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Abstract.  The Canadian Census edits and imputes missing and erroneous data using a 
nearest neighbor donor imputation methodology. The choice of auxiliary features and 
their respective weights used in the calculation of the similarity measure for the nearest 
neighbor algorithm can have a large impact on the quality of said imputation strategy. In 
the past, this choice was mainly influenced by subject matter expertise. For the 2016 
Census however, in particular for some questions related to immigration, it was decided 
that feature selection would be employed to aid in the choice of features. This paper will 
describe and evaluate the chosen method for the 2016 Census, the Relief algorithm, as 
well as test and compare it with other feature selection methods. The methods are tested 
using Monte Carlo simulation studies with data on immigration category, taken from the 
2016 Census, under various response mechanisms. 
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The content of this paper represents the position of the author and may not necessarily 
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1. Introduction 

     The editing and imputation of survey data is an important and time consuming 
undertaking within the survey process. At Statistics Canada, imputation methods vary 
from survey to survey, however one that is commonly used is nearest neighbor donor 
imputation. This is the method employed by the Canadian Edit and Imputation System 
(CANCEIS), the system used to impute missing values from Canada’s Census. Nearest 
neighbor donor imputation finds, for each record requiring imputation (failed record), the 
most similar records (nearest neighbors) among those not requiring imputation (passed 
records). Among these most similar records, a single record is chosen at random to be the 
donor record who “donates” its value for the feature(s) requiring imputation to the failed 
record. This differs slightly from the traditional nearest neighbor algorithm seen in many 
machine learning applications where the values of the nearest neighbors are either 
averaged (for numeric features) or the mode (for categorical features) is taken.  

The quality of the imputation procedure depends largely on the calculation of the 
similarity measure used to determine the nearest neighbors. Rather than Euclidian 
distance which is typically used in the nearest neighbor algorithm, CANCEIS employs a 
distance metric that is equal to the weighted sum of penalty functions to calculate 
similarity. 
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𝐷𝑓𝑝 = ∑ 𝑤𝑖𝐷𝑖(𝑉𝑓𝑖, 𝑉𝑝𝑖)

𝑖

  

Where 𝑤𝑖 is a weight assigned to feature i and 𝐷𝑖(𝑉𝑓𝑖, 𝑉𝑝𝑖) is a penalty function on [0,1] 
determining similarity between records f and p for feature i. This distance metric is 
invariant to scale and allows the user to choose from a host of penalty functions designed 
for various feature types; survey data is often categorical, something not easily handled 
by traditional similarity metrics. The weight, 𝑤𝑖, allows the user the ability to assign a 
larger weight to features with more predictive ability of the variable requiring imputation. 
Thus, there are two main decisions to be made by the user with concerns to this similarity 
measure; which features to include in the similarity formula, and once the feature set is 
chosen, how to weight them? 
 This paper will look to address these questions specifically with regard to the 
weighting of the selected features. The first section will give a brief overview of a sample 
of selected feature weighting methods. The second section will describe a dataset from 
the 2016 Canadian Census which will be used to compare the previously described 
feature selection methods. The third section will describe a simulation study under which 
imputation is performed using weights obtained by the described feature selection 
methods. Results and conclusion will follow. 

 
2. Feature Selection Methods 

In the past, imputation strategies for the Canadian Census made the decision of 
which features to use and how to weight them based largely on subject matter expertise. 
While the resulting imputations went through many rounds of certification and are 
undoubtedly of high quality, the sometimes subjective nature of decisions made solely 
based on subject matter expertise can lead to potential losses in quality. For instance, it 
may be clear that both sex and geography are variables that are predictive of income and 
eye colour is not, but is geography more predictive than sex? How much more? Twice as 
much? Three times as much? These are decisions that are not always clear and could 
benefit from the help of data driven solutions. For the 2016 Census, it was decided that 
for one of the variables requiring imputation; a new topic for 2016 pertaining to the 
program under which the respondent immigrated to Canada, we would endeavour to use a 
data driven method in conjunction with subject matter expertise.  

