Estimator

Holland and Welsch (1977) recommend the iteratively reweighted least squares (IRLS) al-
gorithm for M-estimation proposed by Beaton and Tukey (1974), in which the algorithm
is called by the name of “biweight regression fitting”. Wada (2012) implemented the set-
tings of Bienias et al. (1997) in UNSC/UNECE (1997), which aims to share best practices
within the national statistical offices. Bienias et al. (1997) introduces the IRLS algorithm
by the name of resistant fitting and appy average absolute deviation (AAD) for the scale
parameter,

σAAD =
1

n
Σn
i=1|ři|, (8)

and Tukey’s biweight function (Beaton and Tukey, 1974)

wi = w

(
ři
σ̂

)
= w(ei) =


[
1− (ei/c)

2
]2
|ei| ≤ c

0 |ei| > c,
(9)

for the weight function among others, where ei is a standardized residual using the scale
parameter σ̂.

Wada and Noro (2019) considers influence of the choice of weight function as well
as the scale parameter, and explore the features on the setting of Bienias et al. (1997)
further. They find the selection of Tukey’s biweight function together with the AAD scale
is fast to converge and can eliminate the influence of extreme outliers. The implemented
R functions by Wada and Noro (2019) is placed at the repository http://github.
com/kazwd2008/IRLS as files named Tirls.r of Tukey’s biweight function and Hirls.r
of Huber’s weight function (Huber, 1964). The functions for robustified estimators of the
generalized ratio model regarding a few prescribed γ values by Wada and Sakashita (2017)
are also in the same repository as files named RrT.r and RrH.r.

The algorithm for the generalized ratio estimator with a given γ value is as follows:

1. Estimate initial parameter based on eq. (4).
2. Obtain quasi-residuals based on eq. (5) based on the latest estimation.
3. Compute scale parameter σ̂ (e.g., based on eq. (8)) and then standardize the quasi-

residuals by ři/σ̂ using the obtained scale parameter.
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4. Calculate a robust weight wi for each observation according to a weight function
(e.g., by eq. (9)) and the standardized quasi-residuals.

5. Make robust estimation based on eq. (7) using wi.
6. If the latest j-th scale parameter σ̂(j) and the previous (j − 1)-th σ̂(j−1) satisfies the

conversion condition, ∣∣∣∣1− σ(j)

σ(j−1)

∣∣∣∣ < 0.001, (10)

the latest β̂(j) is the final estimator βrob and the iteration is terminated. Otherwise
increment index j by 1 and go back to 2.

2. Simultaneous Estimation

We first describe how to estimate γ by the two stage least squares (2SLS) and how to robus-
tify the estimation in section (2.1). Then its robustification is discussed section (2.3). Our
proposed algorithm of the simultaneous robust estimation of β and γ is shown in section
(2.2). The proposed algorithm is based on the robust estimators of the generalized ratio
estimator implemented by Wada and Sakashita (2017) and the 2SLS estimation discussed
in section (2.2) is incorporated.

2.1 Two-Stage Least Squares Estimation

Following is the procedure to estimate γ called two-stage least squares (2SLS) estimation
(e.g. Greene (2002), p.79). First step is to estimate β of the model,

yi = βxi + εi, (11)

by the ordinary least squares, where εi ∼ N(0, σ2xβi ). Please note eq. (11) is another form
of the model (3) expressed with heteroscedastic error εi = xγi εi. The estimates of β is not
efficient but at least unbiased under heteroscedasiticity.

Next step is estimating γ using an instrumental variable r2i = (yi − β̂xi)
2, where

ri = yi − βxi. Taking the logarithm,

log |ri| = γ log |xi|+ log(σ) (12)

is derived. It shows γ is obtained as the single regression parameter in explaining log |ri|
by log |xi|.

Let z′ be an n × 2 matrix where we have size n of observations on 2 variables, and u′

be an n× 1 vector of observations on the dependent variable. Computation of the matrix,

γ̂ = (z′>z′)−1z′>u′, (13)

where

z′ =

 1 log(x1)
...

...
1 log(xn)

 , u′ =


log(|y1 − β̂x1|)

...
log(|yn − β̂xn|)

 .
provide a vector with two elements and estimated γ is the second one.
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2.2 Robustification of the Power Estimate

Now we consider robustification of the estimator in section 2.1 by introducing robust weight
wi. The model (11) is identical with (1) , so its robustified estimator is obtained by eq. (7)
as discussed in section 1.2.

The robustified form of Eq. (13) is,

γrob = (z>z)−1z>u, (14)

where

z =

 1 log(w1x1)
...

...
1 log(wnxn)

 , u =


log(|y1 − β̂x1|w1)

...
log(|yn − β̂xn|wn)

 .
2.3 Proposed Algorithm

Following is the proposed algorithm to estimate robust β and γ simultaneously. We in-
corporate robust 2SLS estimation discussed in section 2.2 into the algorithms of the robust
estimators of the generalized ratio estimator proposed by Wada and Sakashita (2017) de-
scribed in section 1.2.

