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Abstract

A periodic version of the autoregressive conditional Poisson model (ACP), introduced by
Heinen [1] in 2003 , is proposed. In the ACP model, the conditional mean of the Poisson
process at a given time is assumed to follow a formulation that links it to past counts and past
means. The proposed Periodic Autoregressive Conditional Poisson (PACP) model assumes
that the data are generated by Poisson process whose conditional mean follows an ACP
model with parameters that varies seasonally. Such models would be more appropriate
when modeling count data series exhibiting conditional heteroskedastic behavior that varies
from season to season. Properties of the model are investigated, and an alternative format
of the model is presented to make it comparable to a vector ARMA process. A Monte Carlo
simulation study, that employs the maximum likelihood method to estimate the parameters,
shows an accurate estimation of the parameters with a relatively small Monte Carlo standard
error. The simulation study also investigated the use of AIC and BIC criteria to differentiate
between periodic and non-periodic cases with promising results. An analysis of a simulated
data is used to illustrate the importance of identifying the true structure of time series count
data with periodic behavior and potential for the wide uses of such models.

Key Words: count data, discrete time series, seasonality, conditional heteroscedasticity,
time varying parameters

1 Introduction

Advanced data collection technologies are generating numerous time series of count
data that exhibit periodic behavior. Examples of such time series range from the number of
transactions per minute involving a given stock to the number of hourly clicks on a website.
While traditional approaches such as Poisson regression can handle many of these time
series, some count series exhibit clustering of high counts, similar to volatility clustering
found in stock return series. For example, such clustering is seen in incident counts of
common infectious deceases, where a high prevalence of the decease during the recent past
gives rise to higher counts during the next data gathering period. Among count data models,
the autoregressive conditional Poisson (ACP) model proposed by Heinen [1] allows for such
behavior, specifically because the structure of the ACP formulation is very similar to the
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Generalized Autoregressive Conditional Heteroscedastic (GARCH) processes that are used
to model economic data with volatility clustering. In addition, the ACP model also makes it
possible to analyze discrete correlated data with over-dispersion. However, the ACP model
is not structured to capture periodic behavior inherent in some count data series. Thus,
we proposed a generalized version of the ACP model, namely the Periodic Autoregressive
Conditional Poisson (PACP) model, which could accommodate such characteristics.

2 Review of Models for Time Series Count Data

Markov chains are one way to deal with count data [2]. This method requires the def-
inition of the (stationary) transition probabilities between all possible outcomes that the
random variable could generate. However, a sequence X1, X2, . . . of random variables
taking values in some set is a Markov chain if the conditional distribution of Xn+1, given
X1, X2, . . . , Xn, depends on Xn only, which would limit the use of this model because it
ignores dependence on values prior to time n. Also, when the number of possible outcomes
grows very large, this model is no longer easily tractable and its parameter estimation be-
comes cumbersome.

An alternative is to use a hidden Markov model. These models are a modified applica-
tion of Markov chains as it is assumed that an underlying unobserved state of the system,
determined by a Markov process, changes in time. The system’s present state should de-
termine the distribution of observations at the current time [3]. Sebastian et al. [4] devel-
oped the Markov ordinal logistic regression model with the transition probability defined

as P (Yt|Yt−1,Z) =
eαi−Z′β

1− eαi−Z′β , where Yi represents the states of Markov chain, while Z

denotes some known covariates. Cooper et al. [5] proposed a so-called ’structured hidden
Markov model’ for the epidemic process that intuitively follows a hidden Markov chain
process since patients communicate with each other and the epidemic process usually gives
out routine surveillance data that could often be partially observed. ’Structured’ implies
that a simple transition model is driving the underlying Markov chain. However, the need
to determine the order of the Markov chain before applying the model accounts for one
obvious drawback of this type of model. Another inevitable problem of such models is that
the variability of the outcomes may be small.