We will now briefly describe six feature selection methods that will be used in a 
simulation study later in this paper. Further expositions on each method can be found in 
their respective papers or in the paper by Robik-Sikonja (2003) which looks at a majority 
of the six algorithms. Each of the six methods described below is a filter type feature 
selection method. Filter methods are those that assign a measure of predictive ability to a 
feature based on a relationship between that feature and the variable of interest. For 
example, this could be as simple as the absolute correlation between the two. These 
measures can easily be translated into weights, and features below a certain weight can be 
removed from the model. 

All of the methods will be implemented in R using the CORElearn package 
(Robnik-Sikonja and Savicky, 2018) except for the random forest method which will be 
implemented using the randomForest package (Liaw and Wiener, 2002). 

 
2.1 Relief 

The method that was used for the immigration topic described in the previous 
section was the Relief (Kira and Rendell, 1992) family of algorithms, specifically the 
ReliefF algorithm (Kononenko, 1994). ReliefF uses the same underlying assumptions that 
the nearest neighbor algorithm does; a feature that is good at predicting the variable of 
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interest should have similar values between records that have equal values in the variable 
of interest. For example, if income were a good predictor of sex, and a male had a high 
income level, then one would expect other males to also have high income levels and 
conversely females to have low income levels. 

The method by which ReliefF employs this assumption is by taking a random 
record from the data and then finding that record’s nearest neighbor from the same class 
for the variable of interest (nearest hit) and its nearest neighbor from all of the differing 
classes (nearest misses). It then updates a vector of weights positively, anytime the 
features differ between the random instance and the nearest misses, and negatively 
anytime the features differ between the random instance and the nearest hit. This process 
is repeated (ideally for each record in the dataset) or until the weight vector stabilizes. A 
more thorough explanation can be found in Kononenko’s paper. 
 
2.2 Information Gain 

Information gain (IG) calculates the difference between the impurity of a variable 
of interest before and after conditioning on a feature. Information gain uses Shannon 
entropy (H) to measure impurity, however other impurity measures could also be used (as 
in the next method; DKM). Given a variable of interest Y with possible values {y1…ym} 
and a feature X with possible values {x1…xn}: 
 

𝐼𝐺 = 𝐻(𝑌) −  ∑ (𝑃(𝑥𝑗) (𝐻(𝑌|𝑥𝑗)))

𝑛

𝑗=1

 

 
Where 𝐻(𝑌) =   − ∑ 𝑃(𝑦𝑖) log2 𝑃(𝑦𝑖)𝑚

𝑖=1 , 𝑃(𝑥𝑗) the probability of observing class j in x 
and 𝑃(𝑦𝑖) the probability of observing class i in y. 
 
2.3 DKM (Dietterich, Kerns, and Mansour, 1996) 

The DKM method, so named for the authors of the paper introducing it, as 
mentioned previously uses the same functional form as information gain however 
replaces 𝐻(𝑌) in the calculation of 𝐼𝐺 with the following: 

 

𝐷𝐾𝑀(𝑌) = 2√ 𝑚𝑎𝑥
𝑖=1,2,…,𝑚

𝑃(𝑦𝑖) (1 − 𝑚𝑎𝑥
𝑖=1,2,…,𝑚

𝑃(𝑦𝑖)) 

 
2.4 Information Gain Ratio (Quinlan, 1986) 

Information gain adjusted to correct for the bias of information gain towards 
features with high cardinality: 

 

𝐼𝐺𝑅 =  
𝐻(𝑌) −  ∑ (𝑃(𝑥𝑗) (𝐻(𝑌|𝑥𝑗)))𝑛

𝑗=1

𝐻(𝑋)
 

 
2.5 Random Forest (Breiman, 2001) 

 The random forest algorithm calculates a measure of feature importance known 
as the mean decrease in accuracy. After building the forest, the out of bag (OOB) error 
rate is calculated. Then, one at a time, each feature in the dataset is permuted and the 
OOB error rate is calculated once more. The resulting decrease in accuracy can be 
considered a measure of feature importance. That is, if after a feature is permuted there is 
only a small decrease in accuracy, that feature must not have been utilized often in the 
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forest, or used in less important splits. This method has previously been used by Statistics 
New Zealand (Zabala, 2015) to develop weights for use in CANCEIS. 
 
