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Abstract
Correlated binary data from a cross-sectional study frequently arise in the health sciences. In a

randomized trial, patients with multiple myeloma from the same institution were randomly assigned
to one of the two chemotherapy treatment groups, and it is often of interest in comparing overall
success rates between the two chemotherapy treatment groups. Due to a cross-sectional design, the
success rates between the two chemotherapy treatment groups are no longer independent. Moreover,
due to cluster effect, post-treatment responses from each cluster (institution) for each treatment
group can be highly correlated. By taking both correlation structures into account, we develop three
efficient methods for the above inference problem. An extensive simulation study is conducted for
the purpose of evaluating and comparing the performance of the proposed methods. An application
to a chemotherapy study is used to illustrate the proposed methods.

Key Words: correlated binary data, confidence interval, coverage probability, difference between
the proportions, independent binary data

1. Introduction

Correlated binary data from a cross-sectional study frequently arise in many biomedical,
toxicological, clinical medicine, and epidemiological applications when the treatment con-
ditions are available within each cluster. For instance, in a cancer and leukemia group B
randomized trial (Cooper et al., 1993), patients with multiple myeloma from the same in-
stitution were randomly assigned to one of the two chemotherapy treatment groups, where
each institution was considered as the randomization unit or cluster. In each group there
were 21 institutions with the number of patients ranging from 2 to 12 in each treatment. A
total of 72 eligible patients for treatment I and a total of 84 eligible patients for treatment
II were accrued. In this study, it is of interest to compare two chemotherapy treatments
with respect to success rates of the patients with multiple myeloma who survived at the end
of this study. Note that posttreatment responses from the same institution for each treat-
ment group can be highly correlated, which leads to inflated variances of the posttreatment
response rates. Furthermore, the success rates between the two chemotherapy treatment
groups from the same institute or cluster are no longer independent. For independent bi-
nary data, there are numerous binomial interval procedures available in literature for the
estimation of the difference between the response rates in two treatment groups.

Let P1 and P2 be the the success rates between the two chemotherapy treatment groups,
respectively. Then estimating the difference P1 − P2 will determine whether there is any
difference between the two chemotherapy treatment groups. It is worthwhile to note that
due to a cross sectional design the estimates of P1 and P2 are no longer independent. We,
therefore, need to develop some efficient methods for estimating the difference P1 − P2

for such a design. This inference problem is commonly addressed by computing the con-
fidence interval (CI) for the difference P1 − P2 by taking both correlations into account:
(i) correlation among patients from the same institute for each treatment group and (ii) cor-
relation between the two treatment groups for each institution. For a non-cross sectional
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design, Saha and Wang (2018) introduced several methods for estimating the difference
P1 − P2. Of these methods they proposes two methods which are remarkably simple and
have good properties. However, such an analysis would bias the inference procedures re-
garding P1 − P2 for a cross sectional design. Furthermore, inference methods concerning
P1 − P2 that does not incorporate correlation between the two treatment groups in a cross
sectional design may significantly inflate the Type I error rate. To address the issue, we
construct several explicit asymptotic two-sided confidence intervals (CIs) for the differ-
ence P1 − P2 using the method of variance of estimates recovery (MOVER). The basic
idea is to recover variance estimates required for the proportion difference from the con-
fidence limits for single proportions. The CI estimators for a single proportion, which are
incorporated with the MOVER, will include the CIs proposed by Saha et al. (2016).

2. Proposed Method

First, we present the data layout in the cross-sectional designs shown in Table 1, where
Xijl; l = 1, 2, . . . ,mij ; j = 1, 2, . . . , k; i = 1, 2 be the binary response (success or fail-
ure) for lth patient from the jth institution (or cluster) in the ith treatment. The parameter
of interest in this article is ∆ = P1 − P2. In particular, we would like to construct simple
but reliable CIs for ∆ based on the method of variance estimates recovery (MOVER) as
outlined by Tang et al. (2010). Here we briefly review this method for our case.

Table 1: Typical data layout in the cross-sectional designs

Institution (or Cluster)
1 2 . . . k

Patients↓ Treatment 1 Treatment 2 Treatment 1 Treatment 2 . . . Treatment 1 Treatment 2
1 X111 X211 X121 X221 . . . X1k1 X2k1

2 X112 X212 X122 X222 . . . X1k2 X2k2

...
...