Another branch of methods developed from the application of the Markov Chain is the
binomial thinning process proposed by McKenzie [6] as a simple model to deal with discrete
variate time series problems. The thinning operator takes the sum of Xi, i = 1, 2, . . . , n
identically independent Bernoulli random variables, each of which takes value 1 with prob-
ability α and 0 with probability 1 − α. The data generating mechanism is modeled sim-
ilar as an AR process in the sense that the current count is dependent on the number of
Bernoulli random variables given by the previous count. For example, Poisson AR(1)
process is constructed as Xn = α ∗ Xn−1 + Wn, where Xn and Wn are both Poisson
process with means θ and θ(1 − α) respectively. The thinning operator ∗ is defined as
follows: α ∗ Xn−1 denotes the number of successes observed from Xn−1 Bernoulli trail
with success probability α. Geometric AR(1), negative binomial AR(1), binomial AR(1)
and compound correlated bi-variate Poisson distribution were also proposed. They also in-
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vestigated the seasonality problem in counts data, and the seasonal mean was set as µn =
a cosωn+ b sinωn, similarly the innovation mean was set as ωn = A cosωn+ B sinωn,
where A = a − α(a cosω − b sinω) and B = b − α(a sinω + b cosω). Zhu and Joe [7]
further modified the model, incorporating covariates to the mean of the stationary Markov
time series allowing time varying components. Also, they extend the model and the struc-
ture to mimic an AR(2) model to solve higher order dependence structure contained in time
series count data. The problem with this kind of model is that the seasonal pattern embed-
ded in this fashion is not flexible enough to model data demonstrating complex periodic
components that may require the inclusion of a large number of trigonometric functions to
model the cyclical behavior with reasonable accuracy.

Many count data models are based on the use of the Poisson distribution. The Pois-
son regression model, as the basic count regression model, is well described in the book
by Cameron and Trivedi [8]. In this approach it is assumed that yi, an independent obser-
vation from a Poisson distribution, given the vector of regressor xi, has a density function

f(yi|xi) =
e−µiµi

yi

yi!
, yi = 0, 1, 2, 3, . . . . The relationship between the mean and regressors

is shown by the link function µi = exp(x′iβ). It is worth noting that empirical data usually
shows more variation than can be accounted by such Poisson models.

In order to account for unobserved heterogeneity and the correlation of events in the ob-
served data, Winkelmann [9] derived several compound Poisson models, taking additional
unobserved heterogeneity into consideration by letting λi = exp(xiβ + εi) = exp(xiβ)µi.
They applied the model to labor mobility data and their results illustrate the necessity to
allow for the generalizations of the standard Poisson regression model. Coxe et al. [10]
provided a clear review of some appropriate regression models applicable to count data.
Starting with standard Poisson regression model, two variants of Poisson regression, nega-
tive binomial regression and over-dispersed Poisson regression are gradually formed to han-
dle the over-dispersion phenomenon. A comparison among those models, using a simulated
data set of drinks consumed by university students on Saturday night [11], demonstrates the
strengths and weaknesses of these models.

In order to generalize the relationship between the mean and the variance imposed by
the Poisson regression models, Linden and Mantyniemi [12] utilized a negative binomial
formulation. In their approach, two parameters are introduced to accommodate different
’quadratic mean–variance relationships’ [12]. They expressed the probability mass function

of the random variable X as P (X = x|r, p) =
Γ(x+ r)

x!Γ(r)
pr(1 − p)x, with the expectation

(theoretical mean) µ =
r(1–p)

p
and variance σ =

r(1–p)

p2
. Based on this setup, param-

eters r and p could be solved from their relationship with the mean and the variance, as

r =
µ2

σ2 − µ
and p =

1

ω + θµ
. The negative binomial distribution allows more flexible

parameterization, which could be used to represent multiple types of over-dispersed Pois-
son processes. By establishing a quadratic function of the mean to describe the variance,
σ2 = ωµ + θµ2, diverse relationships between the mean and variance can be obtained
by varying the two over-dispersion parameters ω and θ as long as the condition σ2 > µ
is satisfied. Scenarios where over-dispersion might happen due to factors such as sam-
pling, environmental dissimilarity, or flocking behavior, were exemplified using bird mi-
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gration data showing a high level of over-dispersion. In this study, the negative binomial
distribution, using well-selected over-dispersion parameters, appropriately represented the
mean-variance relationships in the considered scenarios. However, distinct assumptions
about mean-variance relationships could lead to completely different coefficients which
need careful identification and interpretation.

The class of discrete-valued time series models analogous to Gaussian ARMA models
were advocated by Jacobs and Lewis [3]. The data generating process they assumed was
a probabilistic linear combination of independently and identically distributed discrete ran-
dom variables.[13] Two simple stationary processes of discrete random variables, DARMA
(p, N+1) and NDARMA (p, N), whose first-order marginal distributions are arbitrarily cho-
sen, are listed in [14]. One major drawback of the DARMA model is that even if the
distribution of independent identically distributed variables is continuous, the sequence has
a high density around a single value.

