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Introduction  
The ideas of individualized, personalized treatment designate one of the major trends in 
modern medicine. This motivates a growing interest in the study of heterogeneity of the 
population exposed to treatment. In this paper, we consider two different views on the 
heterogeneity of the population: the heterogeneity of the effect of treatment, and the 
heterogeneity of response of the subject to the treatment among the members in this 
population.  

Traditionally, the heterogeneity of treatment effect is understood as “the 
nonrandom, explainable variability in the direction and magnitude of treatment effects 
for individuals within a population,”1 where the treatment effect is defined as reduction 
of risk for negative outcome. An amount of studies in this area is growing, as well as a 
level of their sophistication.  

This paper focuses on the treatment response, which is another, substantially 
less studied aspect of the treatment process. With regard to treatment, the term 
“response” is used out of established clinical and terminological tradition and often with 
no satisfactory definitions. Sometimes, the “treatment effect” and “response to 
treatment” are used as synonyms. In many clinical publications, the patients with a 
negative outcome are labeled as “non-responders,” and those with a positive outcome - 
“responders,” which has some misleading aspects.   

People react to treatment differently: while being exposed to the same treatment, 
various individuals have different outcomes, and while being exposed to different 
treatments, various individuals can have either the same outcome, or different outcomes. 
It moves a focus of attention toward heterogeneity of phenomena and factors of the 
individual ways of reacting to a specified treatment, and the heterogeneity of treatment 
response can be defined as qualitative and quantitative diversity of response to 
treatment, and factors determining this response among individuals within a population. 

In this paper, we use the same set of definitions and identical notation for 
describing the effect of treatment, and response of the subject to the treatment. It makes 
the approaches comparable by their major characteristics, and compatible in analysis of 
the heterogeneity of a population. Also, we consider these two approaches using the 
same model a randomized clinical trial with a mortality as a primary outcome as a model 
of the trial population. It makes the approaches comparable by their major 
characteristics, and compatible in analysis of the heterogeneity of a population. 
             The difference in starting positions and focusing on different aspects of the 
treatment process dictates the differences in the methodology. Heterogeneity of 
treatment effect is thoroughly studied within a paradigm of a statistical approach, using 
classical and modern statistical and computational methods. Our paper is focused 
primarily on the heterogeneity of treatment response, which is not studied systematically 
yet. The heterogeneity of treatment response also can be subject to statistical analysis, 
especially given the capacity of modern statistical and computational approaches, but 
originally the approach towards analysis of the heterogeneity of treatment response 
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derives from a tradition of a clinical method, which essentially is a qualitative, 
exploratory approach, and which relies on logic as its primary instrument of analysis.  

1. Definitions and Notation  
1.1 Population 
Per Jerzy Neyman, at a logical level, a population is defined as “categories of entities 
satisfying certain definitions but varying in their individual properties.” (ref. 9, p.1). In 
our analysis, we consider a population of a placebo controlled randomized clinical trial 
with a mortality as a primary outcome as a model. 

The model of a clinical trial we use consists of four major components: 
treatment population, treatment, outcomes, and covariates (conditions). These 
components are expressed in a form of binary variables following a terminological and 
methodological tradition for clinical trials on the effects of treatment on morbidity and 
mortality. Also, it is natural for the compared modalities of treatment to be expressed as 
binary or categorical variables. A positive outcome vs. negative one, i.e., having a heart 
attack vs. not having it, or recovery vs. death, are the most clear-cut clinical 
presentations of this dichotomy. Analysis of continuous outcomes may require more 
logical steps and complex computations, but the principles of the approach will remain 
the same.  

At the analytical level, the study population is described as a set of individuals: 
P = (𝐼𝑖), where an individual case 𝐼𝑖 is described by a set of variables (conditions) 
       𝐼𝑖 = (𝑇𝑖, 𝑌𝑖; 𝐴𝑖 , 𝐵𝑖, 𝐶𝑖… ;𝛼𝑖, 𝛽𝑖 …  ); or alternatively 𝑇(𝐼𝑖) = 𝑇𝑖,  𝐴(𝐼𝑖) = 𝐴𝑖, etc., 
and presented in the format of the data matrix (Fig 3A). 
1.2 Data matrix 
The data matrix is a description of a study population in the format suitable for statistical 
analysis and as such it is a framework for analysis of experimental and observational 
data. The data matrix consists of 𝑛 rows and 𝑝 columns2 as shown on Fig 3A. The 
observations (cases, individuals) presented as the rows are assumed to be separate units 
(𝐼𝑗). The variables describing the individual including treatment (𝑇𝑥), outcome (𝑌) and 
conditions (𝐴, 𝐵, 𝐶, … ), physical, clinical, demographic, environmental, etc., 
characteristics of each case, i.e., conditions (𝐴, 𝐵, 𝐶, … ) are listed consecutively such 
that the values of each variable in several cases create a separate column.  

The observations (cases, individuals) presented as the rows are assumed to be 
separate units (𝐼𝑗). The variables describing the individual including as treatment (𝑇), 
outcome (𝑌) and conditions (𝐴, 𝐵, 𝐶, … ), physical, clinical, demographic, 
environmental, etc., characteristics of each case, i.e., conditions (𝐴, 𝐵, 𝐶, … ) are listed 
consecutively such that the values of each variable in several cases create a separate 
column.   
1.3 Treatment (𝑇𝑥/𝑡𝑥)  
In this article, the meaning of the term “treatment” (𝑇𝑥) is as it is understood in 
medicine and public health, i.e., an action or a complex of actions to cure a disorder or 
improve a state of a patient. Depending on the context, it can be an independent variable 
(e.g., in the context of the assessment of the treatment effect), or a dependent variable 
(e.g., in the context of exploring an indication for the treatment). It is presented as  

• 𝑇𝑥 = 1, which is active treatment (also labelled 𝑇𝑥+);  
• 𝑇𝑥 = 0 is a lack of active treatment (also labelled 𝑇𝑥−); 
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1.4 Outcome (𝑌/𝑦) 
In probability theory, an outcome is a possible result of an experiment (in our case it is 
treatment). In this meaning the term is used for designating the outcome in the 
individual exposed (or not exposed) to treatment during a defined period of time 

• 𝑌 = 1 designates survival (also labelled 𝑌+);  
• 𝑌 = 0 designates death (also labeled 𝑌−). 

At the population level, the outcome designates a proportion of the sum of individuals 
with the outcome of interest in the defined population. 
1.5 Conditions 
The term “conditions” is used broadly as it is used in the probability theory. In the 
context of this article, it covers the variables referring to characteristics and properties of 
an individual, internal or external environments, events, and relationships. The 
conditions also will be presented as binary variables. 

• 𝐴, 𝐵, 𝐶 …: include external and internal environments, and a time factor; 
(𝐴 = 1,0; 𝐵 = 1,0; 𝐶 = 1,0;… ; also labeled 𝐴 = 𝐴+, 𝐴−; 𝐵 = 𝐵+, 𝐵−; 𝐶 = 𝐶+, 𝐶−; …) 

• 𝛼, 𝛽…: unknown or unobserved variables. 
1.6 Determinism 
The term “determinism,” “deterministic” is used in a narrow sense, as it is used in 
statistics, i.e., “opposite to random,” “related,” with the probability 1 or 0.  

2. Objectives 
Using the model described in the previous section, we will consider the heterogeneity of 
a population of a randomized clinical trial. Using the same definitions and notation 
above, the relationships between treatment, outcome and conditions will be considered 
from two positions: from a position of statistical analysis, and from the position of 
exploratory analysis deriving from a tradition of clinical method. We will describe a 
heuristic for logical analysis leading to a possibility of statistical examination of the 
developed hypotheses. Also, we will explore formal relationships between the 
heterogeneity of treatment response and treatment effect. Thus, we hope to set a bridge 
between these two hardly compatible approaches in the hope to better understand the 
treatment process and to make a step towards the individualization of treatment.  

3. Heterogeneity of treatment effect 
3.1 Treatment effect 
A randomized clinical trial assigns people randomly to treatments. The groups are (on 
average) equivalent, and the difference in the outcome can be attributed to the treatment 
since that was the only difference between the groups. An estimate of the difference is 
called the Average Treatment Effect.3 The effect of treatment is measured using indices 
of absolute and relative risk reduction (ARR and RRR respectively)  

• absolute risk reduction: ARR = 𝑃𝑟(𝑌−𝑐) − 𝑃𝑟(𝑌−𝑎);  

• relative risk reduction:      𝑅𝑅𝑅 = 
𝑃𝑟(𝑌−

𝑐)−𝑃𝑟(𝑌−
𝑎)

𝑃𝑟(𝑌−
𝑐)

;   

where risk is understood as a probability of a negative outcome estimated as a 
proportion of this outcome in the studied population, 𝑎 stands for an active arm of the 
trial, and 𝑐 - for control.  

Thus, the treatment effect, as it assessed in a clinical trial, is a statistical 
concept, and the heterogeneity of treatment effect is commonly considered in the frame 
of a statistical paradigm as “the nonrandom, explainable variability in the direction and 
magnitude of treatment effects for individuals within a population.”  
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3.2 Assumptions 
For our discussion, it is necessary to emphasize some of the premises implicit in 
traditional statistical analysis of the results of a randomized clinical trial as follows.  