2.6 Cost Sensitive ReliefF (Robik-Sikonja, 2003) 

Feature selection methods typically assume that the cost associated with errors 
are constant across classes, however this is not always the case. Particular classes may be 
more difficult to predict due to data imbalance or a lack of separable data, or it may be 
the case that the user would like to put more emphasis on predicting certain classes well. 
For example, in predicting cancer diagnosis making false negatives may be more harmful 
than making false positives. To this end, we will look at a cost-sensitive version of the 
ReliefF algorithm, the “average cost ReliefF” algorithm. Which modifies the standard 
ReliefF algorithm to use information provided by the user in the form of a cost matrix. 
See Robik-Sikonja (2003) for details on the exact process.  
 

3. Dataset 

For the 2016 Census, two new variables were added; the immigration category 
under which the respondent immigrated to Canada (admission category) and applicant 
type. These variables were added through a record linkage between an administrative 
immigration file and a database of census responses. Once linked, the variables were 
processed and disseminated among the other census variables, allowing for connection of 
these admission characteristics to census variables from the questionnaire. Similar 
linkages between administrative data on immigration characteristics and the Census have 
occurred in the past, however this was to be the first time that the variables would be 
processed (edited and imputed) allowing for higher quality analyses.   

Records in this dataset may be missing and require imputation for various 
reasons. Primarily, records that were immigrants according to their census response but 
were not able to be linked in the record linkage process will have missing values for the 
admission category variables. Secondly, any records that were linked but whose 
administrative information was not cohesive with their census response had the 
admission category value set to blank as the census response took precedence over the 
linkage result. For instance, there were cases where the linkage result implied the 
respondent immigrated under a category that did not exist during the year that the 
respondent had given as their year of immigration on their census form. Even though it 
was possible the respondent gave the incorrect year of immigration, the census responses 
as a rule were kept and the linkage result was removed. 

The admission category variable contains 26 categories that a respondent could 
immigrate under, stemming from 4 broader categories; Economic Immigrant, Immigrant 
Sponsored by Family, Refugee, and Other Immigrant. The applicant type variable 
contains 3 categories; Principal Applicant, Spouse of a Principal Applicant, and 
Dependant of a Principal Applicant. For this paper, we will focus only on the imputation 
of the admission category variable and for the sake of simplicity only at the level of the 4 
broader categories. The data used in this paper is with regard to a subset of the immigrant 
population that were relatively difficult to impute, specifically, immigrants who have a 
spouse that either is not an immigrant or that immigrated prior to 1980 (the admission 
category variable exists only for persons immigrating since 1980). Imputation within this 
group is challenging as the admission category variable is highly correlated among 
spouses and since one of the spouses is not an immigrant (or immigrated prior to 1980) 
this correlation does not exist with which to draw from, leaving data that is more difficult 
to separate.  
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4. Feature Selection Results 

The feature selection methods described in Section 2 were performed on a subset 
of the data described in the previous section. This subset was comprised of 60,000 
records. Each method was performed on 16 features provided by subject matter experts 
thought to have predictive ability of the variable of interest.  

In an attempt to better impute the minority classes, for the cost sensitive relief 
method, we will use a cost matrix where each element, [i, j], below the diagonal is equal 
to the number of records in class j divided by the number of records in class i: 
 

𝐶𝑀 = [

0 1 1 1
0.7 0 1 1
4.1 6.3 0 1

51.0 77.5 12.4 0

] 

 
Where row/column 1 represents the Economic Immigrant class, row/column 2 the 
Immigrant Sponsored by Family class, row/column 3 the Refugee class and row/column 
4 the Other class. That is, in this sample of data the Economic Immigrant class is 51 
times more prevalent than the Other class, and according to this cost matrix, incorrectly 
imputing a record from the Other class as Economic Immigrant costs 51 times as much as 
imputing a record from the Economic Immigrant class as Other.  