The integer-valued generalized autoregressive conditional heteroskedastic (INGARCH)
(p,q) process was proposed by Rene [15] to model integer-valued data with Poisson devi-
ates. In the article, important conditions for the existence of the mentioned process are
discussed. When it comes to the situation p = 1, q = 1, such an integer-valued GARCH
process is in essence a standard ARMA (1, 1) model. The asymptotic properties of the max-
imum likelihood estimates of model parameters were studied. Numbers of people infected
by Campylobacterosis (a bacteria caused disease) over a certain period was analyzed by the
observation driven model, and a one-step ahead forecast was also provided.

After the above INGARCH Poisson model was proposed, a negative binomial version
was built on this structure. Zhu [16] developed the negative binomial integer GARCH

(NBINGARCH) model and discussed some properties of it. By letting
1− pt
pt

= λt =

α0 +
∑p

i=1 αiXt−i +
∑q

j=1 βjλt−j , the negative binomial INGARCH could deal with
problems that occur when fitting over-dispersed data by a Poisson based INGARCH model.
The model could also handle potential extreme observations.

Another common feature in time series count data is the excessive zeros. The zero-
inflated Poisson model [17] was introduced to deal with this type of data. The model
assumes excessive zeros is the outcome from two processes: one a binary process with
probability π of getting a zero and another as an ordinary Poisson process. Later, Yang [18]
linked the parameters of the rate of the Poisson process and the probability of the binary
process with exogenous explanatory covariates. Möller [19] extended the binomial thin-
ning AR(1) process by adding a bounded support to accommodate different zero-inflated
data types. They assumed the observation at time t is generated from two thinning processes
Xt = α ◦Xt−1 + β ◦ (n−Xt−1), where α and β are the probabilities of getting a one in a
Bernoulli trial and n is the maximum value that Xt could take.

3 Proposed Periodic ACP Models

In the article by Heinen [1], an Autoregressive Conditional Poisson (ACP) model that
handles count data from a Poisson distribution with an autoregressive mean was developed.
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Let Ft represent all information available before and including time t. Conditioning on the
past information, the count present follows a Poisson distribution with a mean µt related to
the past,

Nt|Ft ∼ P (µt),

where the mean has an autoregressive conditional intensity structure inspired by conditional
variance in GARCH [20] model of Bollerslev [21]. In the ACP model,

E[Nt|Ft] = µt = ω +

p∑
j=1

αjNt−j +

q∑
j=1

βjµt−j , (3.1)

under the condition that all of α′js,β
′
js and ω are positive.

However, there are empirical count data series that demonstrate periodic characteris-
tics. Therefore, a periodically varying coefficient autoregressive conditional Poisson model
would be more appropriate under such circumstance. Thus, we generalize the ACP Model
to a periodic autoregressive conditional Poisson model(PACP), which provides more flexi-
bility when modeling periodic count data.

To define the desired structure, let {Nt : t ∈ N} be the time series of interest, with
Nt denoting the count at time t. We assume that t falls into one of s periods that recur
in a periodic fashion, and let s(t) denote the period to which t belongs. Denoting the σ−
algebra generated by {Ni : i ≤ t} as Ft. assume that

Nt|Ft ∼ P (λt)

with the mean having a time varying structure

λt = ωs(t) +

q∑
i=1

αis(t)Nt−i +

p∑
j=1

βjs(t)λt−j , (3.2)

where ω′ss, α
′
is(t)s, β

′
js(t)s and i = 1, 2, , . . . , q, j = 1, 2, . . . , p are positive for all values of

s(t). Note the s(t) represents the corresponding stage of the periodic cycle at time t. Note
that the above formulation parallels that of a periodic GARCH(p,q) process [21].

4 Some Properties of the Model

Following the derivations by Bollerslev [21], the equation 3.1 could be rewritten as

Nt = εt + ωs(t) +

max(p,q)∑
i=1

(αis(t) + βis(t))Nt−i −
p∑
j=1

βjs(t)εt−j , (4.1)

where εt = Nt − λt.

Now, model in Equation (3.2) could be interpreted as an ARMA(max(p,q),p) process
instead of a GARCH(p,q) process. Some properties of εt are discussed below. We have
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E(εt) = E(Nt − λt) = E((Nt − λt|Ft−1)) = E(λt − λt) = 0,

and

V ar(εt) = V ar (E(εt|Ft−1)) + E (V ar(εt|Ft−1))
= V ar (0) + E (V ar(εt|Ft−1))
= V ar (0) + E (V ar(Nt − λt|Ft−1))
= E (V ar(Nt − λt|Ft−1))
= E (V ar(Nt|Ft−1))
= E (λt) = µt.