...
...

...
...

...
l X11l X21l X12l X22l . . . X1kl X2kl

...
...

...
...

...
...

...
mij X11m11 X21m21 X12m12 X22m22 . . . X1km1k

X2km2k

Total X11 X21 X12 X22 . . . X1k X2k

We first consider that P̂1 and P̂2 are uncorrelated. By central limit theorem, a 100(1−
α)% CI for ∆ = P1 − P2 is given by (L,U), where

L = P̂1− P̂2− zα/2

√
Var(P̂1) + Var(P̂2) and U = P̂1− P̂2+ zα/2

√
Var(P̂1) + Var(P̂2).

The above confidence limits (L,U) are not yet available without the appropriate variance
estimates, V̂ar(P̂i), i = 1, 2. Suppose a 100(1 − α)% CI for Pi is (li, ui), i = 1, 2, where

li = P̂i − zα/2

√
Var(P̂i) implies V̂ar(P̂i = (P̂i − li)

2/z2α/2 under Pi ≈ li. Similarly,

ui = P̂i + zα/2

√
Var(P̂i) implies V̂ar(P̂i = (ui − P̂i)

2/z2α/2 under Pi ≈ ui. Based on the
possible values (l1, u1) of P1 and (l2, u2) of P2, the values closest to the minimum L and
maximum U are l2 − u1 and u2 − l1, respectively. As a result, for setting L with P1 ≈ l1
and P2 ≈ u2, we have Var(P̂1) + Var(P̂2) = (P̂1 − l1)

2/z2α/2 + (u2 − P̂2)
2/z2α/2, which

gives

L = P̂1 − P̂2 −
√
(P̂1 − l1)2 + (u2 − P̂2)2.
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Similarly, we have

U = P̂1 − P̂2 +
√
(u1 − P̂1)2 + (P̂2 − l2)2.

Obviously, P̂1 and P̂2 are correlated in the present setting and the covariance between P̂1

and P̂2 can be obtained as

Cov(P̂1, P̂2) = Corr(P̂1, P̂2)
√

Var(P̂1)Var(P̂2),

which can be used to extend obtaining the confidence limits to the case of correlated propor-
tions. Thus, a 100(1−α)% CI based on MOVER for ∆ = P1−P2 is given by (∆M

l ,∆M
u ),

where

∆M
l = P̂1 − P̂2 −

√
(P̂1 − l1)2 + (u2 − P̂2)2 − 2Ĉorr(P̂1, P̂2)(P̂1 − l1)(u2 − P̂2)

and

∆M
u = P̂1 − P̂2 +

√
(u1 − P̂1)2 + (P̂2 − l2)2 − 2Ĉorr(P̂1, P̂2)(u1 − P̂1)(P̂2 − l2),

where Ĉorr(P̂1, P̂2) is the estimated correlation between P̂1 and P̂2. We obtain this estimate
based on the ANOVA estimate discussed by Donner and Klar (2000) after ignoring the
cross-sectional data structure.

As we have discussed earlier, one needs two separate CIs for P1 and P2 to construct
CI for ∆ = P1 − P2 based on the above method, MOVER. It can be seen that Xij =∑mij

l=1 Xijl (i = 1, 2; j = 1, 2, . . . , k) follows an over-dispersed binomial distribution such
as beta-binomial distribution with parameters Pi and ϕi (i = 1, 2). Saha et al. (2016)
investigated 16 asymptotic CIs for a single proportion for the over-dispersed binary data
and compared the performance of those methods through an extensive simulation for a
variety of parameter combinations. From their results, it shows that Wald CI based on
beta-binomial may tend to be liberal , particularly for the small number of clusters, but the
Wilson score and the profile likelihood-based CIs outperform the other CIs considered. We
use these three methods to obtain two separate CIs (li, ui) for Pi, i = 1, 2. We briefly
review these CIs for Pi as follows:

The Wilson score CIs: Using the central limit theorem, it can be shown that M1/2
i (P̂i−

P )/
√
Pi(1− Pi)ω̂i converges in distribution to the standard normal distribution as k →

∞, where ω̂i =
∑k

j=1[mij{1 + (mij − 1)ϕ̂i]/Mi with ϕ̂i being the ANOVA-type estimate
of ϕi. Then, the approximate 100(1−α)% Wilson CIs (li, ui) for Pi, i = 1, 2 are the roots
of the quadratic equation:

P

(
Mi(P̂i − P )2

Pi(1− Pi)ω̂i
≤ z2α/2

)
= 1− α.

