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Abstract

Collective behavior in natural animal systems is a frequent application for agent-based models.

Realistic simulations of collective motion in traditional agent-based models is limited in complex

environments and lacks notions of autonomy and memory. Reinforcement learning extends the

definition of the agent to include perception and memory. The long term value of an agent’s behavior

is learned in reinforcement learning by interaction between the agent and its environment. We model

this value using a double deep Q-network with a feed forward architecture. The reinforcement

learning framework is demonstrated with a multi-agent environment with variable habitat types in

a bounded environment. The agents learn to stay within the boundary and collectively move to a

positive habitat.
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1. Introduction

Schools of fish, flocks of birds, and herds of ungulates are a few examples of coordinated

group behavior in natural animal systems. Coordinated collective movement processes

are typically based on individual interactions and implemented with agent-based models.

The simple individual-based rules employed in agent-based models lead to complex group

dynamics. The rules attempt to reflect the internal processes of an agent, but generally

imply automatic behavior and do not include memory (Ried et al., 2019). Specifically, the

lack of autonomous learning by agents makes it difficult to incorporate interactions with

habitat as every situation requires a priori assumptions about the agent’s behavior in those

specific environments. We propose to use a reinforcement learning framework to overcome

the challenges of traditional collective movement models.

Typical agent-based models in collective animal movement modeling consider local

rules. There are two general types of such rules: zonal and neighborhood based. Zonal

rules place concentric circles or spheres around an agent in which a hierarchy of movement

types are employed based on how many neighbors are within each zone (Couzin et al.,

2002). Neighborhood rules simply tell an agent to adapt its movement to the average of a

predefined number of nearest neighbors, as is commonly used in the self propelled particle

model (Vicsek et al., 1995). Our reinforcement learning framework considers collective

motion based on a hybrid of the zonal and neighbor-based rules where an agent perceives

its neighborhood and the preferred movement is based on zonal distances (Morihiro et al.,

2006).

Reinforcement learning is goal-oriented learning from the continuous interaction be-

tween an agent and its environment. The reinforcement learning framework extends the

definition of an agent from typical agent-based models to include features of perception

and memory (Ried et al., 2019). In reinforcement learning, perception by an agent is en-

∗Department of Statistics, University of Missouri, Middlebush Hall, Columbia, MO 65211, USA. E-mail:

tskb4@mail.missouri.edu
†Department of Statistics, University of Missouri, Middlebush Hall, Columbia, MO 65211, USA. E-mail:

wiklec@missouri.edu

 
2936



coded into the agent’s state. Memory is incorporated by allowing the parameters controlling

behavior to be learned from an agent’s experience.

Lastly, the incorporation of the interaction between habitat and agents in a traditional

collective movement model is not straightforward, but important for realistic inference

(Strandburg-Peshkin et al., 2017). However, complex group dynamics in heterogeneous

habitats can easily be incorporated in the reinforcement learning framework. We provide a

straightforward implementation of reinforcement learning by multiple agents in a bounded

space with variable habitat exhibiting collective behavior.

2. Reinforcement Learning

2.1 Markov Decision Process

The mathematical definition of reinforcement learning is based on the Markov decision

process (MDP; Sutton and Barto, 1998). An MDP is defined as the tuple (S, A, T, γ, R)
where:

• S: set of states

• A = {a1, ..., ak}: set of actions

• T : S x A x S → [0, 1] is a transition probability function

• γ ∈ [0, 1) is a discount factor

• R: S → R is a reward function

For an MDP, a policy is a map for choosing an action in a given state, π : S → A. The

value function of a policy, π, for a state s, V π(s), is defined as

V π(s) = E[
∞∑

i=0

γiR(si)|s0 = s], (1)

which can be interpreted as the long term, discounted reward of following policy π from

state s. Similarly, we can define a function based on the state-action pairs, Qπ(s, a), as

Qπ(s, a) = E[
∞∑

i=0

γiR(si)|s0 = s, a0 = a], (2)

which can be interpreted as the long term, discounted reward of following policy π after

taking action a in state s.

The goal of reinforcement learning is to learn the policy, π, for which the value function

is maximized. A policy π = π∗ is said to be optimal if the value function, and hence the

Q-function, is maximized ∀ s ∈ S, i.e.

π∗(s) ∈ arg max
a∈A

Qπ(s, a). (3)

The above expression is referred to as Bellman optimality. The resulting expression for the

Q-function under Bellman optimality is

Qπ∗

(s, a) = R(s) + γ max
a′∈A

Qπ∗

(s′, a′), (4)

where s′ is the next state. The above is referred to as the Bellman optimality equation

(Sutton and Barto, 1998).
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3. Model and Method

The reinforcement learning problem is solved by iteratively estimating the Q-function from

an agent’s interactions with the environment. Let st and at denote the state-action pair

for an agent at iteration t. In problems with relatively small state-action spaces, the most

common algorithm is Q-learning. Q-learning updates the current estimate of the Q-function

of a state-action pair by the following

Q(st, at)← Q(st, at) + α[R(st+1) + γ max
a′∈A

Q(st+1, a′)−Q(st, at)], (5)

where α is a learning rate (Sutton and Barto, 1998).