We considered two cases: (1) Periodic data with a single observation within each period
and (2) Periodic data with multiple observations within each period. For the first case, a
Vector ARMA form of the time series is derived analogous to [21], and this form is derived
in the appendix.

5 Likelihood Function, Score, Hessian and Parameter
Estimation

Let θ ≡ (ωs, αis(t), βis(t)) for i = 1, . . . , q, j = 1, . . . , p, represent all parameters in
the Periodic ACP model. The conditional log-likelihood function for the model could be
written as the sum of log-likelihood for each observation from different periods. Thus we
have

lT (θ) =
T∑
t=1

(−λt(θ) +Nt log λt(θ)− log(Nt!)). (5.1)

The corresponding score function and Hessian matrix are

∂lT
∂θ

=

T∑
t=1

−∂λt
∂θ

+
Nt

λt

(
∂λt
∂θ

)
,

∂2lT
∂θ2

=

(
−Nt

λ2t

)(
∂λt
∂θ

)(
∂λt
∂θ

)′
,

where

∂λt
∂θ

= V ′t +

p∑
j=1

βjs(t)
∂λt−i
∂θ

,

and

Vt = [1, Nt−1, Nt−2, . . . , Nt−q, λt−1, λt−2, . . . , λt−p].
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6 The Monte-Carlo Simulation Study

We conducted a Monte-Carlo simulation study to investigate how well the PACP model
parameters are estimated by the MLE procedure. A simulation study was also performed
to investigate the use of AIC and BIC criteria to differentiate between periodic and non-
periodic cases.

The maximum likelihood method is utilized to estimate the parameters of PACP Model.
The log likelihood function is defined as (5.1)

The properties of estimates were studied across different combinations of parameters
using 3,000 simulation runs for each combination. Bias and Monte Carlo standard error
were computed for each of the parameter combination. In order to eliminate the artifacts
arising out of initial conditions, the first 240 time series data points were discarded.

6.1 Case of a single observation within a period

The simulated data were generated from a Periodic ACP process with 2 periods and only
a single data point within each period. Two different parameter sets were used for analysis.
For Table 1, the true parameter sets is ω1 = 3, ω2 = 5, α1 = 0.1, α2 = 0.3, β = 0.1, while
for Table 2 the true parameter sets is ω1 = 10, ω2 = 8, α1 = 0.25, α2 = 0.35, β = 0.2. For
each combination of parameter sets, sample size T=500 and T=1000 were considered. Note
that the time series lengths T=500 and 1,000 are comparable to the lengths of series of day
and night counts of a given phenomenon over a few years. Maximum likelihood estimation
results from 3,000 simulations based on the above sample sizes with a single observation
within a period are reported in Tables 1 and 2.

Table 1: Maximum likelihood estimation results from 3,000 simulations based on different
sample sizes (single observation within a period); parameter Set 1.

Parameters True Value
T=500 T=1,000

Estimates Bias SE Estimates Bias SE

ω1 3.0000 2.7783 -0.2217 0.0194 2.9019 -0.0981 0.0142
ω2 5.0000 4.8543 -0.1457 0.0130 4.9279 -0.0721 0.0097
α1 0.1000 0.0989 -0.0011 0.0009 0.0983 -0.0017 0.0007
α1 0.3000 0.2985 -0.0015 0.0015 0.2990 -0.0010 0.0011
β 0.1000 0.1345 0.0345 0.0030 0.1166 0.0166 0.0021
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Table 2: Maximum likelihood estimation results from 3,000 simulations based on different
sample sizes (single observation within a period); parameter Set 2.

Parameters True Value
T=500 T=1,000

Estimates Bias SE Estimates Bias SE

ω1 10.0000 10.2290 0.2290 0.0394 10.0930 0.0930 0.0285
ω2 8.0000 8.2398 0.2398 0.0407 8.0681 0.0681 0.0298
α1 0.2500 0.2484 -0.0016 0.0012 0.2500 0.0000 0.0008
α2 0.3500 0.3477 -0.0023 0.0012 0.3511 0.0011 0.0008
β 0.2000 0.1889 -0.0111 0.0023 0.1949 -0.0051 0.0017