1. Subjects are anonymous and interchangeable.  Personal information may move from 
one group to another for the reasons not related to analysis. Exclusion of any single 
subject from the study, moving him or her from one group to another, and/or trading 
single subjects between groups does not affect substantially the result of the study.  

2. Two or more events co-occur by chance unless the contrary is proven. Statistical models 
inherently involve randomness. The hypothesis of random co-occurrence of the events 
(null hypothesis) is accepted or rejected because of its correspondence (or a lack of 
correspondence) to the observed relationships. 

3. Numerous subjects are required for making valid inferences. A special chapter in any 
manual for clinical research is devoted to estimating a sample size to obtain a desired 
level of power before data collection.  
3.3 Progress in studying heterogeneity of treatment effect 
In virtually any population of patients, whether it is a “real world” population of treated 
patients, or a thoroughly selected clinical trial population, there is a considerable 
variation in the risk of the outcome of interest. The “average” benefit observed in the 
summary result of a clinical trial may even be non-representative of the treatment effect 
for a typical patient in the trial to the extent that some subgroups of patients can benefit 
when summary results of trials are negative.4  

A typical approach for examining HTE is subgroup analysis,5 which studies risk 
of a negative outcome conditional on some selected variables. Importantly, “selection of 
subgroups should be based on mechanism and plausibility (including clinical judgment), 
taking into account prior knowledge of treatment effect modifiers.” 1 

During a last decade, one can observe a great progress in studying the 
heterogeneity of treatment effect. Apparently, the progress is motivated by the ideas of 
the individualization of treatment and supported with the modern statistical and 
computational methods.6 Having started from subgroup analysis, the methodology of the 
studies on the heterogeneity of treatment effect is becoming more sophisticated and 
complex. For instance, using deep learning, the identification of the variability of the 
treatment effect was performed across clinically relevant subgroups associated with 
clusters of variables.7 Lamont, et al.,8 identified predicted individual treatment effect in a 
randomized clinical trial using Monte Carlo simulation, multiple imputation, non-
parametric random decision trees.  

3.4  Limitations in analysis of heterogeneity of treatment effect  
Investigation of heterogeneity of treatment effect has some limitations related to 

the nature of the approach.  
The decisions on the individualized treatment are to be made based on the 

assessment of the effectiveness of the planned treatment. The indices of risk, which are 
the integral component of the indices of the treatment effect are computed as a 
proportion of negative outcome in the population of the clinical trial, or the set of 
observational data. Therefore, the assessment of the heterogeneity of treatment effect 
requires data on the entire trial population for analysis of the variability of risk for a 
negative outcome; also, for identification of the segments of the population with 
outstanding values of the risk the entire set of data of the completed trial are required. In 
the “real world,” however, the decisions on the individualized treatment often are to be 
made based on information from populations with unknown distributions of variables, 
from groups with incomplete data, small samples, and in non-randomly selected 
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individuals, etc., i.e., systematized data on risk are not necessarily available, and when 
they are available, we face even more fundamental limitations.  

In the article discussing major theoretical aspects of heterogeneity of population 
in the context of statistically understood causality, Yu Xie states that in the context of 
“population thinking,” “the ubiquitous presence of individual-level variability makes it 
impossible to study individual-level causal effects.” 9 It corresponds with the notion of 
many good statisticians that the assessment of the effect of treatment in an individual 
case is impossible.   

Per Richard von Mises, “When we speak of the “probability of death,” the exact 
meaning of this expression can be defined in the following way only. We must not think 
of an individual, but of a certain class, e.g., “all insured men forty-one years old living in 
a given country and not engaged in certain dangerous occupations.” A probability of 
death is attached to the class of men or to another class that can be defined in a similar 
way. We can say nothing about the probability of death of an individual even if we 
know his condition of life and health in detail. The phrase “probability of death,” when 
it refers to single person, has no meaning for us at all.”10  

Richard von Mises introduced the concept of “collective” to emphasize that 
probability does not deal with individual cases. (An) “… example of a collective is a 
whole class of insured men and women whose ages at death have been registered by an 
insurance office.”…”The definition of probability which we shall give is only concerned 
with ‘the probability of a certain attribute of this collective’.”  

In subgroup analysis, risk of the negative outcome is assessed conditional on a 
selected condition, i.e., we reduce a size of the “collective,” but the relationships 
between the single person and the “collective” remains the same.  

In more sophisticated analyses 1,6,7,8 using multivariable models and accounting 
for a combination of several selected conditions, a size of the “collective” can be 
reduced even more.  

Paradoxically, the size of the “collective” can be reduced to just a single 
person,8 but the individual treatment effect in this case is predicted based on analysis of 
the distribution of the predictive variables within the entire analyzed population, and the 
meaning of risk for an individual patient becomes fundamentally unclear. Also, 
predicting the effect in a different population with a different distribution of the 
predictive variables is problematic similar a typical problem of applying the result of a 
clinical trial to the “real world” population.  

4. Heterogeneity of treatment response 
Determining, whether the observed outcome related or not related to the treatment is an 
everyday analytical task in medicine, drug safety and other areas. In the frame of a 
binary model, a response of a patient to treatment can be either recovery, or death. The 
patient could recover either because of treatment, or regardless of treatment because 
some patient could recover without any treatment.11 In the case of a negative outcome, 
the death could be caused by the target disorder, but also it could be due to other causes: 
accident, suicide, stroke, infection, etc. Under the treatment response we mean a 
reaction of a member of the population to the treatment, to which he or she has been 
exposed, expressed as an outcome attributable to the treatment.  
4.1 Clinical perspective on heterogeneity 
The relationships between treatment, outcome and conditions in each individual case are 
routinely evaluated using the clinical method, which exposes the heterogeneity of the 
treatment response. Analysis of the methodology of clinical method is far beyond our 
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objective. We refer to the approach utilizing a clinical method for analysis of single 
cases and small groups which is routinely used in clinical practice and in monitoring 
safety of clinical trials, analysis of data in post marketing surveillance, etc.12 If used for 
analysis of the heterogeneity of the trial population, this approach, reveals the following.  

Both the populations of active and control (placebo) arms of the trial are 
heterogeneous (Fig. 1). While having been exposed to respective treatment, each of 
them is divided to unequal groups with negative and positive outcome. Regarding the 
outcome, each of these groups is phenomenologically homogeneous, but each of them 
consists of diverse subgroups differing by substantial factors.  

 
4.1.1 Negative outcome  
In virtually any trial with a mortality being a primary outcome, among subjects with the 
negative outcome there is a subgroup of All Causes Deaths (ACD), i.e., those who have 
died not from a target disorder, but from different causes, such as accidents, suicides, 
other disorders, etc. It means that both in active arm and control, the groups with 
negative outcome are heterogeneous since they include the All Causes Death subgroups 
as well as the subgroups of those died from the target disorder. In turn, these subgroups 
are heterogeneous too: one of them is heterogeneous by definition (“All Causes Death”), 
and in the subgroup of those having died from the target disorder, the factors 
contributing to the deaths (e.g., age, heart failure, diabetes, stroke, infection, etc.) are 
numerous and diverse.  

Note, that in clinical trials, the cause of death as well as the contributing factors 
are usually identified with all possible accuracy, using clinical, pathology, biochemistry, 
etc. state-of-the-art methods, such that these data are considered final and used as a 
foundation for all other inferences.  

Within the relevant subgroups, the identified causes and contributing factors can 
be distributed at random, or by clusters, or they can have a hierarchical structure, i.e., 
various patients and subgroups of patients with the negative outcome can be associated 
with different “generating conditions” or subsets of the “generating conditions.” Still, all 
these diverse patients and groups of patients had one common characteristic: by various 
reasons, under influence of diverse factors, they were not sensitive to the treatment they 
were exposed to. 

The ACD subgroups are not necessarily equal in the active arm and in control. 
This usually poses substantial challenge to the assessment of the effect of treatment. 
This problematic situation does not have a satisfactory analytical solution, and usually in 

Fig.1. Histogram of randomized clinical trial 
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analysis of the treatment effect it is accepted under a strong assumption that the impact 
of this factor is not significant.  
4.1.2 Positive outcome  
The group of patients with a positive outcome also is not homogeneous. Obviously, the 
patients with positive outcome from the control have recovered spontaneously since they 
were not exposed to the active treatment. Our trial is randomized. Therefore, in the 
active arm, we should have an approximately equal, but not directly identifiable group 
of patients, whose recovery cannot be attributed to the effect of active treatment – 
apparently, they would recover spontaneously. Only the rest of the positive outcomes 
could be directly attributed to the effect of active treatment, but neither of these groups 
can be directly identified. There are reasons to believe that the capacity to recover 
spontaneously is related to numerous factors – immunological, nutritional, genetical 
polymorphism, environmental factors, etc. - these subgroups are in turn heterogeneous.11 

5. Conceptual apparatus of heterogeneity of treatment response     
Thus, following an exposure to the same treatment, various individuals can produce 
different outcomes; in turn, following two different treatments, various individuals can 
produce the same outcome or different outcomes, i.e., the individual outcome depends 
on the treatment, but rather it depends on the way the individual responds to the 
treatment he or she is exposed to. From a clinical standpoint, each patient reacts to the 
treatment in his or her individual way. Factors forming the response to the treatment can 
be unique for an individual or prevalent in the population; they can cluster, and create 
hierarchy, i.e., the trial population, as far as it is comprised of human beings suffering 
from real disorders, is intrinsically heterogeneous regarding their response to treatment, 
such that for various individuals the ways to death can be diverse, as well as the ways to 
recovery.  