The results of each feature selection method for this subset of data can be seen in 
Table 1 below. The weights obtained by each algorithm have been multiplied by 1000 
and rounded to the nearest integer for readability. 
 

Table 1. Weights Obtained for Features (x1000 and rounded) 

 Relief IG IGR 
Relief 

Cost DKM 
Random 

Forest 
Place of Birth 149 275 47 220 73 69 

Year of Immigration 74 35 37 131 19 36 

Age at Immigration 70 108 131 113 36 73 

Highest Education Level 25 32 10 23 13 17 

Marital Status 21 42 42 17 15 26 

Employment Income 21 23 96 3 14 15 

# of Family Members 18 5 2 3 2 5 

Province of Residence 18 5 2 18 2 5 

Employment NAICS 17 30 8 3 16 11 

Location of Study 16 67 43 37 26 22 

Spouses Admission Cat. 15 19 28 14 13 9 

Employment NOCS 11 34 14 0 17 10 

Sex 9 1 1 4 0 3 

Official Language 8 11 12 1 6 5 

Low Income 3 3 6 -2 2 0 

Quebec Resident 2 2 2 -2 1 2 

 
The feature selection methods largely agree in terms of the relative importance of the 
features, with some exceptions. The place of birth, year of immigration, and age at 
immigration features all show high predictive ability of the variable of interest across all 
feature selection methods. This result is in line with subject matter expertise and their 
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expectations. On the other hand, subject matter experts had expected that variables 
related to geography and income would have had larger weights than they did. 

Lastly, of note is the discrepancy between the information gain ratio (IGR) 
results and the other methods, particularly with regard to the place of birth feature and 
employment income. Among all but IGR the place of birth feature is by far the most 
important feature, whereas in IGR it is only the third most important feature and has a 
much lower weight. In IGR the employment income becomes the second most important 
feature with a very high weight whereas in the other methods it is usually seen as 
important but middle of the pack so to speak. 
 

Table 2. Average Relative Rank of Weight 

 
Average 
Rank 

Standard 
Deviation 

Place of Birth 1.5 0.76 
Age at Immigration 2.0 0.82 
Year of Immigration 3.7 1.49 
Location of Study 4.8 2.41 
Marital Status 5.3 1.25 
Highest Education Level 7.0 2.31 
Employment Income 7.3 3.04 
Employment NAICS 8.7 1.60 
Employment NOCS 9.0 3.16 
Spouses Admission Category 9.2 1.34 
Province of Residence 11.0 3.06 
Official Language 11.5 1.61 
Number of Family Members 11.7 2.29 
Sex 14.0 2.52 
Low Income 14.3 1.25 
Quebec Resident 15.0 1.00 

 
Table 2 above shows the average relative ranking of each feature and the standard 
deviation of those ranks. For most features, the standard deviation is quite low, again 
implying that the feature selection methods generally agree for most features. 
 

5. Simulation Study 

 

5.1 Setup 

Two further samples were taken from the data of Section 3 (distinct from the 
60,000 records used for feature selection) with these two samples also being distinct from 
each other. The first sample consists of 30,000 linked records with valid values and will 
be used to conduct the simulation study. The second sample consists of 20,000 linked 
records with valid values and 20,000 records that were either unlinked or not cohesive 
with their census response. The second sample will be used to develop a response 
propensity model that will be used to assign missing at random (MAR) response 
probabilities to the first sample.  

For each simulation, 1000 replicate datasets were created of the first sample 
described above, with each record in each replicate dataset responding or not according to 
a Bernoulli random variable using an assigned response probability. Those records 
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receiving a value of 0 for this random variable are said to not respond and have their 
value for the admission category variable set to blank to be imputed in CANCEIS. 