6.2 Case of multiple observations within a period

The simulated data were generated from a Periodic ACP process with 4 seasons and
each season having 90 data points. Three different parameter sets were used for analysis.
For Table 3, the true parameter set is ω1 = 2, ω2 = 5, ω3 = 3, ω4 = 4, α1 = 0.1,
α2 = 0.05, α3 = 0.2, α4 = 0.2, β = 0.1. For Table 4 the true parameter set is ω1 = 10,
ω2 = 7, ω3 = 5, ω4 = 12, α1 = 0.2, α2 = 0.3, α3 = 0.1, α4 = 0.3, β = 0.3. For
Table 5 the true parameter set is ω1 = 4, ω2 = 6, ω3 = 5, ω4 = 4, α1 = 0.1, α2 = 0.2,
α3 = 0.1, α4 = 0.2, β = 0.4. For each combination of parameter sets, sample size
T=540 and T=1,080 were considered. These are approximately equivalent to the numbers of
observations for a 1.5-year and 3-year daily count data respectively. Maximum likelihood
estimation results from 3,000 simulations based on different sample sizes are reported in
Table 3-5.

Table 3: Maximum likelihood estimation results from 3,000 simulations based on different
sample sizes (multiple observations within a period); parameter Set 1.

Parameters True Value
T=540 T=1,080

Estimates Bias SE Estimates Bias SE

ω1 2 1.974 -0.026 0.007 1.991 -0.009 0.006
ω2 5 4.87 -0.13 0.017 4.939 -0.061 0.013
ω3 3 3.008 0.008 0.013 3.001 0.001 0.01
ω4 4 4.018 0.018 0.017 3.997 -0.003 0.013
α1 0.1 0.093 -0.007 0.001 0.096 -0.004 0.001
α2 0.05 0.056 0.006 0.001 0.053 0.003 0.001
α3 0.2 0.181 -0.019 0.002 0.192 -0.008 0.001
α4 0.2 0.181 -0.019 0.002 0.193 -0.007 0.001
β 0.1 0.117 0.017 0.003 0.107 0.007 0.002
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Table 4: Maximum likelihood estimation results from 3,000 simulations based on different
sample sizes (multiple observations within a period); parameter Set 2.

Parameters True Value
T=540 T=1,080

Estimates Bias SE Estimates Bias SE

ω1 10.000 10.651 0.651 0.043 10.338 0.338 0.030
ω2 7.000 7.597 0.597 0.036 7.299 0.299 0.025
ω3 5.000 5.250 0.250 0.020 5.120 0.120 0.013
ω4 12.000 13.103 1.103 0.058 12.400 0.400 0.033
α1 0.200 0.190 -0.010 0.001 0.191 -0.009 0.001
α2 0.300 0.288 -0.012 0.001 0.292 -0.008 0.001
α3 0.100 0.093 -0.007 0.001 0.094 -0.006 0.001
α4 0.300 0.284 -0.016 0.002 0.294 -0.006 0.001
β 0.300 0.278 -0.022 0.002 0.292 -0.008 0.001

Table 5: Maximum likelihood estimation results from 3,000 simulations based on different
sample sizes (multiple observations within a period); parameter Set 3.

Parameters True Value
T=540 T=1,080

Estimates Bias SE Estimates Bias SE

ω1 4.000 4.476 0.476 0.025 4.264 0.264 0.018
ω2 6.000 6.856 0.856 0.042 6.456 0.456 0.029
ω3 5.000 5.654 0.654 0.033 5.327 0.327 0.022
ω4 4.000 4.738 0.738 0.033 4.343 0.343 0.022
α1 0.100 0.093 -0.007 0.001 0.095 -0.005 0.001
α2 0.200 0.194 -0.006 0.001 0.197 -0.003 0.001
α3 0.100 0.088 -0.012 0.001 0.095 -0.005 0.001
α4 0.200 0.178 -0.022 0.002 0.193 -0.007 0.001
β 0.400 0.347 -0.053 0.003 0.373 -0.027 0.002

From the simulation results, it is clear that the maximum likelihood estimate method
gives a relatively small bias (10%) and low Monte Carlo standard error. Note that the es-
timation bias is smaller and standard error is lower for the larger sample size, in both the
single observation per period and multiple observations per period cases. This demonstrates
the MLE is a viable method for estimating the parameters of the suggested Periodic Autore-
gressive Poisson Model and that larger sample sizes produce more accurate estimates.

7 Model Selection

To examine whether AIC and/or BIC are a good criteria to distinguish the true structure
of the count data, a small scale Monte Carlo simulation study was performed. All statistics
reported here are calculated from N=3,000 replications and each replication having sample
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size T=1,080. In order to avoid artifacts created by initial conditions, the first 360 time
series data points were discarded.