Analysis of heterogeneity of treatment response derives from a set of 
assumptions which are not acceptable for statistics but are natural and necessary for 
qualitative explorations and inferences, and particularly, for clinical thinking. 
5.1 Assumptions 

I. Each subject is a unique individual. Changing, removing, and/or adding individuals 
might completely change the subject and result of analysis. 

II. Two or more co-occurring events are related unless the contrary is proven. This 
assumption is the major motivating factor for analysis, and it can be accepted if the 
possibility of the co-occurrence of the events by chance is small, and it should be 
rejected when this possibility is large.  

III. Valid inferences potentially can be made from single cases and small number of cases.  
It must be strongly emphasized, that these are not positive assertions, but rather 

the assumptions in a genuine meaning of this term, designating starting positions of the 
approach, which is explorative by its nature. The inference deriving from analysis based 
on these assumptions is relevant for this instance (case, cases) only. However, the 
conclusion on this instance can be an element of further analysis, for instance, 
comparing with other similar and different elements, producing inductive and deductive 
inferences, and prone to comparing the inferences with other hypotheses, and thus 
correcting and further developing the obtained knowledge. 
5.2 Aggregation 
In two or more cases (sets of variables describing individuals) placed in juxtaposition, 
some subsets of variables may be identical (“similar”), while the others may be not. In 

 
3102



statistics, a correlation (in a broad sense) can be one of the measures of the 
similarity/dissimilarity of individuals (more precisely, descriptions of). For our binary 
model, a relevant measure for two binary variables 𝑽(𝑖)and 𝑽(𝑖+1) can be a Phi 
coefficient  

𝑟𝜑 =
𝑛11𝑛00 − 𝑛10𝑛01

√𝑛1. 𝑛0.𝑛.0𝑛.1
; 

where, 𝑛11 stands for a number of “similar” pairs 𝑉(𝑖)+𝑉(𝑖+1)+, 𝑛00 for a number of 
“similar” pairs 𝑉(𝑖)−𝑉(𝑖+1)−,  𝑛10 for a number of “dissimilar” pairs 𝑉(𝑖)+𝑉(𝑖+1)− and 𝑛01 
for a number of “dissimilar” pairs 𝑉(𝑖)−𝑉(𝑖+1)−.  

For instance, on Fig 2a, two individuals, 𝐼1 and 𝐼2, are described with a set of 
variables V = A, B, C, …, I, J. The similarity of these two individuals in statistical terms 
can be measured as 𝑟𝜑 = ~0.41. Note that for computing 𝑟𝜑 only the amount of 
“similar” and “dissimilar” pairs matters. It does not matter, which of the pairs 
specifically are identical and which are not. Thus, this measure converts information on 
the similarity/dissimilarity of individual pairs into the characterization of the 
similarity/dissimilarity of the compared individuals, which is informative for the entire 
population, but does inform any more about similarity/dissimilarity of each variable in 
the pair.  

As far as we are going to build our analysis on the assumptions I,II, and III, we 
are - contrary to the above - interested in identifying a type of the association, which is 
directly observable as the “similar” segments of the descriptions in some members of the 
population, assuming that these variables, in these individuals can be related to each 
other. 
Therefore, we introduce a concept of aggregation. Unlike the correlation, the 
aggregation refers to a subset of variables about which it is thought or known from 
observation that this subset of variables in the individuals of this subset is identical.  

For instance, the aggregation, 𝐴𝑔 = ||

𝐼𝑗    |𝑉𝑖−, 𝑉(𝑖+1)+
𝐼𝑗+1|𝑉𝑖−, 𝑉(𝑖+1)+

…
𝐼𝑗+𝑘|𝑉𝑖−, 𝑉(𝑖+𝑘)+

|| is the known segment of 

the population with identical values of the variables 𝑽(𝑖), 𝑽(𝑖+1), …, and 𝑽(𝑖+𝑘) in the 
individuals 𝐼𝑗, 𝐼𝑗+1, …, 𝐼𝑗+𝑘. Hereafter, we use the term “aggregation” if the assembly of 
elements gathered non-randomly. For the assemblies gathered by chance we use the 
term a “case-variable association.” 

The elements of the aggregation assumed related to each other. As noted above, 
this is the assumption, not assertion. This is only a starting position for analysis, a 
hypothesis, which must be scrutinized and compared to other hypotheses in the process 
of analysis.  
5.3 Factors of treatment response: categories 
The infinitely numerous factors forming the individual treatment response can be 
grouped, clustered for the sake of analysis in many ways, but ultimately, they can be 
generalized into two not mutually exclusive categories. One of them is the capacity (or a 
lack of capacity) of a subject to respond positively to the treatment, i.e., be sensitive or 
not sensitive to the treatment. Another one is the capacity (propensity, predisposition, 
readiness) to recover spontaneously, i.e., without, or regardless of treatment. These 
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categories were thoroughly considered in our work11 from historical, clinical, 
epidemiological, and experimental positions.ii   

We call a patient “Sensitive” (𝑆𝑡+) to a specified treatment if there are reasons 
to believe that this treatment has imposed the outcome of interest, or it would have 
imposed it if applied.  

We call a patient “Spontaneous” (𝑆𝑝+) if a positive outcome has developed 
without of treatment, or there are reasons to believe that it would have developed if the 
treatment was not applied. 
              Under each of the categories, “Spontaneous,” and “Sensitive,” we mean a 
relevant property (attribute, quality, characteristic, ability or trait) of a patient 
determined by a single factor inherent to a relevant category of patients (e.g., 
polymorphism), or by a confluence of multiple internal or external factors, either 
prevalent or rare.  

Essentially, under the assumptions I, II, III, the identification and prediction of the 
treatment response in an individual becomes possible if at least some of the conditions 
and/or markers covered by the categories “Sensitive” and “Spontaneous” are known, with 
two reservations:   
• at this point we do not account for possible interactions between the factors;  
• unknown factors (conditions) capable of modifying the response can exist. 
5.4 Treatment-Outcome Complex  
Classification of patients by treatment and outcome creates a 2 × 2 table (Table 1) 
which is typically used as a framework for the assessment of the treatment effect.  

 Table 1. Combinations of Treatment and Outcomes 
 𝑇𝑥+ 𝑇𝑥− 

𝑌+ 𝑇𝑥+ 𝑌+ 𝑇𝑥− 𝑌+ 
𝑌− 𝑇𝑥+ 𝑌− 𝑇𝑥− 𝑌− 

In our analysis, we consider treatment and outcome not separately, but rather as a unit 
designated with a category of the treatment-outcome complex13 

(𝑇𝑥+𝑌+;  𝑇𝑥+𝑌−;  𝑇𝑥−, 𝑌−;  𝑇𝑥−𝑌+), and use it as a ground for classification of patients. 
Importantly, the category of the treatment-outcome complex is logically related to the 
categories of “sensitive” and “spontaneous,” which makes a framework for possible 
inferences regarding treatment response. 
5.5 Inferences on treatment response 
Table 2 schematizes the relationships between the treatment and outcome using the 
categories of factors forming a response of the individual to the treatment (𝑆𝑡+, 𝑆𝑡−, 𝑆𝑝+ 
and  𝑆𝑝−).11  
The left side of the table indicates a presence of the categories of “Spontaneous” and 
“Sensitive” in all possible variants of the treatment-outcome complex. The right side of 
the table demonstrates the outcome prospectively expected in individuals having all 
possible combinations of the categories “Spontaneous” and “Sensitive.”  

Summarizing this section, the major logically related concepts of analysis of the 
treatment response has been presented. Having assumed that Two or more co-occurring 
events are related unless the contrary is proven, we have introduced the concept of 
aggregation and further assume that the elements of the aggregation are related to each 
other. As emphasized above, this is the assumption, not assertion. This is only a 

 
ii Spontaneous recovery, i.e., recovery (or remission, or intermission) without treatment, or regardless of treatment is well 

documented in numerous severe disorders including, but not limited to smallpox, plague, cholera, anthrax, typhus, Ebola  
virus disease (EVD), myocardial infarction, cancer, asthma, pernicious anemia, disseminated sclerosis, rheumatoid arthritis, 
schizophrenia, depression, etc. The list can be expanded indefinitely11 
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hypothesis, which is subject to scrutiny and comparison to other hypotheses, for 
instance, to the hypothesis of random co-occurrence of these elements.  

