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Abstract
M. Khazae and K. Shafie[12] in 2006 introduced regression models for Boolean random sets,

to be able to model the effect of explanatory variables on the distribution of a Boolean random
set. However, the measurement of random sets representation of objects are mostly taken over
time, which introduces correlation in the observations. One solution to deal with the correlated
observations is to fit a time series to the random sets of the Boolean-model type, which is the goal
of this paper. Two methods are introduced and maximum likelihood estimation of the parameters
are applied to the log link function using the two methods of estimation i.e nt, the number of points
and n+t , the number of lower tangent points in window Wt. A simulation study is used to analyze
the behavior of this time series. The distribution of the estimates approaches approximate normality,
confirming the asymptotic behavior of maximum likelihood estimators. When the β1 and α1 have
opposite signs, multivariate normality is achieved faster (at T=1000) than when the signs are the
same (at T=2500).

The model is then applied to the Mountain Pine Beetle Data for a ten-year period (2001 to
2010). Both methods produced similar results, however, method I has lower standard errors.

Key Words: Random closed set, Boolean model, generalized linear model, Poisson Time Series,
Autoregression, Lower tangent points

1. Introduction

The Boolean model, perhaps the most important random set model in practice and theory
is formed by placing random closed sets (RACS) at the points of a homogeneous Poisson
point process (D) and taking the union of these sets. That is

Yt =
⋃
dt∈D

(Zi ⊕ dt),

where Zt, i = 1, 2, ... are independent copies of random closed set Z0 and Zt ⊕ dt is a
realization of the (a.s) bounded RACS translated to point dt of a homogeneous Poisson
process D. The intensity parameter λ of D and the probability law of the bounded random
grain, Z0 are the sources of randomness in the Boolean model. [20],[3] and [4] discussed
extensively the characteristics and some methods for estimation of the parameters for the
Boolean model. The main methods of numerical parameter estimations are: the miminum
contrast method which by means of the Steiner formula uses the representation of the ca-
pacity functional. (See [5] and [7]); the method of intensities, where the Boolean parame-
ters are chosen to match the empirical values of intensities of the Minkowski measures or
functionals determined for a family of expanding windows. (See [10], [24] and [26]). For
an extension of the method of intensity to non-convex ‘typical’ grains see [22]

Recent developments include studying smoothing techniques and estimation methods
for nonstationary Boolean models with applications to coverage processes by [17]. [6]
studied parameter estimation in Non-Homogenous Boolean models. [13] investigated con-
centration inequalities for measures of a Boolean model.
[12] introduced regression models for Boolean random sets, to be able to model the effects
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of explanatory variables on the distribution of a random set. And [23] worked on the prop-
agation models and fitting them to set-valued observations. Missing in the literature are
models for when these set-valued obsrvations are correlated over time.

Our aim in this paper is to introduce time series models for random sets (RACS) i.e.
Y = (y1, ....yT )

′
. We wish to study the behavior of this time series. Observe that D or Zt

(the grain) or both could be time series, but our focus in this paper will be treating D as a
time series.

2. The Boolean Model and it’s Hitting Functional

A random closed set (RACS) is uniquely determined by the corresponding capacity func-
tional TA(K) = P{A ∩K 6= ∅}, where K is taking over K of all compact sets. [15] and
[11] showed that, if TA(K) (called the hitting functional of the random set A) is determined
then PA(.) will be determined as well. Specfically for the Boolean RACS defined above,
[3] showed the hitting functional to be of the form:

TY (K) = 1− exp
{
−λE[|Z0 ⊕ Ǩ|]

}
,

where Ǩ = {−k : k ∈ K} , Z0 ⊕ Ǩ = {z − k : z ∈ Z0 , k ∈ K}, |L| is the Lebesgue
measure of L and λ is the intensity of the homogenous Poisson Process D. The volume
fraction of a Boolean model ([20] referred to as macroscopic parameter) is found by using
the hitting functional as p = 1 − exp {−λE[|Z0|]}. However, an unbiased estimator of p
when Y is observed in a window W is

p̂ =
|Y ∩W |
|W |

. (1)

To estimate λ (a microscopic parameter) and the distribution of Z0, [4] and [20] used a
point process of tangent points to construct an estimator. Take a typical grain Z0 that is
almost surely convex. If a direction u in Rd is fixed, then the tangent point of each grain
Z0 is defined to be the lexicographical minimum among all points at which a hyperplane
orthogonal to u and moving in the direction of u first touches Z0. Some of these tangent
points are covered by other grains while other points are exposed. These exposed tangent
points form a point process N+(u) with intensity λ(1 − p). If u is directed upwards, then
N+(u) is called a lower positive tangent point process. Thus we can simply estimate λ, by

λ̂ =
n+

|W |(1− p)
, (2)

where n+ is the number of lower positive tangent points in window W (see [18]). It will
interest the reader to note that [22] extended the method of intensity to non-convex ‘typical’
grains.