Mean AIC is averaged from AIC values for each of the replications and the percentage
in the brackets indicates the proportion of simulation runs that yielded a smaller AIC value
for the corresponding model.

Table 6 shows results for the case when the data were generated from an ACP process
with true parameters ω = 2, α = 0.1, β = 0.15. Both ACP and Periodic ACP Model were
filled to the data. The AIC values for ACP Model are lower than those for the PACP model
94 out of 100 times, which suggests AIC performs well in identifying the true structure
of the time series. BIC does not work in this situation since Periodic ACP model gives
out same estimates for each season as the ACP model. AIC put more penalty on large
parameters sets than BIC, thus it has better perfomance than BIC.

Table 6: ACP and PACP model selection by AIC criteria with simulated time series data
with ACP as the data generating process.

Parameters ACP Model Periodic ACP Model

ω1 1.8626 1.9312
ω2 - 1.9271
ω3 - 1.9307
ω4 - 1.9337
α1 0.099266 0.095937
α2 - 0.09726
α3 - 0.096276
α4 - 0.095989
β 0.15582 0.1314

Mean AIC 3955.77(94.233%) 3961.795(5.767%)

Table 7 shows results when a Periodic ACP process with true parameters ω1 = 2, ω2 =
5, ω3 = 3, ω4 = 4, α1 = 0.1, α2 = 0.05, α3 = 0.2, α4 = 0.2, β = 0.1 is the underlying
structure producing the count data. Both ACP model and Periodic ACP model were used
to fit the data. In this case, AIC and BIC all show their strong ability to select the right
structure. Notice that when there is periodicity in the count data, an ordinary ACP model
gives out estimates of α and β with their sum close to one, suggesting near non-stationarity,
raising questions about the appropriateness of the model.
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Table 7: ACP and PACP model selection by AIC and BIC criteria with simulated time
series data generated under a PACP model.

Parameters ACP Model Periodic ACP Model

ω1 0.15944 1.9978
ω2 - 4.9635
ω3 - 3.005
ω4 - 3.9987
α1 0.15236 0.094843
α2 - 0.051539
α3 - 0.19369
α4 - 0.19514
β 0.81353 0.10489

Mean AIC 4726.275 (0%) 4605.73 (100%)
Mean BIC 4783.136 (0%) 4650.593 (100%)

8 Visualization of simulated data and estimated intensity
process

The application of the proposed PACP model is demonstrated using a simulated data
set. The data is generated from a Periodic ACP process with 4 seasons and each season has
90 data points. The parameter set is ω1 = 2, ω2 = 5, ω3 = 3, ω4 = 4, α1 = 0.1, α2 = 0.05,
α3 = 0.2, α4 = 0.2, β = 0.1.

Figure 1: Simulated time series count data and the estimated intensity λt process
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As shown in Figure 1, the grey line represents the simulated data while the blue line
indicates the estimated underlying periodic process. The results shows the PACP model
captures the cyclical movement of the process well.

9 Conclusion

The model provided here is a natural generalization of the Autoregressive Conditional
Periodic Poisson model, which allows periodicity to be taken into consideration when mod-
eling count time series. The reported simulation results in Section 6 show that the MLE
provides reasonable estimates of the model parameters of the PACP model. We also studied
the utility of using AIC and BIC criteria in determining if the underlying data generating
process is ACP or PACP. Results suggest that the use of AIC criteria is a trustworthy way
to differentiate between the underlying ACP or PACP structure. In addition, the simulated
data illustrates there is indeed the necessity to generalize the original ACP model to accom-
modate periodic component in the count data.
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A Appendix

A.1 ACP extension

In this section, we derive the reformulation of the original set up equation for our model
to an integer valued seasonal ARMA(maxp,q,p) process. The count data has a stochastic
process satisfies

λt = ωs(t) +

q∑
i=1

αis(t)Nt−i +

p∑
j=1

βjs(t)λt−j .

Equivalently, it could be rewritten as an integer valued ARMA(maxp,q,p) model

(i) Case1 p ≤ q.