In problems with larger state-action spaces, the updating of the Q-function in 5 is typ-

ically replaced with a parameterized model which learns the relationship between state-

action pairs and the Q-function. The prediction of the model is then used to choose the next

action. To illustrate using the notation of Van Hasselt et al. (2016), let the Q-function be a

function of the state-action pair and a set of unknown parameters, θ, then

Y
Q

t ≡ R(st+1) + γ max
a′∈A

Q(st+1, a′; θt) (6)

is the target value learned by the model where θt is the estimate of the parameters at itera-

tion t (Van Hasselt et al., 2016).

3.1 Double Deep Q-Network

A deep Q-network (DQN) algorithm uses a deep neural network model to estimate the rela-

tionship between state-action pairs (input) and the Q-function (Equation 6) with two novel

features: experience replay and the use of a target network (Mnih et al., 2015). Experience

replay refers to storing observed transitions, (st, at, rt, st+1), and randomly sampling the

observed transitions for updating the online network. In 6, the target, Y
Q

t , is calculated

using the online values of parameters, θt. The target of the DQN is calculated from a copy

of the online network called the target network with parameters θ
− where the parameters

of the target network are copied from the online network only every τ steps:

Y
DQN

t ≡ R(st+1) + γ max
a′∈A

Q(st+1, a′; θ
−) (7)

The DQN uses the same estimated model for action choice and policy evaluation which

makes it more prone to overfitting and overoptimistically estimating the value. Van Hasselt et al.

(2016) proposed the double DQN algorithm to improve the accuracy of the value estima-

tion. The target of the double DQN,

Y
doubleDQN

t ≡ R(st+1) + γQ(st+1, argmax
a′∈A

Q(st+1, a′; θt); θ
′

t) (8)

uses online network with parameters θt to select the action and a second network with

parameters θ
′

t to evaluate the value.

3.2 Agent Environment

For our simulation, we incorporated three components into the environment: a boundary,

positive and negative habitat zones, and N agents (Figure 1). We assumed the agent could

perceive other agents, the boundary, the current habitat zone, and its coordinate position.

Therefore the state, s = (s1, s2, s3, s4, s5)′, for each agent was a 5 dimensional vector

where:
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• s1 = d ∈ R is the distance to a neighbor perceived with probability d−β (Morihiro et al.,

2006),

• s2 = b ∈ R is the distance to the nearest boundary,

• s3 = c ∈ {0, 1, 2, 3} where the indices correspond to outside the boundary, neutral

zone, negative zone, and positive zone, respectively, and

• (s4, s5) = (x, y) ∈ R
2 is the position of the agent.

START

Figure 1: This graphic depicts the environment. The blue area is the neutral zone. The red

area is the negative zone. The green area is the positive zone. All agents are initiated to

start at a random point within the yellow square.

The actions space consisted of eight unit directional vectors where the first four corre-

spond to collective motion and the last four correspond to staying within the boundary. The

assumption is that the agent is moving one body length at each step represented by the unit

directional vector (Morihiro et al., 2006).

• a1: attraction to neighbor,

• a2: positive parallel alignment with neighbor,

• a3: negative parallel alignment with neighbor,

• a4: repulsion to neighbor,

• a5 : attraction to nearest boundary,
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• a6 : parallel alignment to nearest boundary toward positive habitat zone,

• a7 : parallel alignment to nearest boundary away from positive habitat zone, and

• a8 : repulsion to nearest boundary.

The boundary alignment actions were chosen such that the agent could choose the

same action, a6, to go toward the positive zone regardless of which side of the environment

it is located. This makes learning easier than using just clockwise and counterclockwise

directions for boundary alignment.

The direction between the current and next position of the agent was then calculated as

a weighted average of the agent’s current direction and the chosen action unit directional

vector given inertia

mit =
(1− κ)mi,(t−1) + κma

|(1− κ)mi,(t−1) + κma|
(9)

where mit is the direction vector for agent i at time t, ma is the directional vector for

the action a, and κ is a parameter which controls inertia (Morihiro et al., 2006).

3.2.1 Reward System

The immediate reward received by the agent after taking an action is the mean of three

values. The three values are associated with the collective behavior, tank boundary, and

habitat zone. The magnitude and direction of the rewards are the biggest influence on the

final learned policy. The reward system for the collective behavior is a zonal type system

similar to that used by Couzin et al. (2002) with a zone of repulsion, alignment, and attrac-

tion based (Table 1). Outside of these three zones, an agent cannot perceive a neighbor.

Again, since the actions are normalized, all the distances used in the reward system are

interpreted as distances in body lengths. The values used to delineate the different zones

are the same as used by Morihiro et al. (2006).