Table 2. Relationships between the Categories of Treatment-Outcome Complex, 
“Sensitive” and “Spontaneous” 

 
Analysis of the treatment effect requires establishing relationships between three 

components: outcome, treatment, and conditions, which requires a statistical approach. 
Having considered the treatment and outcome not separately, but rather as a unit, as a 
treatment – outcome complex, we obtained a possibility of exploring relationships 
between this complex and various conditions and clusters of conditions, under which the 
treatment was applied, and the outcome was developed. The concept of the treatment - 
outcome complex is logically related to the categories of the capacity of spontaneous 
recovery (𝑆𝑝) and sensitivity to treatment (𝑆𝑡) which provides a possibility for 
exploring the heterogeneity of the treatment response, via the inferences based on 
analysis of these logical relationships. 

6. Heterogenous structure of population and identifying 
aggregations 

6.1 Small number of observations  
Fig 2 is to illustrate the approach towards the identification of the aggregations. 

If the order of the variables does not matter, the Fig. 2a can be re-written as Fig. 2b., 
where the subset of variables B, C, E, F, H is identical in both individuals 𝐼1 and 𝐼2, 
which corresponds to our definition of the aggregation. 

 
If number of individuals increased (Fig. 2c), the number of possibly observable 

aggregations is increasing. If for instance, three individuals were observed (Fig. 2c), 
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there would be additionally observed (Fig. 2d) the subsets of variables repeated in two 
(𝐼1,2𝑉𝐶,𝐻,𝐵,𝐸,𝐹;  𝐼1,3𝑉𝐷,𝐺,𝐼,𝐽), (𝐼2,3𝑉𝐴,𝐶,𝐻), or more individuals 𝐼1,2,3𝑉𝐶,𝐻 .  

Typically, a data matrix, which represents our model of the population, consists 
of the associations or aggregations of various size and form depending on a distribution 
of the variables within the population. They can be identified programmatically, or 
manually, using qualitative or quantitative criteria, based on formal or content-wise 
criteria.  

With relatively small binary the matrixes, it can be done manually, based on the 
visual characteristics of the matrix and using a procedure of sorting. Large matrices 
require the use of a computational technology for applying a machine leaning process. 
Particularly, the deep learning procedure of nonnegative matrix factorization14 appears 
adequate for this purpose.  

Our objective here is to explain the logic of the analytical approach rather than 
discussing mathematical and programmatic aspects, as well as the effectiveness of 
various computational procedures for the selection of the aggregation. By this reason, 
we prefer visual analysis and manual operations to be described in our simulation.  
6.1 Visualization of aggregations in multiple observations  
The case-variable associations and aggregations objectively exist in the data matrix, but 
it is not possible to visualize all of them simultaneously. The order of variables, as well 
as the order of cases in the data matrix is flexible. The aggregations and associations not 
always can be directly observed in a single layout of the data matrix. In a relatively 
small data matrix, which is the case in many clinical trials, a visualization of the 
aggregations can be achieved via multiple targeted sorting of the variables and cases. 
Each sorting, however, while making visible one aggregation, can destroy a visibility of 
previous one.  

Fig 3. Heterogeneity of treatment response in the trial population 

Our exploration strategy is determined by our interest in heterogeneity of treatment 
response. To illustrate the idea, within the binary data matrix (Fig. 3A), we have 
selected the aggregations with the largest number of elements, which include the 
variables designating the treatment-outcome complex (𝑇𝑥−𝑌−), ( 𝑇𝑥+𝑌−),  (𝑇𝑥−𝑌+) and 
(𝑇𝑥+𝑌+). On Fig. 3B, the aggregations are color coded. Note that some of the 
aggregations may partially overlap. The list of the aggregations is not exhaustive. 
Smaller aggregations also can be informative. They can be relatively easy explored and 
might be considered for relevant analytical purposes and depending on research interest.  

 
 

A       B 

 

CaseTx/txY/y A B C D E F G H J I K L M N O P Q R S T U V W X Z … Case Tx/txY/y A B S C H V O J D E F G I K L M N P Q R T U W X Z …

1 1 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 … 2 0 0 1 1 0 1 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 0 1 0 …

2 0 0 1 1 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 0 … 7 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 …

3 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 … 14 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 …

4 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 1 1 1 1 1 0 1 … 15 0 0 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 …

5 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 … 18 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 …

6 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 … 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 …

7 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 … 5 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 …

8 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 1 1 0 1 … 6 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 …

9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 … 10 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 …

10 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 1 … 19 0 1 1 1 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 …

11 1 1 0 0 0 0 1 0 0 0 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 1 0 … 9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 …

12 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 … 17 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 …

13 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 … 4 0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 1 1 1 0 1 …

14 0 0 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 … 13 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 …

15 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 … 16 0 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 …

16 0 1 1 1 1 0 0 1 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 … 20 0 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 1 1 0 1 0 1 …

17 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 … 21 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 …

18 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 0 0 1 … 22 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 …

19 0 1 1 1 0 0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 … 3 1 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 …

20 0 1 1 1 1 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 0 1 0 1 1 0 1 … 8 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 0 1 …

21 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1 … 12 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 …

22 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1 … 24 1 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 0 0 …

23 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 0 0 0 1 1 … 11 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0 1 0 …

24 1 1 0 1 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 0 … 23 1 1 1 1 1 0 0 0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 …

25 1 1 0 1 0 1 0 0 1 0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 … 25 1 1 0 1 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 …

… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … …

 𝐴𝑔1    𝐴𝑔2  𝐴𝑔3   𝐴𝑔4   𝐴𝑔5   𝐴𝑔6  𝐴𝑔7 
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The treatment-outcome complexes (𝑇𝑥−𝑌−), ( 𝑇𝑥+𝑌−), (𝑇𝑥−𝑌+) and (𝑇𝑥+𝑌+) 
are indicative of the type of treatment response. The subset of individuals comprising 
the aggregation are assumed to have a type of treatment response designated by the 
treatment-outcome complex. Each group delimited by a single variant of the treatment-
outcome complex is linked to one or several aggregations. Essentially, it represents a 
heterogeneous structure of the treatment response in this group, or more precisely, one 
level of this structure. 
            According to the logic presented on Fig. 2, the factors belonging to the 
categories “sensitive” and “spontaneous” are present, or can possibly be present, or 
should not be expected within the groups designated by the variants of the treatment-
outcome complex (Table 3).  

Table 3.  Aggregations related to various types of treatment response 
 Present Possibly present Impossible Aggregations 

𝑇𝑥−𝑌− 𝑆𝑝− 𝑆𝑡+,𝑆𝑡− 𝑆𝑝+ 𝐴𝑔1
′  

𝑇𝑥+𝑌− 𝑆𝑡−𝑆𝑝− 𝑆𝑝− 𝑆𝑝+, 𝑆𝑡+ 𝐴𝑔1
′ , 𝐴𝑔2

′   
𝑇𝑥−𝑌+ 𝑆𝑝+ 𝑆𝑡+, 𝑆𝑡− 𝑆𝑡+, 𝑆𝑡− Ag3

′ , Ag4
′  Ag5

′  
𝑇𝑥+𝑌+ 𝑆𝑝+ ∪  𝑆𝑡+(𝑆𝑝+ ∩ 𝑆𝑡+) 𝑆𝑡− ∪ 𝑆𝑝− 𝑆𝑡− ∩ 𝑆𝑡− 𝐴𝑔5

′ , 𝐴𝑔6
′ , 𝐴𝑔7

′  

The terms “present,” “possibly present” and “impossible” mean that the 
individual with a relevant treatment - outcome complex respectively does have, possibly 
has, or does not have the factors belonging to a relevant category. Since the aggregations 
are determined on a subset of “known” variables, there is a possibility that factors of 
treatment response can belong to the subset of the “unknown” variables and not 
necessarily (all of them or part of them) should be included into the associated 
aggregations. It does set some limitations to the exploration. On the other hand, it is a 
stimulus to increasing a subset of “known” variables, which is an integrative part of 
exploration strategy.  

Nevertheless, under the assumption Two or more co-occurring events are 
related unless the contrary is proven, each of the explored aggregations, can be 
interpreted as an element of the heterogeneous structure of treatment response and as a 
hypothesis of the relatedness of the relevant type of the treatment response with a cluster 
of variables in the subset of individuals defining the aggregation (with a necessary 
reservation, that relatedness not necessarily means causally).   

7. Mapping conditions 
Mapping the factors belonging to the categories “sensitive” and “spontaneous” to the 
variables describing the population is a step toward revealing a content and causal aspect 
of the heterogeneity of treatment response. The structure presented on Fig.3B and Table 
3 can be described in a greater detail as follows.  