Nt + λt = Nt + ωs(t) +

q∑
i=1

αis(t)Nt−i +

p∑
j=1

βjs(t)λt−j ,

Nt = Nt − λt + ωs(t) +

q∑
i=1

αis(t)Nt−i +

p∑
j=1

βjs(t)λt−j ,

Nt = Nt−λt+ωs(t) +

q∑
i=1

αis(t)Nt−i+

p∑
j=1

βjs(t)Nt−j−
p∑
j=1

βjs(t)Nt−j +

p∑
j=1

βjs(t)λt−j ,

Nt = Nt−λt+ωs(t)+
q∑
i=1

αis(t)Nt−i+

p∑
j=1

βjs(t)Nt−j−

 p∑
j=1

βjs(t)Nt−j −
p∑
j=1

βjs(t)λt−j

 ,

Nt = Nt − λt︸ ︷︷ ︸
εt

+ωs(t)+

q∑
i=1

αis(t)Nt−i+

p∑
j=1

βjs(t)Nt−j−

 p∑
j=1

βjs(t)Nt−j −
p∑
j=1

βjs(t)λt−j


︸ ︷︷ ︸∑p

j=1 βjs(t)εt−j

,

Nt = εt + ωs(t) +

q∑
i=1

αis(t)Nt−i +

p∑
j=1

βjs(t)Nt−j −
p∑
j=1

βjs(t)εt−j ,

Nt = εt + ωs(t) +

q∑
i=1

αis(t)Nt−i +

p∑
j=1

βjs(t)Nt−j −
p∑
j=1

βjs(t)εt−j .

Choose βjs(t) ≡ 0 for j > p, then,

Nt = εt + ωs(t) +

q∑
i=1

αis(t)Nt−i +

p∑
j=1

βjs(t)Nt−j −
p∑
j=1

βjs(t)εt−j ,

Nt = εt+ωs(t) +

q∑
i=1

αis(t)Nt−i+

q∑
j=1

βjs(t)Nt−j−
p∑
j=1

βjs(t)εt−j | βjs(t) ≡ 0, ∀p ≤ q,
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Nt = εt + ωs(t) +

q∑
i=1

(αis(t) + βis(t))Nt−i −
p∑
j=1

βjs(t)εt−j ,

Nt = εt + ωs(t) +

max(p,q)∑
i=1

(αis(t) + βis(t))Nt−i −
p∑
j=1

βjs(t)εt−j .

(2) Case2 p > q. Let

Nt + λt = Nt + ωs(t) +

q∑
i=1

αis(t)Nt−i +

p∑
j=1

βjs(t)λt−j ,

Nt = Nt − λt + ωs(t) +

q∑
i=1

αis(t)Nt−i +

p∑
j=1

βjs(t)λt−j ,

Nt = Nt−λt+ωs(t) +

q∑
i=1

αis(t)Nt−i+

p∑
j=1

βjs(t)Nt−j−
p∑
j=1

βjs(t)Nt−j +

p∑
j=1

βjs(t)λt−j ,

Nt = Nt−λt+ωs(t)+
q∑
i=1

αis(t)Nt−i+

p∑
j=1

βjs(t)Nt−j−

 p∑
j=1

βjs(t)Nt−j −
p∑
j=1

βjs(t)λt−j

 ,

Nt = Nt − λt︸ ︷︷ ︸
εt

+ωs(t)+

q∑
i=1

αis(t)Nt−i+

p∑
j=1

βjs(t)Nt−j−

 p∑
j=1

βjs(t)Nt−j −
p∑
j=1

βjs(t)λt−j


︸ ︷︷ ︸∑p

j=1 βjs(t)εt−j

,

Nt = εt + ωs(t) +

q∑
i=1

αis(t)Nt−i +

p∑
j=1

βjs(t)Nt−j −
p∑
j=1

βjs(t)εt−j ,

Nt = εt + ωs(t) +

q∑
i=1

αis(t)Nt−i +

p∑
j=1

βjs(t)Nt−j −
p∑
j=1

βjs(t)εt−j .

Now choose αis(t) ≡ 0 for i > q. Then,

Nt = εt + ωs(t) +

q∑
i=1

αis(t)Nt−i +

p∑
j=1

βjs(t)Nt−j −
p∑
j=1

βjs(t)εt−j ,

Nt = εt+ωs(t) +

p∑
i=1

αis(t)Nt−i+

p∑
j=1

βjs(t)Nt−j −
p∑
j=1

βjs(t)εt−j | αis(t) ≡ 0, ∀i ≥ q,

Nt = εt + ωs(t) +

p∑
i=1

(αis(t) + βis(t))Nt−i −
p∑
j=1

βjs(t)εt−j ,

Nt = εt + ωs(t) +

max(p,q)∑
i=1

(αis(t) + βis(t))Nt−i −
p∑
j=1

βjs(t)εt−j .