3. Models and Fitting Methods

As stated before, our aim in this paper is to introduce time series models for random sets
(RACS) i.e, Y = (Y1, ..., YT )

′
and study the behavior of the time series. Denote a count

time series by {nt : t ∈ N} and a time-varying r-dimensional covariate vector {Xt :
t ∈ N}, say Xt = (Xt,1, ...Xt,r)

T . Also denote by Ft−1, the history of the joint process
{nt−1, λt−1, Xt : t ∈ N} up to time t − 1 including the covariate information at time
t. Observe that the conditional distribution is distributed as nt|Ft−1 ∼ Poisson(λt).
Then we model the conditional mean E(nt|Ft−1) of the count time series by a process
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say {λt : t ∈ N} such that E(nt|Ft−1) = λt. The general form of the model (as defined
by [14]) is

g(λt) = β0 +

p∑
k=1

βkg̃(nt−ik) +

q∑
l=1

αlg(λt−jl) + ηTXt, (3)

where g : R+ −→ R is a link function and g̃ : N0 −→ R is a transformation function. The
parameter vector η = (η1, ....ηr)

T corresponds to the effects of covariates. For extensive
discussion on count time series, see [14], [28] and [27].
For our study g(m) = log m, and g̃(x) = log (x + 1), p = q = 1 and X = 0 (for
simplicity), so that (3) reduces to

log λt = β0 + β1log (nt−1 + 1) + α1logλt−1, (4)

where λt is the intensity of the Poisson process of the Boolean RACS. i.e nt|Ft−1. We
assume all realizations of the nt|Ft−1 are observed in window Wt of Lebesgue measure
of 1. Also, we assume Zi in the Boolen RACS Yt are independent of Dt. For our study
we assume the grains are circles of constant radius 0.01. Thus we can study nt|Ft−1 by
studying the relation in (4), since the λt controls the point process. To incorporate the
information of nt−1 in (4), we use the suggested a bijective transformation by [14], i.e
g̃(nt−1) = log (nt−1 + 1), where nt−1 is the number of points in a window Wt−1. This is
to ensure that the nt−1 is transformed onto similar scale as the rates λ′ts. In the next two
sections, we will suggest two methods for studying (4).

3.1 Fitting Method I

In practice, we cannot observe nt−1 for overlapping grains. We use an estimate instead, as
proposed by [12] i.e

n̂t = [|Wt|λ̂t] =

[
n+t

1− p̂t

]
, (5)

where n+t and p̂t are respectively, the number of lower tangent points and it’s estimated
volume fraction obtained from (1) in window Wt. Then we can learn about nt|Ft−1 ∼
Poisson(λt) by studying

n̂t|Ft−1 ∼ Poisson(λ̂t).

We now model the conditional mean E(n̂t|Ft−1) of the count time series by a process say
{λ̂t : t ∈ N} such that E(n̂t|Ft−1) = λ̂t. Let log λ̂t = νt, then

νt = β̂0 + β̂1log(n̂t−1 + 1) + α̂1νt−1

We will call this Method I.

3.2 Fitting Method II

In Method I, we employed the use of exposed lower tangent points n+t in the estimation of
n̂t. However, n+t has the following distrubution,

n+t ∼ Poisson(λ+t ), where λ+t = |Wt|λtexp[−E|Z0|λt]

The estimate n+t is obtained by counting the lower tangent point of the set-valued ob-
servation in window Wt. This can be achieved by Laslett’s transformation implemented in
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the Spatstat package by [1] in [21], that returns the number of lower tangent points. We
then model the conditional mean E(n+t |Ft−1) = λ+t . Again, let logλ+t = µt, then

µt = β+0 + β+1 log(n+t−1 + 1) + α+
1 µt−1.