After some straightforward algebra, it can be obtained as

li = P̃i −
zα/2

M̃i

√
MiP̂i(1− P̂i)ω̂i +

ω̂2
i z

2
α/2

4

and

ui = P̃i +
zα/2

M̃i

√
MiP̂i(1− P̂i)ω̂i +

ω̂2
i z

2
α/2

4
,
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where

P̃i =
MiP̂i + 0.5ω̂iz

2
α/2

Mi + ω̂iz2α/2
and M̃i = Mi + ω̂iz

2
α/2.

The Profile Likelihood CIs: The log-likelihood of the beta-binomial model (Xij ∼
BB(mij , Pi, ϕi)), apart from a constant, can be written as

li(Pi, ϕi) =

k∑
j=1

[
xij−1∑
r=0

ln{(1 − ϕi)Pi + rϕi} +

mij−xij−1∑
r=0

ln{(1 − Pi)(1 − ϕi) + rϕi} −

mij−1∑
r=0

ln{(1 − ϕi) + rϕi}

]
.

The ML estimator P̂i of Pi can be obtained by maximizing li(Pi, ϕi) while the ML esti-
mator ϕ̂i of ϕi can be obtained by maximizing

∑
i li(Pi, ϕi). Let lpi (Pi) = li(Pi, ϕ̂(Pi)) be

the profile likelihood for Pi, where ϕ̂(Pi) is obtained from the reduced model with respect
to ϕi keeping Pi fixed. Then the approximate 100(1 − α)% profile likelihood (PL) based
CI (li, ui) for Pi is given by

{Pi : l
p
i (Pi) ≥ li(P̂i, ϕ̂i)−

1

2
χ2
1,α},

where χ2
1,α is the 100(1 − α) percentile of a chi-squared distribution with one degree of

freedom. The endpoints (li, ui) of the CI can be obtained by solving the system of nonlinear
equations following the methodology introduced by Venzon and Moolgavkar (1988).

The Wald CIs: From the above, we see that the sample proportion P̂i = Xi/Mi, where
Xi =

∑k
j=1Xij (i = 1, 2) is an unbiased estimator of Pi with the variance of P̂i given by

Var(P̂i) = Pi(1− Pi)λi/Mi, where λi =
∑k

j=1[mij{1 + (mij − 1)ϕi]/Mi.

Then, as k → ∞, P̂i follows the normal distribution with mean Pi and variance Pi(1−
Pi)λi/Mi. The resulting approximate 100(1− α)% Wald CI (li, ui) for Pi is given by

li = P̂i − zα/2

√
P̂i(1− P̂i)λ̂i/Mi and ui = P̂i + zα/2

√
P̂i(1− P̂i)λ̂i/Mi.

Similar to the Wilson score CI, we also obtain the Wald CI (li, ui) for Pi using the ANOVA-
type estimate of ϕi in the above equation for λ̂i.

3. Simulations

In this section, we investigate the performance of the small and moderate sample behavior
of the proposed methods in terms of observed coverage probability and average interval
length using the pre-assigned confidence level of 95%. We considered the number of clus-

Table 2: Median coverage probability (CP) and median expected length (EL) of the 95%
confidence intervals for P1 − P2 based on all parameter combinations considered here.

Length Comparison
Method Median CP Median EL individual/WA
WI 0.951 0.294 1.024
WA 0.947 0.287 1.000
PL 0.943 0.279 0.972

ters k = 15, 25, 50 and the response probabilities P1 = 0.1, 0.3, 0.5 and P2 = P1 + 0.2.
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Based on the historical data in biomedical applications, the common intraclass correlation
coefficient was set at ϕ = ϕ1 = ϕ2 = 0.0, 0.1, 0.3, 0.5 and the common correlation be-
tween two diagnostic tests was set at ω12 = ϕ/2. We also considered # of units per cluster
(i.e. cluster size = mij) to be either fixed or variable. For the fixed cluster size case, mij was
taken from the cross-sectional study example discussed in the introduction. For the vari-
able cluster size case, mij was generated from the empirical distribution (ED) of 523 litter
sizes where the cluster sizes range from 1 to 19 with a mean of 12 and standard deviation
2.98 (Kupper et al., 1986). We generated data Xijl based on the bivariate beta-binomial
distribution and generated 10,000 data set for each assessment.