For both cases, they all could be rewritten as an ARMA(max(p,q),p) process.
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A.2 Develop VARMA Form (Four seasons without repeated observation)

In this section, we derive the Vector ARMA form of the periodic count time series from
the integer valued seasonal ARMA(maxp,q,p) process. Note that we can write

1 − (α14 + β14) 0 0
0 1 − (α13 + β13) 0
0 0 1 − (α12 + β12)
0 0 0 1



N4τ

N4τ−1
N4τ−2
N4τ−3

 =


ω4

ω3

ω2

ω1

+


0 0 0 0
0 0 0 0
0 0 0 0

(α11 + β11) 0 0 0



N4(τ−1)
N4(τ−1)−1
N4(τ−1)−2
N4(τ−1)−3

+


1 −β14 0 0
0 1 −β13 0
0 0 1 −β12
0 0 0 1



ε4τ
ε4τ−1
ε4τ−2
ε4τ−3

+


0 0 0 0
0 0 0 0
0 0 0 0
−β11 0 0 0



ε4(τ−1)
ε4(τ−1)−1
ε4(τ−1)−2
ε4(τ−1)−3

 ,

Multiplying both sides by the inverse matrix given below,
1 α14 + β14 (α13 + β13) (α14 + β14) (α12 + β12) (α13 + β13) (α14 + β14)
0 1 α13 + β13 (α12 + β12) (α13 + β13)
0 0 1 α12 + β12
0 0 0 1

 .

We obtain the Vector ARMA form:
N4τ

N4τ−1
N4τ−2
N4τ−3

 =


ω1 (α12 + β12) (α13 + β13) (α14 + β14) + ω2 (α13 + β13) (α14 + β14) + ω3 (α14 + β14) + ω4

ω1 (α12 + β12) (α13 + β13) + ω2 (α13 + β13) + ω3

ω1 (α12 + β12) + ω2

ω1



+


(α11 + β11) (α12 + β12) (α13 + β13) (α14 + β14) 0 0 0

(α11 + β11) (α12 + β12) (α13 + β13) 0 0 0
(α11 + β11) (α12 + β12) 0 0 0

α11 + β11 0 0 0



N4(τ−1)
N4(τ−1)−1
N4(τ−1)−2
N4(τ−1)−3



+


1 α14 α13 (α14 + β14) α12 (α13 + β13) (α14 + β14)
0 1 α13 α12 (α13 + β13)
0 0 1 α12

0 0 0 1



ε4τ
ε4τ−1
ε4τ−2
ε4τ−3



+


−β11 (α12 + β12) (α13 + β13) (α14 + β14) 0 0 0

−β11 (α12 + β12) (α13 + β13) 0 0 0
−β11 (α12 + β12) 0 0 0

−β11 0 0 0



ε4(τ−1)
ε4(τ−1)−1
ε4(τ−1)−2
ε4(τ−1)−3

 .

Now take the expectation of both sides and assume that the observations from the same
period have the same expected value, to get the expectation of each observation from each
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season:
E(λ1) = ω1+ω2(α14+β14)+ω3(α13+β13)(α14+β14)+ω4(α12+β12)(α13+β13)(α14+β14)

1−(α11+β11)(α12+β12)(α13+β13)(α14+β14)

E(λ2) = ω1(α11+β11)(α12+β12)(α13+β13)+ω2+ω3(α13+β13)+ω4(α12+β12)(α13+β13)
1−(α11+β11)(α12+β12)(α13+β13)(α14+β14)

E(λ3) = ω1(α11+β11)(α12+β12)+ω2(α11+β11)(α12+β12)(α14+β14)+ω3+ω4(α12+β12)
1−(α11+β11)(α12+β12)(α13+β13)(α14+β14)

E(λ4) = ω1(α11+β11)+ω2(α11+β11)(α14+β14)+ω3(α11+β11)(α13+β13)(α14+β14)+ω4
1−(α11+β11)(α12+β12)(α13+β13)(α14+β14)

Now let a11 + b11 = A, a12 + b12 = B, a13 + b13 = C and a14 + b14 = D, the
expectation of observation of each season could be rewritten as:

E(λ1) : ω1+Dω2+CDω3+BCDω4
1−ABCD

E(λ2) : ABCω1+ω2+Cω3+BCω4
1−ABCD

E(λ3) : ABω1+ABDω2+ω3+Bω4
1−ABCD

E(λ4) : Aω1+ADω2+ACDω3+ω4
1−ABCD

.
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