However, to get the estimates of (4) from µt, we use the relationship λ+t = |Wt|λtexp[−E|Z0|λt].
By the first order Taylor expansion and approximation the estimates of (4) through µt are
as follows:

β0 ≈
β+0 + C

1− C
, β1 ≈

β+1
1− C

, α1 ≈
α+
1

1− C
, where C = E|Z0| = πr2

This, we call Method II.

4. Likelihood Inference

To study the likelihood inference for (4), with the three dimensional parameter space of θ =
(β0, β1, α1), and the initial value of λ0 in terms of observations n1, ..., nT , the conditional
likelihood function for θ is given by

L(θ) =
T∏
t=1

exp(λt(θ))λ
nt(θ)
t

nt!
, where λt(θ) = exp(β0 + β1log(nt−1 + 1) + α1 log λt−1)

Let log λt = γt. Then, the log-likelihood function has the form

l(θ) =

T∑
t=1

(ntγt(θ)−exp(γt(θ))−log nt), where γt(θ) = β0+β1log(nt−1+1)+α1γt−1

The score function is given by

ST (θ) =
∂l(θ)

∂θ
=

T∑
t=1

(nt − exp(γt(θ)))
∂γt(θ)

∂θ

where ∂γt(θ)
∂θ is a vector with components

∂γt
∂β0

= 1 + α1
∂γt−1
∂β0

,
∂γt
∂β1

= log(1 + nt−1) + α1
∂γt−1
∂β1

,
∂γt
∂α1

= γt−1 + α1
∂γt−1
∂α1

The solution of ST (θ) = 0 i.e θ̂ yields the conditional maximum likelihood estimator
of θ, if it exist.

The Hessian matrix of (4) is obtained from

HT (θ) =
∂2l(θ)

∂θ2
=

T∑
t=1

(exp(γt(θ))

(
∂γt(θ)

∂θ

)(
∂γt(θ)

∂θ

)′
−

T∑
t=1

(nt−exp(γt(θ)))
∂2γt(θ)

∂θ∂θ′

[27] and [28] proved the following theorem which shows the asymptotic normality of
θ̂:

 
3039



Theorem 4.1 Consider model(4) and that at the true value θ0, |α10 + β10 | < 1, if both
α10 , β10 have the same sign, and α2

10
+ β210 < 1, if both α10 , β10 have the different signs.

Then, there exists a fixed open neighborhood O = O(θ0)ofθ0- such that with probability
tending to 1, as T→ ∞, the log-likelihood has a unique maximum point θ̂. Furthermore,
θ̂. is consistent and asymptotically normal;

√
T
(
θ̂ − θ0

)
D−→ N (0, G−1).

A consistent estimator of G is given by GT(θ̂), where

GT(θ) =
T∑
t=1

(exp(γt(θ))

(
∂γt(θ)

∂θ

)(
∂γt(θ)

∂θ

)′

5. Simulation Study

In this section, we present results for the simulation study. We assumed the grains are cir-
cles with a constant radius (known) of 0.01 units along with the Poisson point process with
rates νt and µt using the time series equations under fitting methods I and II, respectively.
The laslett function (found in the R package Spatstat by [1]) is used to compute the lower
tangent points, then p̂t and n̂t are estimated using (1) and (2). Below, a realization of a
Boolean time series model Yt, t = 1, 2, ..., 10 in Figure 1 along with statistics obtained
from the model found in Table 1.
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(a) T=1 and 2 (b) T=3 and 4

(c) T=5 and 6 (d) T=7 and 8

(e) T=9 and 10

Figure 1: A ten-time period realaization of Boolean Time Series Model Yt

Duration 5, and 9 have the most affected areas (deep blue), compared to duration 10
with the least affected areas.

Table 1: Statistics obtained from Figure 1.

T 1 2 3 4 5 6 7 8 9 10
n+ 3 4 6 5 3 5 4 5 7 9

p 0.008 0.011 0.016 0.013 0.009 0.014 0.011 0.014 0.020 0.025

n 4 5 7 5 4 5 5 6 8 9

Below, we explore T = 10, 50, 100, 200, 500,& 1000 for fixed θ = (β0 = 0.5, β1 =
0.65, α1 = −0.5) corresponding to the condtion α2

1 + β21 < 1 and θ = (β0 = 0.5, β1 =
−0.35, α1 = −0.5) corresponding to the condtion |α1 + β1| < 1. ν0 = 1 and substitute
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n+ in the above equation. The observations follow

Yt =
⋃

dt∈Dt

(Zt ⊕ dt),

whereDt is a Poisson process with intensity λt and Zts are circles with fixed radius of 0.01
units.. One thousand simulations are used except when stated otherwise.