𝐴𝑔1 = 𝐼2,7,14,15,18𝑉(𝑇𝑥−𝑌−),𝐶+,𝐹−,𝐻+,𝐾+,𝑂+,𝑆+,𝑉+; 
𝐴𝑔2 = 𝐼1,5,6,10𝑉(𝑇𝑥+𝑌−),𝐻+,𝐼+,𝐽+,𝑂+,𝑉+; 

𝐴𝑔3 = 𝐼9,7,19𝑉(𝑇𝑥−𝑌+)𝐶−,𝐷−,𝐸−,𝐺−,𝐻−,𝐼−,𝑀−,𝑂−,𝑉−,𝑈−; 
𝐴𝑔4 = 𝐼4,13,16,20𝑉(𝑇𝑥−𝑌+)𝐴+,𝐵+,𝐶+,𝑆−,𝑊+,𝑀+,𝑇+,𝑊+,𝑍+; 

𝐴𝑔5 = 𝐼3,8,21,22𝑉(𝑇𝑥+𝑌+),𝐴+,𝐶+,𝐸+𝐹+,𝐺+,𝐿+,𝑀+,𝑅+,𝑄+,𝑊+,𝑍+; 
𝐴𝑔6 = 𝐼3,8,12,24𝑉(𝑇𝑥+𝑌+),𝐽−,𝑂−,𝑋−; 

𝐴𝑔7
′ = 𝐼11,12,23,24,25𝑉(𝑇𝑥+𝑌+)𝐶−,𝐻−,𝑂−,𝑉−,𝑊−; 

where 𝐼𝑗 is a case, and 𝑉𝑖 − variable.    
A procedure of mapping the factors belonging to the categories “sensitive” and 

“spontaneous” is based on the logic of pairwise comparison of individuals or comparing 
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groups of individuals. The comparisons can be made within and across the 
subpopulations delimited by the treatment-outcome complexes. 
7.1 Pairwise comparisons 
Pairwise comparisons of individuals allow for mapping the properties “Spontaneous” and 
“Sensitive,” i.e., ascribing a status of potential carriers of these properties to some subsets 
of variables. There are 10 unique types of the pairs, each with unique respective logic of 
inferences regarding the mapping. 

Let us consider the following set of individuals: 

  
Table 4 shows all 32 possible types of comparisons (𝐶𝑖) by the treatment-outcome 
complex. Ten unique types of comparisons are highlighted, and the remaining are types 
are redundant.  

Table 4. Pairwise Comparisons 

 

Unique types of comparisons highlighted in Table 4 are shown separately in 
Table 5, demonstrating similarity-dissimilarity of the compared treatment-outcome 
complexes. 

Table 5. Unique Types of Pairwise Comparisons 

 
7.2 Logic of mapping via pairwise comparison 

In a small group of observations, we can compare them pairwise, explore 
similarity and dissimilarities in their descriptions, and link them to the treatment-
outcome complexes, which in turn enable mapping the properties associated with the 
categories “Spontaneous” and “Sensitive” among the sets of the variables describing the 
individuals. 

Within the binary model it can be done via eliminating the variables that cannot 
belong to the relevant category. For instance, in the pair of individuals 𝐼 𝑗 and 𝐼 𝑗+1, the 
treatment-outcome complex 𝑇𝑥−𝑌− indicates, that the individual 𝐼𝑗 does not have the 
property designated by the category “Spontaneous.” It means that in individual 𝐼 𝑗+1, the 

 
… 

𝐼1 = (1,0,𝐴1 … ,𝛼1 … ) 
𝐼2 = (0,0,𝐴2 … ,𝛼2 … ) 
𝐼3 = (1,0,𝐴3 … ,𝛼3 … ) 
𝐼4 = (0,1,𝐴4 … ,𝛼4 …) 
𝐼5 = (1,0,𝐴5 … ,𝛼5 … ) 
𝐼6 = (0,0,𝐴6 … ,𝛼6 … ) 
𝐼7 = (1,0,𝐴7 … ,𝛼7 … ) 
𝐼8 = (0,1,𝐴8 … ,𝛼8 …) 

I1 I2 I3 I4

T+ Y+ T- Y- T+ Y- T- Y+

I1 T+ Y+ N/A C1 C2 C3

I2 T- Y- C1 N/A C4 C5

I3 T+ Y- C2 C4 N/A C6

I4 T- Y+ C3 C5 C6 N/A

I5 T+ Y+ C7 C1 C2 C3

I6 T- Y- C1 C8 C4 C5

I7 T+ Y- C2 C4 C9 C6

I8 T- Y+ C3 C5 C6 C10

C1 T- Y- vs. T+ Y+

C2 T+ Y- vs. T+ Y+

C3 T- Y+ vs. T+ Y+

C4 T+ Y- vs. T- Y-

C5 T- Y+ vs. T- Y-

C6 T- Y+ vs. T+ Y-

C7 T+ Y+ vs. T+ Y+

C8 T- Y- vs. T- Y-

C9 T+ Y- vs. T+ Y-

C10 T- Y+ vs. T- Y+
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subset of variables describing “similar” to those in the individual 𝐼 𝑗, also does not 
contain the variables belonging to the category “Spontaneous,” but among the 
“dissimilar” variables  these factors can be, but not necessarily, present. 

Each one of the 10 possible unique pairwise comparisons has a specific pathway 
for mapping the properties 𝑆𝑝 and 𝑆𝑡. The algorithm covering the mapping in all these 
variants should utilize the logic, examples of which (C1 and C2) are shown below. 

As a reminder, all logical operations are made under the assumption that two or 
more co-occurring events are related unless the contrary is proven. Each individual 
(case) is described with a set of binary variables including treatment, outcome and a set 
of known (𝐼𝑖) and unknown (𝛼𝑖) conditions.  
Example 1 (C2) 

{
 (𝑇𝑥+𝑌+), 𝐼1
 (𝑇𝑥+𝑌−), 𝐼2

} ; 

where 𝐼𝑖 = (𝐴𝑖 , 𝐵𝑖, 𝐶𝑖… ;𝛼𝑖). 
In these individuals, the treatment was identical, but the outcomes were 

different. Comparing these individuals does not allow any reasonable guess regarding 
the effect of treatment. The only possible explanation of difference in the outcomes 
could be the difference in the response of the individuals to the treatment.    

Each member of the pair has a subset of “known” variables identical (“similar”) 
to the counterpart  
𝐼1
′ = 𝐼3

′ ; such that 𝐼1′ + 𝐼3′ = 0,2; and a subset of complementary (“dissimilar”) 
conditions  

𝐼1
′′¬𝐼3

′′; 
such that 𝐼1′′ + 𝐼3′′ = 1. 
𝐼1 = (𝑇𝑥+𝑌+), 𝐼1

′ , 𝐼1
′′, 𝛼1; 

𝐼3 = (𝑇𝑥+𝑌−), 𝐼3
′ , 𝐼3

′′𝛼3. 
Since the treatment was identical in both individuals, the difference in the 

outcome (𝑌 − 𝑦) can be attributed only to the difference in the properties of the 
individuals and conditions, under which the treatments have been conducted (𝐼1 − 𝐼3).  
Since (𝑇𝑥+𝑌−) ⊄ 𝑆𝑝+, and (𝑇𝑥+𝑌−) ⊄ 𝑆𝑡+ 

Then 
𝐼1 = 𝐼1

′ , 𝐼1
′′, 𝛼1; 

𝐼3 = 𝐼3
′ , 𝐼3

′′, 𝛼3; 
𝐼1
′ , 𝐼3

′ , 𝐼3
′′, 𝛼2 ⊄ 𝑆𝑝+; 

𝐼1
′ , 𝐼3

′ , 𝐼3
′′, 𝛼3 ⊄ 𝑆𝑡+. 

𝐼1
′′, 𝛼1 ◻ ∋ [𝑆𝑝 ∪ 𝑆𝑡 ∪ (𝑆𝑝 ∪ 𝑆𝑡)]; 15 

or 
𝐼1
′′◇ ∋ [𝑆𝑝+ ∪ 𝑆𝑡+ ∪ (𝑆𝑝+ ∩ 𝑆𝑡+ )]; 

i.e., at least one or more variables exerting the property 𝑆𝑝 or 𝑆𝑡 or both can possibly be 
located to the segment 𝐼1′′. Neither of variables describing 𝐼3, as well as 𝐼1′  represent 
these properties. 

Example 2 (C1) 

{
 (𝑇𝑥+𝑌+), 𝐼1
 (𝑇𝑥−𝑌−), 𝐼2,

}; 

where 𝐼𝑖 = (𝐴𝑖 , 𝐵𝑖, 𝐶𝑖… ;𝛼𝑖). 
Under the accepted assumptions, the difference in the outcomes can be 

explained either by the difference in treatment, or the different conditions. The subsets 
of “similar” variables can be eliminated from the mapping. 