The observed coverage probability (CP) and the expected interval length (EL) for two-
sided confidence intervals (lj , uj) for δ = P1 − P2 were obtained by

CP =

∑10000
t=1 I(lt ≤ δ ≤ ut)

10000
and EL =

∑10000
t=1 (ut − lt)

10000
,

where I = 1 if lt ≤ δ ≤ ut, and I = 0, otherwise. The results are reported in Table 2 from
which we make the following observations:

• The CPs for all three methods are virtually the same and reasonability close to the
nominal level.

• As expected, the WA and PL methods show somewhat conservative coverage; how-
ever, the CP for the PL method shows a bit more conservative than that of the WA
method.

• The WI method produces better coverage compared to the other two methods and
maintain the coverage very close to the nominal level.

• All three methods tend to have similar ELs; however, the WI and WA methods tend
to have larger ELs compared to the PL method.

4. Example: A Chemotherapy Study

We revisit the example of estimating the difference between the success rates of the two
chemotherapy treatments that we have considered in Section 1. In this clinical trial exam-
ple, patients enrolled in the trial are randomly assigned to one of the two chemotherapy
treatment groups, and the success rates on the treatments are compared to determine which
treatment is more efficacious. Table 3 provides summary statistics of this study.

Table 3: Summary statistics for the data set in a chemotherapy study

Chemotherapy
Treatments # of subjects # of clusters mean cluster size success rate

Treatment I 72 21 3.43 0.542

Treatment II 84 21 4.00 0.524

The distributions of cluster-level proportions for both treatment groups are shown in Figure
1. The estimated success probability and the estimated intraclass correlation for both treat-
ment groups and the estimated common intraclass correlation are provided in Table 4. In
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Figure 1: The distributions of cluster-level proportions for both treatment groups in a
chemotherapy study.

Table 4: The point estimates of the parameters obtained based on the four different methods
for the data set in a solar protection study.

Methods π1 π2 ϕ1 ϕ2

ML 0.586 0.521 0.194 0.083

AOV 0.542 0.524 0.226 0.142

this study, it is of interest to compare two chemotherapy treatments with respect to success
rates of the patients with multiple myeloma who survived at the end of this study. Then,
the 95% confidence intervals for P1 - P2 obtained using the proposed methods are given
in Table 5. It is seen from Table 5 that all three confidence internals contain 0, indicat-
ing that there is no statistical evidence of different success rates of the two chemotherapy
treatments. For unpaired case, the 95% confidence interval for P1 - P2 based on the MW1
method used by Saha and Wang (2019) is given as (−0.113, 0.302) with the interval width
of 0.415 (see Table 7 of Saha and Wang (2019)). As expected due to positive correlation
between treatment groups, our proposed method WI for the split-clustered case shows the
shorter width compared to the method MW1 for non-split-clustered case.

Table 5: The 95% confidence intervals for P1 - P2 obtained using the WI, WA and PL
methods.

Comparison
Method Lower Limit Upper Limit Length
WI -0.1634 0.1958 0.3592
WA -0.1694 0.2051 0.3745
PL -0.1222 0.2181 0.3403

5. Conclusion

This paper proposed three methods to construct the confidence intervals for P1 − P2 for
a clustered binary data from a cross-sectional study based on the MOVER using the two
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separate CIs for a single proportion. The results of a simulation study suggest that the pro-
posed methods generally perform well as their observed CPs are very close to the nominal
coverage level. The PL method is preferable compared to the other methods in the sense
that they generally possess shorter ELs in almost all data situations considered here. How-
ever, due to simplicity in the computation, we recommend the WI CI for P1 − P2 for a
clustered binary data from a cross-sectional study.
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