The two methods generally behave similar for both methods. The results for the two
methods are displayed in Table II and III below respectively. In Tables II and III, T represnts
the duration, whilst the estimated MLEs are found in column 3. The last column displays
the p-value for Lilliefors (Kolmogorov-Smirnov) normality test. The maximum likelihood
estimmators (MLE) of both methods improves as T increases, confirming the theorem.
Standard errors and biases for β1 and α1 decreases with increasing T. However, for β0 the
estimated MLEs deviates from the parameter of 0.5.

When α1 and β1 have the different signs satisfying the condition |α10 + β10 | < 1,
Theorem 4.1 is confirmed at T=1000, with the Royston test statistic of 0.677 and a p-value
of 0.628 for method I and Royston test statistic of 5.241037 and p-value of 0.060 for method
II.

However, when α1 and β1 have the same signs (α2
10

+β210 < 1), both methods are slow
to attain multivariate normaliy. At T=2500, a less expensive simulation(100), however
produces the result (Royston test statistic of 1.764 and p-value 0.300 for methods I and II ).
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Table 2: Simulation results for θ using νt = β̂0 + β̂0log(n̂t−1 + 1) + α̂1νt−1

θ = (β0 = 0.5, β1 = 0.65, α1 = −0.5)

Parameter T MLE Standard Error Bias p-value
β0 10 1.317 0.559 -0.817 0.037
β1 0.186 0.596 0.464 0.000
α1 -0.236 0.664 -0.264 0.000

β0 50 1.320 0.522 -0.820 0.019
β1 0.421 0.178 0.229 0.087
α1 -0.504 0.342 0.004 0.000

β0 100 1.268 0.399 -0.768 0.949
β1 0.418 0.129 0.232 0.193
α1 -0.463 0.283 -0.037 0.000

β0 200 1.280 0.290 -0.780 0.290
β1 0.418 0.089 0.232 0.286
α1 -0.472 0.191 -0.028 0.000

β0 500 1.261 0.173 -0.761 0.718
β1 0.423 0.057 0.227 0.519
α1 -0.464 0.108 -0.036 0.229

β0 1000 1.249 0.112 -0.749 0.117
β1 0.471 0.039 0.179 0.179
α1 -0.497 0.068 -0.003 0.402

θ = (β0 = 0.5, β1 = −0.35, α1 = −0.5)

Parameter T MLE Standard Error Bias p-value
β0 10 0.987 0.487 -0.487 0.000
β1 -0.308 0.593 -0.042 0.000
α1 -0.001 0.692 -0.499 0.000

β0 50 0.940 0.429 -0.440 0.000
β1 -0.204 0.250 -0.146 0.000
α1 -0.023 0.610 -0.477 0.000

β0 100 1.089 0.366 -0.589 0.000
β1 -0.169 0.148 -0.181 0.000
α1 -0.244 0.500 -0.256 0.000

β0 200 1.172 0.309 -0.672 0.000
β1 -0.169 0.110 -0.181 0.014
α1 -0.380 0.465 -0.120 0.000

β0 500 1.203 0.230 -0.703 0.000
β1 -0.161 0.064 -0.189 0.004
α1 -0.430 0.331 -0.070 0.000

β0 1000 1.243 0.142 -0.743 0.000
β1 -0.160 0.049 -0.190 0.698
α1 -0.486 0.219 -0.014 0.000

β0 2500 1.254 0.073 -0.754 0.088
β1 -0.160 0.032 -0.190 0.745
α1 -0.505 0.119 0.005 0.387
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Table 3: Simulation results for θ using µt = β+0 + β+1 log(n+t−1 + 1) + α+
1 µt−1.