Similar to C2, 
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𝐼1 = 𝐼1
′𝑎 , 𝐼1

′′𝑎, 𝛼1;   
𝐼2 = 𝐼2

′𝑎 , 𝐼2
′′𝑎, 𝛼2; 

𝐼1
′𝑎 = 𝐼2

′𝑎; 
𝐼1
′′𝑎¬𝐼2

′′𝑎; 
𝐼2, 𝛼2 ⊄ 𝑆𝑝+; 
𝐼1
′𝑎, 𝐼2

′𝑎, 𝐼2
′′𝑎, 𝛼2 ⊄ 𝑆𝑝+; 

𝐼1
′′𝑎, 𝛼1 ◻ ∋ [𝑆𝑝+ ∪ 𝑆𝑡+ ∪ (𝑆𝑝+ ∩ 𝑆𝑡+ )]; 
𝐼1
′′𝑎◇ ∋ [𝑆𝑝+ ∪ 𝑆𝑡+ ∪ (𝑆𝑝+ ∩ 𝑆𝑡+ )]; 
𝐼1
′𝑎, 𝐼2

′𝑎, 𝐼2
′′𝑎, 𝛼2◇ ∋ 𝑆𝑡+. 

i.e., the set 𝐼2 as well as the subset 𝐼1′𝑎 do not include a variable exerting the capacity for 
spontaneous recovery 𝑆𝑝+; the variable presenting the property of sensitivity 𝑆𝑡+ to the 
treatment 𝑇𝑥+ can reside both in the set 𝐼2, 𝛼2 and 𝐼2, 𝛼2.  
7.3 Mapping in multiple observations  
Let us consider the set of individuals (𝑻𝒙, 𝒀), 𝐼𝐽, 𝛼𝑗, where (𝑻𝒙, 𝒀) is the variable of the 
treatment-outcome complex, 𝐼𝐽 – a set of known variables, and 𝛼𝑗 - a set of unobserved 
or unknown variables describing individual 𝐼𝐽: 

(𝑻𝒙, 𝒀), 𝐼𝐽, 𝛼𝑗 =

{
 
 
 
 

 
 
 
 

(𝑇𝑥+𝑌−), 𝐼𝑘 , 𝛼𝑘
(𝑇𝑥+𝑌−), 𝐼𝑘+1, 𝛼𝑘+1

…
(𝑇𝑥−𝑌−), 𝐼𝑘+2, 𝛼𝑘+2
(𝑇𝑥−𝑌−), 𝐼𝑘+3, 𝛼𝑘+3

…
(𝑇𝑥−𝑌+), 𝐼𝑙 , 𝛼𝑙

…
(𝑇𝑥+𝑌+), 𝐼𝑚, 𝛼𝑚

… }
 
 
 
 

 
 
 
 

. 

The variables potentially presenting the categories “Sensitive” and 
“Spontaneous” can be found via elimination of the variables, which are known that they 
are not related to these categories. For example, a description of individuals 𝐼𝑘 and 𝐼𝑘+1 
who have the treatment-outcome complex 𝑇𝑥+𝑌− includes neither property 𝑆𝑡+, nor 
𝑆𝑝+, variables. The subset of known variables potentially related to these properties, can 
be found via eliminating the variables of the subset 𝐼𝑘 + 𝐼𝑘+1from the set of variables 
describing the population:  

𝑆1 = (𝑻𝒙, 𝒀)(𝑨,𝑩, 𝑪,… , 𝒁)𝛼𝑗 − (𝐼𝑘 + 𝐼𝑘+1). 
Apparently, 𝑆1 includes the variables potentially presenting 𝑆𝑡+, 𝑆𝑝+, or both. 
Considering individuals with the treatment outcome complex 𝑇𝑥−𝑌−, e.g., 𝐼𝑘+2 and 
𝐼𝑘+3, a description of which does not include the property 𝑆𝑝+, makes possible mapping 
out the property (𝑆𝑝+) to the subset  

𝑆2 = (𝑻𝒙, 𝒀)(𝑨,𝑩, 𝑪,… , 𝒁)𝛼𝑗 − (𝐼𝑘+2 + 𝐼𝑘+3); 
Considering both the individuals with both 𝑇𝑥+𝑌− and 𝑇𝑥−𝑌− makes possible narrowing 
down the set of variables possibly related to 𝑆𝑝+: 

𝑆3 = (𝑻𝒙, 𝒀)(𝑨,𝑩, 𝑪,… , 𝒁)𝛼𝑗 − (𝐼𝑘 + 𝐼𝑘+1 + 𝐼𝑘+2 + 𝐼𝑘+3). 
The variables from the sets 𝑆1, 𝑆2 and 𝑆3, can be unevenly distributed among the 
individuals creating either associations and/or aggregations in some subsets of the 
individuals, or being single entities in other cases, and having some of individuals or 
subsets of individuals spared. 

8. Interpretation of aggregations 
Until this point, we considered the sets of variables constituting aggregations primarily 
from a quantitative angle. Such a set can be a cluster of symbols not having an 
interpretable meaning, but also it can have an identifiable connotation and to be a 
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readable “word,” or to be a combination of meaningful and “meaningless” subsets. 
Revealing the meaning and content of the aggregations may lead to reducing the 
dimensionality of the description of the population. Besides, it might facilitate 
understanding the structure of heterogeneity and mechanisms of treatment response.  

The process of the interpretation of the “words” in many instances is similar, but 
not identical, to the process we described for the interpretation of principle components. 

16  There is a similarity of the operations in the frame of heuristics, iii as well as 
psychological and epistemological aspects of the interpretation. The major difference is 
that within the aggregation, the “word” is identical in all individuals, i.e., a correlation 
between the “letters” across the individuals is 1.0. Therefore, unlike the principle 
components, the content of aggregations does not present contrasting positive and 
negative “images.” The meaning of the “word” should be surmised, revealed, directly 
from the combination of the events, things, or properties denoted by the “letters” 
comprising the “word.” A further investigation of this insufficiently studied area is 
critical for the progress in the “human-machine” interaction in the process of analysis of 
complex relationships and mechanisms of the treatment response and treatment effect.      

9. Constructing hypotheses via aggregations 
9.1 Deterministic hypothesis 
Above, we have described a heuristic to identify the variables potentially indicative of 
the sensitivity to the treatment and capacity for spontaneous recovery - the properties 
which determine the treatment response. This identification is based on analysis of 
aggregations, members of which assumed related to each other. The aggregation 
including a specific treatment-outcome complex and a subset of variables (conditions, 
properties) is a diagrammatic or symbolic expression for a data driven hypothesis about 
the relatedness of the outcome of the specified treatment with the subset of “generating 
conditions” in the subset of individuals comprising the aggregation. 

Our explorations stem from logic of Francis Bacon,17 who believed that a cause 
underlying a phenomenon should be deduced by elimination of the factors not matching 
the occurrence of the phenomenon, and inductive reasoning should account for the 
agreement, difference, and concomitant variation of the factors. For example, “…if an 
army is successful when commanded by Essex, and not successful when not 
commanded by Essex: and when it is more or less successful according to the degree of 
involvement of Essex as its commander, then it is scientifically reasonable to say that 
being commanded by Essex is causally related to the army's success.”18 Importantly, 
Bacon emphasized that this inference is not a final conclusion. Rather this is only a 
hypothesis, which must be scrutinized and compared to other hypotheses.   

Using this logic, in our analysis of aggregations the hypothesis is deduced from 
a series of eliminations of the conditions not coinciding with the outcome of interest, 
and the inclusion of the remaining conditions based on the assumption that two or more 
co-occurring events are related unless the contrary is proven, i.e., essentially, the 
generated hypothesis is deterministic.  The existence of the subset of unknown or 
unobserved variables 𝛼𝑖 implies that under any circumstances some share of uncertainty 
remains despite the apparent determinism. 

 
iiiThe major elements of the strategy of the interpretation of principal components include: 1)  
presenting variables in a comparative way, e.g., "younger" vs. "older" instead of "age;" 2) using 
mathematical and logical inversion, the development of two contrasting (positive and negative),  
but still logically equivalent representations of each retained component; 3) sorting absolute 
 values of loadings in a descending order; 4) contrasting positive and negative characteristics [16] 
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9.2 Quantitative characteristics of aggregations and alternative hypothesis 
Thus, the aggregation represents a deterministic hypothesis of the relatedness between 
its elements, and this hypothesis can be and should be contrasted with an alternative 
hypothesis of random association of the elements. Analysis of the heterogeneity of 
treatment response in this dualistic manner raises numerous mathematical, statistical and 
computational problems, which are beyond the objectives of this paper. We limit 
ourselves to a description of a combination of indices including the size of the 
aggregation, the probability of random gathering of the elements of the aggregation, and 
“density” of the aggregation, which in our opinion could be helpful and informative for 
the analysis, and also, which opens a field for classic and modern statistical and 
computational methods.  

The alternative to the deterministic hypothesis above is the hypothesis of 
random gathering of the elements comprising the association/aggregation:  
𝑃𝑟(𝐴𝑔1

′ ) = [𝑃𝑟(𝑇𝑥+𝑌+) ∗ 𝑃𝑟(𝐶−) ∗ 𝑃𝑟(𝐻+) ∗ 𝑃𝑟(𝑂+) ∗ 𝑃𝑟(𝑆+) ∗ 𝑃𝑟(𝑉+)]
| 𝐼3,8,12|. 

It can lead to computing a size (𝑆𝑧) of the aggregation expected under a condition of 
random gathering of the elements comprising the association/aggregation: 

𝑆𝑧𝐴𝑔1(𝑒𝑥𝑝) = 𝑛𝐴𝑔1′𝑃𝑟(𝐴𝑔1
′ ); 

where 𝑛𝐴𝑔1′  − a size of the matrix.  
An observed size of the aggregation is a product of the cardinalities of the set of 
variables and set of individuals comprising the association/aggregation: 

𝑆𝑧𝐴𝑔1(𝑜𝑏𝑠) = |𝐼2,7,14,15,18| ∗ |𝑽(𝑇𝑥−𝑌−),𝐶+,𝐹−,𝐻+,𝐾+,𝑂+,𝑆+,𝑉+|. 
A comparison of the expected and observed size of the aggregation can be a basis for 
examining the hypothesis of random gathering of the elements comprising the 
association/aggregation. 