I. Initial estimation

(i) Initial estimation based on eq. (4) with an appropriate initial value γ(0)

(ii) Obtain conventional residuals ri = yi − β̂xi as well as quasi-residuals based
on eq. (5)

(iii) Compute scale parameter σ̂ (e.g., based on eq. 8) and standardize the quasi-
residuals obtained by ři/σ̂

II. Iterative non-robust estimation of β and γ

(i) Estimate γ using β̂ based on eq. (13)
(ii) Estimate β based on eq. (4) using newly estimated γ̂

(iii) Caliculate quasi-residuals based on eq. (5) and scale parameter σ̂
(iv) Go back to II (i) unless the latest σ meets convergence condition (10)

III. Iterative robust estimation of β using weights with fixed γ

(i) Compute robust weights wi according to a weight function based on the latest
estimation of β and γ.

(ii) Estimate robust β based on eq. (7)
(iii) Caliculate conventional residuals ri = yi − β̂xi, quasi-residuals based on eq.

(5) and scale parameter σ̂
(iv) Go back to III (i) unless the latest σ meets convergence condition (10)

IV. Simultaneous iterative robust estimation of β and γ

(i) Compute robust weights wi according to a weight function based on the latest
estimation of β and γ.

(ii) Estimate γ using latest β̂ based on eq. (14)
(iii) Estimate β based on eq. (7) using newly estimated γ̂
(iv) Calculate conventional residuals ri = yi − β̂xi, quasi-residuals based on eq.

(5), and scale parameter σ̂
(v) Go back to IV (i) unless the latest σ meets convergence condition (10)
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3. Evaluation of the Proposed Algorithm

We implemented the algorithm described in the previous section as a function RBred to-
gether with non-robust version Bred in a file named RBreds.r at the repository http:
//github.com/kazwd2008/IRLS. The function Bred comprises the part I and II
of the algorithm for RBred and implemented for the evaluation purpose only. Please note
that the non-robust estimation for the model (3) is practically useless for the purpose of
imputation, because the estimation of β comes down to the results of a single regression
model without intercept (2) regardless of the value of γ.

In addition to the function Bred, we also prepare a non-robust optimization code us-
ing R optim function, which is a general-purpose optimization based on Nelder-Mead
algorithm. The estimation of β and γ can be defined a minimization problem as follows:

arg min
β,γ

(
yi − βxi
xγi

)2

.

The R code for estimation is as follows.

Op1 <- function(x, y, pm) (sum((y - pm[1] * x) / xˆpm[2])ˆ2)
optim(pm, Op1, x=x, y=y)

3.1 Random Datasets Without Outliers

A comparison is made for the estimation with optim, Bred, and RBred with the follow-
ing five different datasets without outliers.

The size of tested datasets is 200. The explanatory variable is x ∼ N(100, 1), the quasi
error term ε ∼ N(0, 0, 2), and the objective variable y is calculated based on the following
models using the values of x and ε.

(1) y = 2x+ ε

(2) y = 2x+ εx0.25

(3) y = 2x+ εx0.5

(4) y = 2x+ εx0.75

(5) y = 2x+ εx

The code of optim requires initial values of β and γ as two elements in vector pm.
The initial value of β is (0, 0.25, 0.5, . . . , 1.25) while initial γ is (0, 0.5, 1, . . . , 5). As a
total, 66 combinations of those initial values are tested for each dataset.

FunctionBred andRBred only need an initial value for γ, so the values, (0, 0.5, 1, . . . , 5)
are tested for each dataset.

The results are shown in Figure 2. As for optim, estimated values fractuate depending
on the initial values, although all the estimation are converged. On the other hand, both
Bred and RBred return same estimation regardless of the initial γ for each dataset, and
the estimation of Bred is better than those of RBred.

3.2 Random Datasets With Outliers

In this section, the same dataset created in section 3.1 is used after the following modi-
fication. For each datasets, 10 observations with variable x greater than 100 are selected
randomly, and those y values are multipliyed by 10. Figure 3 shows the sample of datasets
with and without outliers. Atrificial outlers are shown in red color.
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Figure 2: Estimation with different initial vallues.

Figure 3: Tested datasets.

The results with the contaminated datasets are shown in Figure 4. The result of Bred is
the most severely impaired among the three due to the contamination. The result of optim
also worsen. So, the estimation of β by RBred is the best among them, as expected.

 
3126



Figure 4: Tested datasets.

4. Conclusion

We proposed an algorithm for robust simultaneous estimation of β and γ regarding the
generalized ratio model proposed by Wada and Sakashita (2017). A R function is also
implemented and distributed at the github repository. Evaluation is made by datasets with
and without contamination. The R function RBred has a expected feature so far; however,
further evaluation is necessary toward practical use for imputation.
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