Each replicate dataset is then run through CANCEIS and the “non-respondents” 
have their value for the admission category variable imputed using the weighting 
schemes of Table 1. Features with a weight under 10 in Table 1 were excluded for that 
method. After imputation is complete, the imputed values are compared to the “true” 
values (the values the records had prior to being set to blank) and Monte Carlo measures 
of relative bias (RB), relative root mean squared error (RRMSE), and the coefficient of 
variation (CV) are calculated for the estimate of the population proportion for each 
category. As it is important to not only have quality estimates at the population level but 
also at the record level, analysis is also completed at the record level with measures of 
accuracy, precision, recall, and F1 score (the harmonic mean of precision and recall) 
calculated.  
 

5.2 Response Propensities 

The simulation study will be performed under three response mechanisms: 
missing completely at random (MCAR), missing at random (MAR) and missing not at 
random (MNAR). Under the MCAR mechanism, each record will be assigned an 80% 
probability of response. To simulate the MAR mechanism, a response propensity model 
was created using lasso logistic regression (Tibshirani, 1996) in the glmnet package of R 
(Friedman et al., 2010) and the second sample described previously. The model was 
created using the same features suggested by subject matter for use in the imputation 
algorithm. Using the model, response propensities were predicted for the 30,000 linked 
records that were to be used in the simulation study. These records had an average 
probability of response of 78.78% with a distribution shown in the histogram of Figure 1. 
The minimum probability of response was 7.93% and the maximum was 98.63%. Under 
MNAR the response probabilities will be assigned as follows: Economic Immigrant – 
90%, Immigrant Sponsored by Family – 70%, Refugee– 85%, and Other Immigrant – 
80% for an average probability of response of 78.56%. These response probabilities were 
chosen after consulting a with subject matter expert who posited that the Immigrant 
Sponsored by Family class should have the lowest probability of being linked due to 
difficulty with regards to changes in family name over time. 
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5.3 Results 
 The results of the simulation study can be found in Figures 2 through 6 in the 
Appendix. Although all of the measures mentioned in the setup section were calculated, 
for the sake of brevity, these figures show only the composite measures; F1 score and 
RRMSE for all classes under the three response mechanisms. Also, in addition to the six 
feature selection methods, the simulations were run for two “baseline” measures; random 
imputation and an equally weighted imputation scheme. 
 As can be seen in Table 3 below, and Figures 2 through 6, throughout the study, 
for all of the response mechanisms, Information Gain, DKM, ReliefF, Cost Sensitive 
ReliefF, and Random Forest performed comparably for all measures, across all categories 
of the variable of interest, with ReliefF (and Cost Sensitive ReliefF) performing slightly 
better in most cases. As expected, they all outperformed the equally weighted scheme, 
which in turn outperformed random imputation. For these reasons, most of the 
comparisons drawn in this section will only be done between the equally weighted 
scheme and ReliefF and only concerning F1 Score and RRMSE.  
 

Table 3. Macro Averaged F1 Scores 

 MCAR MAR MNAR 
Random 0.25 0.25 0.23 
Equal Weight 0.38 0.38 0.35 
IGR 0.40 0.41 0.37 
IG 0.46 0.47 0.42 
DKM 0.46 0.46 0.42 
Random Forest 0.46 0.47 0.42 
ReliefF 0.48 0.48 0.43 
Cost Sensitive ReliefF 0.48 0.48 0.43 

 
 At the record level, Table 3 shows the macro averaged F1 scores across all four 
categories. In view of this, ReliefF outperforms equal weighting by 10 percentage points 
for each of the MCAR and MAR mechanisms and 8 percentage points for the MNAR 
mechanism. As the figures in the Appendix show, most of this increase can be attributed 
to the improvement in imputing the Refugee class. For that class, ReliefF outperformed 
equal weighting by 24, 25, and 21 percentage points under the MCAR, MAR, and 
MNAR response mechanisms respectively. 
 With respect to the cost sensitive version of ReliefF, it appears that the F1 score 
is behaving as one would hope. Tables 4a and 4b show the difference in F1 score 
between the standard ReliefF algorithm and the cost sensitive ReliefF version. As 
expected, the cost sensitive version improves the F1 score for the Refugee class as well as 
the Other class at the expense of the Economic Immigrant and Immigrants Sponsored by 
Family classes. The improvements in Table 4a appear small but looked at as percentages 
as in Table 4b, the percentage increase for the Other class is quite large. 
 