To quantitatively assess on average the relatedness of the elements within the 
aggregation in the frame of a random hypothesis, the index of “density” (𝐷𝑛) of the 
aggregation can be suggested, which is  

𝐷𝑛 =
𝑃𝑟(𝐴𝑔1

′ )

𝑆𝐴𝑔1(𝑜𝑏𝑠)
 .  

Also, it can be used to assess separately any part of the aggregation or any pair of the 
elements.  
Apparently, deriving from these indices, it is possible to obtain a comprehensive 
statistical description of the heterogeneous population, which can be further analyzed 
using classic and modern statistical and computational methods.    
10. Relationships between treatment effect and treatment 
response 
An individual outcome is a result of an individual response of a subject to the treatment. 
The treatment effect is the integration of individual responses to the treatment. While 
being generalized and summarized, i.e., abstracted from the individuality, the individual 
and/or small group outcomes developed in response to the treatment lay the ground for 
the concept of the treatment effect as it is defined in a clinical trial, and operationalized 
as the indices of absolute and relative risk reduction. Therefore, the relationships 
between treatment effect and treatment response are not symmetrical. The indices of 
treatment effect can be directly computed from the data on the treatment response, while 
the opposite operation cannot be performed directly. 

The heterogeneity of treatment response and heterogeneity of treatment effect, 
therefore, are two different ways of looking at the diversity of the ways of interaction of 
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the individuals comprising a population with the treatments, both necessary to contribute 
to solving the problem of individualization of treatment.  

10.1 From treatment response to treatment effect  
The heterogeneous structure of a population exposed to treatment 𝑇𝑥− and 𝑇𝑥+ 

includes the following subsets. 
𝑆𝑇𝑥−𝑌− = {𝐴𝑔𝑇𝑥−𝑌−|(𝑇𝑥−𝑌−) ∈  𝐴𝑔𝑇𝑥−𝑌−}; 
𝑆𝑇𝑥−𝑌+ = {𝐴𝑔𝑇𝑥−𝑌+|(𝑇𝑥−𝑌+) ∈  𝐴𝑔𝑇𝑥−𝑌+}; 
𝑆𝑇𝑥+𝑌− = {𝐴𝑔𝑇𝑥+𝑌−|(𝑇𝑥+𝑌−) ∈  𝐴𝑔𝑇𝑥+𝑌−}; 
 𝑆𝑇𝑥+𝑌+ = {𝐴𝑔𝑇𝑥+𝑌+|(𝑇𝑥+𝑌+) ∈  𝐴𝑔𝑇𝑥+𝑌+}; 

where 𝑆𝑇𝑥∗𝑌∗ is a set of aggregations including the variable 𝑇𝑥∗𝑌∗ and describing the 
population with the following heterogeneous structure. 

𝑆𝑇𝑥−𝑌− = 𝐴𝑔𝑖, … , 𝐴𝑔𝑖+𝑎; 
𝑆𝑇𝑥−𝑌+ = 𝐴𝑔𝑘 , … , 𝐴𝑔𝑘+𝑏; 
𝑆𝑇𝑥+𝑌− = 𝐴𝑔𝑙 , … , 𝐴𝑔𝑙+𝑐; 
𝑆𝑇𝑥+𝑌+ = 𝐴𝑔𝑚, … , 𝐴𝑔𝑚+𝑑 . 

The size of the sets 𝑆𝑇𝑥∗𝑌∗ is  
|𝑆𝑇𝑥−𝑌−| = |𝐴𝑔𝑖 +⋯+𝐴𝑔𝑖+𝑎|; 
|𝑆𝑇𝑥−𝑌+| = |𝐴𝑔𝑘 +⋯+ 𝐴𝑔𝑘+𝑏|; 
|𝑆𝑇𝑥+𝑌−| = |𝐴𝑔𝑙 +⋯+ 𝐴𝑔𝑙+𝑐|; 
|𝑆𝑇𝑥+𝑌+|= |𝐴𝑔𝑚 +⋯+ 𝐴𝑔𝑚+𝑑|. 

The index of absolute risk reduction (𝐴𝑅𝑅), which is one of the major indicators of the 
treatment effect used in clinical trials, is  

𝐴𝑅𝑅 = 𝑃𝑟(𝑌−
𝑐) − 𝑃𝑟(𝑌−

𝑎) =
|𝑆𝑇𝑥−𝑌−|

|𝑆𝑇𝑥−𝑌−| + |𝑆𝑇𝑥−𝑌+|
−

|𝑆𝑇𝑥+𝑌−|

|𝑆𝑇𝑥+𝑌−| + |𝑆𝑇𝑥+𝑌+|
; 

i.e., the data on the treatment response can be directly “translated” into the language of 
the treatment effect. It is true for the entire population if the description of the 
heterogenous structure of the population is complete. Also, it is true for a segment of the 
population delimited by a certain condition (e.g., subgroup analysis).  
10.2 From treatment effect to treatment response 

Contrary, the “back translation” from the language of treatment effect to 
treatment response cannot be performed directly from the indices of the treatment effect 
and its variability: parts cannot be directly identified from the sum. They can be 
identified empirically, or such identification requires a chain of analytical steps 
including using complex classic and modern methods. In the cited article, using a 
“training set - validation set” design and complex modern methods, Lamont, et al. 
(2018), identified the predicted individual outcomes in a randomized clinical trial. The 
individual prediction of the treatment effect is one (but not only) of important steps in 
the individualization of treatment, and this study, undoubtedly, is a step in a 
technological progress in this area.  

It should be noted, however, that since 1960s, numerous studies were conducted 
using a “training set - validation set” design and classic statistical methods to identify 
the individual outcome in the context of computational diagnostics, automatic 
classification, image recognition, etc. It became clear that although the individual effect 
(diagnosis, classification, image, etc.) can be satisfactory re-produced in the validation 
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set, the extrapolation of the results to a “real world” population (“generalization” of 
results of a clinical trial) is problematic because a distribution of the variables 
designating treatment, outcomes and conditions in these populations may have 
substantial differences. The response to the treatment in the non-experimental 
population is not necessarily correspondent to the treatment effect defined in the 
experimental population.  

10.2     Treatment effect, treatment response, individualized treatment  
The problem of predicting the treatment effect in the non-experimental population 

is substantially mitigated with propensity scoring, 19 or propensity score matching (PSM). 
Note, however, that the propensity scores could be computed, and the predictions could 
be made based on analysis of the distributions in the entire experimental (trial, training 
set) and entire non-experimental populations, and the effect can be predicted for the 
“collective” rather than individuals. The identification of the predicted individual effect 
will take the efforts and have the limitations described above. 

In the “real world,” the decision on the individualized treatment, however, are to 
be made when the data on the entire population are not necessarily available. Rather 
these decisions are being made in the populations with unknown distributions of 
variables, in the groups with incomplete data, small samples, and in non-randomly 
selected individuals, under conditions that the rules established on the trial population or 
a training set simply cannot be effective, or even applicable.   

Intuitively, predictions on the treatment response for individual cases and small 
groups can be made on a basis of “similarity” of the relevant cases and small groups in 
the experimental and non-experimental populations, and not necessarily with a reference 
to the entirety of these populations.  

At a first glance, it may appear paradoxical. However, it should be argued that 
the trial population and the non-experimental population, in which the predictions are to 
be made, are the samples of a general population of the patients. The aggregation 
identified in the trial is a group of elements non-randomly related to each other. It is 
reasonable to suggest then, that these non-random relationships may exist in the general 
population and, therefore, they may exist in the non-experimental population, in spite 
the natural differences in the distributions between the samples. The interpretation of the 
“similar” clusters of the conditions can provide additional content-wise support for the 
inference.   

If this suggestion is correct, the predictions can be made for the cases in non-
experimental populations, in which there are combinations of conditions are identical to 
those detected in the aggregations of the experimental (trial, training set) population.  

The methods of Bayes statistics with a reference to the estimates of the 
incidence of relevant factors in the general population could be potentially effective in 
quantitative characterization of these predictions, and modern methods of stochastic 
modeling can be helpful in mitigating possible power problems.  

The predictions of this kind, however, cannot be made for the cases, where such 
identical clusters of conditions were not observed. They can be possible only after 
additional variables become “known” and potentially related to the outcome. With this 
substantial limitation, analysis of the treatment response can be the instrument of choice 
for the assessment of factors and prediction of the results of treatment in single cases 
and small groups, which is a routine objective in clinical practice. Also, this approach 
can apply for safety monitoring of clinical trials12 and for analysis of the factors 
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influencing the heterogeneity of treatment response in a clinical trial population as far as 
the trial is complete. Generally, it can be applicable in populations with incomplete and 
non-systematically collected data, which is the case in a numerous “real world” clinical 
and social situations. 
Discussion  

The treatment effect and treatment response are the interrelated, but not 
identical aspects of the treatment process. While the treatment effect is thoroughly 
studied, phenomena and factors of the response of subjects to treatment are not 
systematically studied yet.  

 As noted above, people react to treatment differently: while being exposed to 
the same treatment, various individuals have different outcomes, and while being 
exposed to two different treatments, various individuals can have either the same 
outcome, or different outcomes. Under the term of treatment response, we mean the way 
the individuals react to treatment qualitatively and quantitatively. At a population level, 
any “real world” population exposed to treatment or clinical trial population is 
inherently heterogeneous with regard to the treatment response, meaning qualitative and 
quantitative diversity of the ways of reacting to treatment, and factors determining this 
response among individuals within a population.  