The agent is rewarded for staying within the tank boundary. The agent can only perceive

or not perceive the boundary based on the distance to the nearest edge (Table 2). If the agent

perceives the tank boundary, it is penalized for moving toward the boundary (action a5) and

rewarded for taking actions a6, a7, or a8. This reward system allows agents to learn to travel

near the boundary, but not cross over it.

Finally, the rewards for the different habitat zones are based on the zone observed

after the agent executes the chosen action. The rewards for the different zones are −10,

0, −1, and +5 for outside the boundary, neutral zone, negative zone, and positive zone,

respectively.

4. Simulation

We simulated 10 agents in the environment. An episode was defined to be the minimum of

the number of steps observed before any agent moved outside the boundary and 200 steps.

The MDP discount parameter, γ, was set to 0.8.

The state and action sequences were evaluated asynchronously for each agent. For

calculating the nearest neighbor distance in the state vector, the perception parameter β

was set to 0.5. In order to encourage exploration of the action space early in learning,

we used an ǫ-greedy action selection with decaying exploration parameter ǫ. Under an ǫ-

greedy action policy, the agent chooses a random action with probability ǫ or the best action

based on the current Q-function with probability 1 − ǫ. The probability ǫ decays to zero
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Table 1: Reward system for actions related to collective behavior by zones defined by

neighbor distance. The immediate reward received for taking one of the collective behavior

actions is based completely on the distance to perceived neighbor in the current state, d.

Action

Zone Neighbor Distance, d a1 a2 a3 a4

Repulsion d < 4 -1 -1 -1 +1

Alignment 4 < d < 20 -1 +1 -1 -1

Attraction 20 < d < 50 +1 -1 -1 -1

No Perception d > 50 0 0 0 0

Table 2: Reward system for actions related to tank boundary by distance to nearest tank

wall. The immediate reward received for taking one of the tank boundary actions is based

completely on the distance to nearest boundary in the current state, b.

Action

Boundary distance, b a5 a6 a7 a8

b < 4 -1 +1 +1 +1

4 < b 0 0 0 0

each episode. Since the agents were defined identically, each state-action sequence for the

10 agents was treated as an independent replicate from the environment and stored in the

replay memory.

The deep neural network model used for the double DQN was a feed forward model

with 3 hidden layers of size 64, 32, and 16 nodes, respectively. The parameters of the online

neural network were updated each episode with a minibatch of 128 samples randomly

selected from the replay memory. The parameters of the evaluation model in the double

DQN were copied from the action selection model every 20 episodes and the simulation

was run for 500 episodes. It is worth noting that the differences in using a DQN and

double DQN were negligible for the proposed agent environment. This suggests learning

the optimal policy in the scenario was not being severely overfit by a DQN.

5. Results

The agents quickly learn to stay within the boundary for the set maximum of 200 steps per

episode after about 70 episodes and consistently have episode lengths of 200 after about

280 episodes 2.
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Figure 2: The episode length is defined as the minimum of the number of steps before an

agent passes the boundary or 200. The agents quickly learn to stay within the boundary

given the frequency of episodes with 200 steps after about episode 70.

The optimal policy learned by the agents encouraged collective movement as one group

toward the positive habitat zone. Once the agents were in the positive habitat zone, the

collective movement was secondary to staying in the positive habitat zone and therefore

smaller groups were able to form.

Figure 3 shows the progression of learning by the agents. At episode 70, the move-

ments appear to mostly be random with some small groups forming. At episode 250,

the agents have learned to stay in the boundary for the period of 200 steps, but do not

end up in the positive habitat zone. Under the final policy, the agents travel as a group

to the positive habitat zone and smaller groups form as they trade off the reward for

the positive zone and collective behavior. We provide animations of the sampled be-

havior for episode 70, episode 250, and the final policy at the following github page:

https://github.com/schafert/JSM2019Proceedings.
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Episode 70 Episode 250 Final Policy

Figure 3: The behavior trajectories of the 10 agents in episode 70, episode 250, and under

the final policy. The colored boxes delineate the different habitat zones as shown in Figure

1

6. Conclusions

Reinforcement learning allows for simulated collective movement between agents in a com-

plex environment. In our simulation, reinforcement learning agents learned the optimal

long term behavior in a variable environment rather than a priori establishing agent based

rules as in traditional agent-based models. We used deep models for learning the long term

discounted value of behavior choices.

There are many possible extensions to the current work. First, the deep model used in

the double DQN was simply a feed forward neural network. The sequential nature of the

agent trajectories suggest that it might be more plausible to use a recurrent neural network.

Second, the degree of collective behavior exhibited in real world systems are likely to be

a function of more than the current habitat. For example, there are seasonal trends in

animal grouping behavior for migratory species. The different behavior types could be

incorporated into the reward function for collective behavior. Lastly, the reinforcement

learning framework could shed light on the effects of habitat fragmentation by evaluating

agent behavior in novel environments.
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