θ = (β0 = 0.5, β1 = 0.65, α1 = −0.5)

Parameter T MLE Standard Error Bias p-value
β0 10 1.311 0.556 -0.811 0.020
β1 0.186 0.595 0.464 0.000
α1 -0.231 0.666 -0.269 0.000

β0 50 1.319 0.521 -0.819 0.014
β1 0.421 0.177 0.229 0.135
α1 -0.504 0.340 0.004 0.000

β0 100 1.268 0.401 -0.768 0.961
β1 0.418 0.130 0.232 0.293
α1 -0.464 0.285 -0.036 0.000

β0 200 1.279 0.291 -0.779 0.407
β1 0.418 0.089 0.232 0.433
α1 -0.472 0.191 -0.028 0.000

β0 500 0.971 0.141 -0.471 0.197
β1 0.537 0.058 0.113 0.344
α1 -0.469 0.093 -0.031 0.311

β0 1000 1.259 0.112 -0.759 0.117
β1 0.471 0.039 0.179 0.179
α1 -0.497 0.068 -0.003 0.402

θ = (β0 = 0.5, β1 = −0.35, α1 = −0.5)

Parameter T MLE Standard Error Bias p-value
β0 10 0.984 0.488 -0.484 0.000
β1 -0.306 0.594 -0.044 0.000
α1 -0.001 0.693 -0.499 0.000

β0 50 0.939 0.429 -0.439 0.000
β1 -0.204 0.250 -0.146 0.000
α1 -0.023 0.610 -0.477 0.000

β0 100 1.086 0.368 -0.586 0.000
β1 -0.184 0.148 -0.166 0.000
α1 -0.244 0.500 -0.256 0.000

β0 200 1.172 0.307 -0.672 0.000
β1 -0.169 0.110 -0.181 0.014
α1 -0.380 0.463 -0.120 0.000

β0 500 1.202 0.228 -0.702 0.000
β1 -0.161 0.064 -0.189 0.004
α1 -0.431 0.330 -0.069 0.000

β0 1000 1.242 0.142 -0.742 0.000
β1 -0.160 0.049 -0.190 0.648
α1 -0.487 0.220 -0.013 0.000

β0 2500 1.254 0.073 -0.754 0.085
β1 -0.160 0.032 -0.190 0.743
α1 -0.505 0.119 0.005 0.382
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6. Some Histograms of Parameter Estimates

(a) The first row is the histogram of the θ̂ for Method I and
row 2 displays that of Method II for T=1000 when β1&α1 have
opposite signs . This graphical displays confirms the results in
Table II and III

(b) The first row is the histogram of the θ̂ for Method I and
row 2 displays that of Method II for T=2500 when β1&α1 have
same signs .The number of simulation used here is 100. This
graphical displays confirms the results in Table II and III

Figure 2: A histogram of the β̂is for Methods I and II

For both methods, the distribution of the estimates approaches approximate normality, con-
firming the asymptotic behavior of maximum likelihood estimators, these graphs agree with
Tables II and III.

7. Application to Mountain Pine Beetle Data

[9] applied the Generalized Method of Moments Approach for Spatial-Temporal Binary
Data to the Rocky Mountain Forest Service data on mountain pine beetle from 2001 to
2010. Data was obtained from the PRISM dataset that is publicly available at http://www.prism.oregonstate.edu/.
Thresholding and smoothing were applied to the data. We treat the data as a Boolean ran-
dom set with the observations below in Figure 6.
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(a) T=2001 and 2002. (b) T=2003 and 2004

(c) T=2005 and 2006 (d) T=2007 and 2008

(e) T=2009 and 2010

Figure 3: The Pine Beetle Data from 2001 to 2010.

The deep-blue areas in Figure 6 are the affected area, which signifies the presence of
mountain pine beetle attack. The years between 2006 to 2008 saw an increase in attack,
compared to 2001 and 2002. It will be interesting to be able to predict the rate of attack
yearly.

We apply the simple time series model described above to the beetle data using methods
I and II. Below are the statistics.

Table 4: Statistics obtained from Figure 4.

T 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
n̂+ 55 44 34 53 20 23 11 17 41 42

p̂ 0.317 0.342 0.417 0.406 0.330 0.376 0.382 0.380 0.335 0.307

n̂ 81 67 59 90 30 37 18 28 62 61
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Table 5: Summary of Method I and II

(a) Method 1 (b) Method 2
Coefficient Std. Error(β̂i)

β0 2.631 1.018
β1 0.383 0.103
α1 -0.038 0.274

Coefficient Std. Error(β̂i)
β0 2.808 1.203
β1 0.390 0.128
α1 -0.181 0.384

(a) ACF and Residual Plot for Method I

(b) ACF and Residual Plot for Method I

Figure 4: Diagnostics for the two methods

Both methods give similar results. However, method I has lower errors compared to
two. Hence, we can study the Boolean time series using the above methods discussed.
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