Statistical analysis of the results of a randomized clinical trial, which is a “gold 
standard” for the assessment of the treatment effect, derives from a set of assumptions 
including, but not limited to the following. 
1. Subjects are anonymous and interchangeable.   
2. Two or more events co-occur by chance unless the contrary is proven.  
3. Numerous subjects are required for making valid inferences.  

Our analysis of the heterogeneity of treatment response derives from a set of 
assumptions which are not acceptable for statistics but are natural and necessary for 
qualitative explorations and inferences, and particularly, for clinical thinking. 
I. Each subject is a unique individual.  
II. Two or more co-occurring events are related unless the contrary is proven. 
III. Valid inferences potentially can be made from single cases and small number of 

cases.  
Following these assumptions, we have introduced a concept of aggregation as a 

central concept of our approach. The aggregation presents the association of the 
elements of the aggregation, but unlike a correlation, it refers not to the entire 
population, but rather to a directly observed cluster of variables having co-occurred in a 
subset of individuals.  

To avoid any misunderstanding, it is necessary to emphasize one more time that 
while the assumption Each subject is a unique individual should not raise any objective 
out of the boundaries of formal statistical operations, the assumptions Two or more co-
occurring events are related unless the contrary is proven and Valid inferences 
potentially can be made from single cases and small number of cases are not assertions, 
they are the assumptions in a genuine meaning of this term. They designate a starting 
position of analysis, only a hypothesis, which must be scrutinized and compared to other 
hypotheses in the process of analysis.  

For an unprejudiced investigator, the assumption of relatedness in the concept 
of aggregation is as legitimate as the assumption of random co-occurrence in traditional 
statistical analysis. This is a starting position and the framework, in which the 
phenomena are considered. The hypothesis of relatedness of the elements of the 
aggregations in analysis of the treatment response subject to contrasting with the 

 
3115



hypothesis of their random co-occurrence. In turn, the hypothesis of random co-
occurrence in the assessment of treatment effect subject to contrasting with the 
hypothesis of the relatedness between subjects, events and relationships in statistical 
hypotheses testing. 

Since the elements assumed related, the aggregation including the variables of 
treatment, outcome, and conditions can be interpreted as a data driven deterministic (in a 
sense of “deterministic probability”20) hypothesis of the relatedness of the treatment, the 
outcome, and the conditions in the given subset of individuals. The hypothesis of 
relatedness is subject to contrasting with a hypothesis of random co-occurrence of the 
elements of the aggregation, which can be examined by the rules of statistics. 

Another important concept is the treatment-outcome complex, which considers 
treatment and outcome not separately but rather as a unit. In our analysis, each patient is 
classified by four possible types of a treatment-outcome complex (𝑇𝑥+𝑌+, 𝑇𝑥+𝑌−, 
𝑇𝑥−𝑌+,  𝑇𝑥−𝑌−). There are two important ramifications.  

Within each of the classes, more than one aggregation can be observed. It 
indicates hypothetically that among individuals exposed to the same treatment the same 
outcome might be related to different subsets of conditions or causative factors. It is true 
for both negative and positive outcomes. It corresponds with historical records, 
epidemiological observations, experimental (trials) data and clinical experience: the 
subpopulation with a negative outcome includes the subsets, in which the death caused 
by diverse agents (All Cause Deaths and the death caused by the target disorder). A 
subpopulation with a positive outcome consists of patients who recovered owing to the 
treatment, and those who recovered spontaneously. Each of these groups also is 
heterogeneous.11 This type of heterogeneity is not a primary focus of studies on the 
treatment effect. Just the opposite, there are substantial difficulties with accounting for 
these factors in the methodology and interpretation of randomized clinical trials. 
Contrary, a distinctive capacity of the treatment response approach is a possibility of 
exploring directly this aspect of heterogeneity, which makes it suitable for the use in 
clinical settings, in exploring heterogeneity of populations including clinical trials and 
observational data, for monitoring safety of clinical trials, etc.  

The concept of a treatment-outcome complex is logically related to the 
categories “sensitivity to treatment” (𝑆𝑡), and “capacity for spontaneous recovery” (𝑆𝑝). 
Together, they create a logical structure that makes possible  
• to infer, deriving from the data on the treatment-outcome complex, the presence or 
absence of the factors covered by the categories 𝑆𝑡 and 𝑆𝑝 in an individual patient;  
• via comparing individuals, to map the variables potentially indicating the factors 
included in the categories 𝑆𝑡 and 𝑆𝑝. 
• from the data on the presence or absence of the categories 𝑆𝑡 and 𝑆𝑝, or on the factors 
belonging to these categories, to predict the response to the treatment in an individual 
patient, or in a group of patients. 

Thus, the heterogeneity of treatment response is represented by a set of 
aggregations. Deriving from the assumptions I, II, and III, the aggregation represents a 
deterministic hypothesis of the relatedness between treatment, outcome and conditions 
in the subset of individuals comprising the aggregation.  

An alternative to the null deterministic hypothesis of the relatedness of the 
outcome, treatment, and conditions should be a hypothesis of random gathering of the 
elements of the aggregation.  

The major characteristics of the approaches are compiled in Table 6. 
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Table 6. The major conceptual characteristics of heterogeneity of  

treatment effect and treatment response 
Concept Treatment effect Treatment response 

Experimental and 
observational study 
objectives  

 
Hypothesis testing 

Exploration 
Hypotheses generation 
 

 
 
Assumptions 

• Subjects are anonymous 
and interchangeable.   

• Two or more events co-
occur by chance unless the 
contrary is proven.  

• Numerous subjects are 
required for making valid 
inferences. 

• Each subject is a unique individual.  
• Two or more co-occurring events 

are related unless the contrary is 
proven.  

• Valid inferences potentially can be 
made from single cases and small 
number of cases.  

Categories of analysis Risk  Sensitivity to treatment 
Capacity for spontaneous recovery 

Hypothesis Theory driven Data driven 
Concept of relatedness Correlation, i.e., (in a broad 

sense) any statistical 
association 

Aggregation as a subset of individuals 
(cases) with an identical set of 
variables   

Measure of relatedness  Absolute and relative risk 
reduction 

Co-occurrence of indices of treatment, 
outcome and conditions 

 
Categories of 
heterogeneity 

 
Variability of risk  

Individuals and groups with  
• diverse types of treatment response;  
• the same response under different 

treatment;  
• the same response different conditions 

Logic  Neyman-Rubin Causal 
Model  

Agreement, difference, and 
concomitant variation (Francis Bacon) 

 
Vector of analysis of 
heterogeneity 

 
From risk for the entire 
population, to identifying 
groups, subgroups, and 
individuals at risk of 
negative outcome 

From identifying individuals with 
positive and negative outcome, to 
identifying subgroups and groups with 
distinct clusters of conditions, to 
identifying risk for the entire 
population  

Null hypothesis Random association 
between treatment, outcome 
and conditions 

Relatedness of treatment, outcome and 
conditions 

Alternative hypothesis Relatedness of treatment, 
outcome and conditions 

Random association between 
treatment, outcome and conditions 

 
Uncertainty 

 
Measured in accordance 
with concepts and rules of 
statistics. 

Accounted for as a fact of limited 
knowledge, assuming an existence of 
unknown variables. Assessed 
statistically in the frame of the 
alternative hypothesis of random co-
occurring the events. 

 
Outcome prediction  

Prediction at the level of the 
entire population and 
groups. Identifying 
individual predicted 
outcome is possible via 
multivariable analyses 

Can be applied to individuals, 
subgroups and groups of the non-
experimental population, in which the 
clusters of the conditions identical to 
those in the experimental population 
are identified.  

Extrapolation of results 
from experimental to 

Problematic because of the 
difference of the 

Intuitively, applicable to individuals 
and groups with combinations of 
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non-experimental 
population  

distribution of treatment, 
outcome and conditions in 
experimental and not-
experimental population 

conditions identical to those in the 
aggregations. The outcome in the 
entities with different conditions 
cannot be predicted 

Thus, analysis of heterogeneity of the population exposed to treatment can be 
and should be performed from two positions, the treatment effect and treatment 
response, exploring different aspects of the relationships between the individual, 
treatment, and conditions. Applying these approaches in parallel, we obtain two not 
necessarily equal images of these relationships of treatment, conditions and outcome. 
One of the images is based on the theory driven hypothesis in the context of analysis of 
treatment effect. Another one is guided by the data driven hypothesis developed in the 
context of analysis of treatment response, which, upon the interpretation, can give a rise 
to a new theory-based hypothesis.  

The estimates of the treatment effect and treatment response can completely 
correspond at the population level, as well as at the level of individual level. However, 
at the intermediate, i.e., small group and group level, the ways and the targets of the 
analyses are different. Understanding and reconciling the differences defines a content 
and becomes both the major problem and the major objective of further analysis of 
heterogeneity of the population exposed to treatment, which should facilitate exploring 
the mechanisms and to improve prediction of treatment response and treatment effect. 
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