Table 4a. Difference in F1 Score between ReliefF  

and Cost Sensitive ReliefF 

 Economic Family Refugee Other 
MCAR -0.0138 -0.0091 0.0053 0.0180 
MAR -0.0098 -0.0102 0.0029 0.0183 
MNAR -0.0135 -0.0086 0.0022 0.0125 
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Table 4b. Percentage Difference in F1 Score between  

ReliefF and Cost Sensitive ReliefF 

 Economic Family Refugee Other 
MCAR -2.31% -1.25% 1.00% 37.26% 
MAR -1.63% -1.44% 0.53% 29.48% 
MNAR -3.12% -1.12% 0.45% 28.40% 

 
With regard to the population proportion estimates and the relative root mean 

squared error, again, the ReliefF algorithm shows large improvements over the equal 
weighting strategy. Under each response mechanism, for most classes, the RRMSE was 
lower for ReliefF than for equal weighting. Table 5 shows the increase in RRMSE for 
equal weighting over ReliefF. The one exception where equal weighting performs better 
than Relief in terms of RRMSE is for the Refugee class under the MNAR response 
mechanism where it sees a small improvement. The other three classes however are 
worse off and of course at the micro level the F1 score is still worse for all classes. 
Therefore it is not suggestive of equal weighting outperforming ReliefF under the MNAR 
mechanism. 
 

Table 5. Increase in RRMSE for Equal Weighting 

 Compared to ReliefF 

 Economic Family Refugee Other 
MCAR 0.32% 0.04% 2.12% 0.77% 
MAR 0.09% 0.55% 4.57% 1.16% 
MNAR 1.68% 0.90% -0.97% 0.35% 

 
 It may be argued that an equal weighting scheme is not a strong baseline, as it 
could be expected that subject matter experts would at least be able to provide the most 
predictive variables and weight those accordingly and see improvement over equal 
weighting. While this is true, one could point to the one “outlier” selection method in this 
study; Information Gain Ratio. As previously mentioned, the IGR method scored 
employment income inordinately high and place of birth inordinately low. This likely 
caused the decrease in the quality of its weighting strategy that can be seen in view of the 
Figures 2 through 6 where IGR showed only slight improvements over the equal 
weighting scheme. While it is possible that subject matter experts would be able to 
provide a reasonable weighting scheme comparable to the four similarly performing 
selection methods, it is also possible that subject matter knowledge provide a weighting 
scheme comparable to IGR, which appears reasonable but performs worse. That is, 
imputation quality exists on a spectrum between the baseline and the optimum weighting 
scheme, and it is feasible to expect weights designed using subject matter knowledge to 
exist at any point on this spectrum. 
 

6. Conclusion 

 All feature selection methods showed benefits to the quality of the imputation 
strategy for the tested dataset under various response mechanisms. Improvements were 
evident at the record level where gains of upwards of 10 percentage points over an 
equally weighted scheme were seen for the macro averaged F1 score. Gains were 
particularly strong for the Refugee class which saw improvements in F1 score of upwards 
of 25 percentage points. 
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 While the relative ranking of features were similar across most of the feature 
selection methods, there were exceptions. And while the ReliefF algorithm outperformed 
the other methods nearly across the board, the differences were small. We also showed 
the relatively poor performance of the IGR method for this data when compared with the 
other methods. With this in mind, rather than declare that one method should always be 
used as a result of this study, it would instead be wise to test multiple methods, and along 
with subject matter expertise make decisions on weights in light of those tests. That is, 
feature selection methods should not necessarily be used with the intent of replacing 
subject matter knowledge, but rather used in conjunction with it, to allow for the most 
informed decision possible.  
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Appendix 
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