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Abstract
The logistic regression model is frequently used in many practical applications to fit a binary re-

sponse. Model specification depends upon a number of issues including response selection, link
specification, and the choice of predictors. Model evaluation includes model selection, predic-
tive ability, and goodness-of-fit. As a result, the art of logistic regression modeling involves many
choices and multiple criteria for the data modeler to consider. Particular emphasis will be given to
a thorough review of the model selection procedures and the goodness-of-fit testing. In logistic re-
gression, goodness-of-fit assessments sometimes can be challenging, depending on the covariates in
the model and the number of covariate patterns. Goodness-of-fit tests can involve chi-square based
tests, raw residuals, and transformed residuals. We detail these approaches for assessing the quality
of logistic regression models.
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1. Introduction to logistic regression

Logistic regression has become a useful tool since the 1950’s. Later, in the 1970’s, logistic
regression and other models (e.g., Poisson regression) derived from the exponential family
of distributions were formalized into a generalized linear model (GLM) framework (Nelder
and Wedderburn (1972)). McCullagh and Nelder (1989) and Agresti (1990) further devel-
oped the GLM framework. The concepts of logistic regression will be briefly introduced as
well as challenges in model selection and assessing the model-fit.

1.1 Logistic regression

Consider a N × 1 vector of binary responses Y = (Y1, Y2, . . . , YN )
′
, where Yi is coded

as 1 or 0 for i = 1, 2, . . . N . For the convenience purpose, here we refer coding of 1 as
positive, and 0 as negative, although 1 sometimes may index success or presence, and 0 may
index failure or absence. Consider an observed p × 1 vector of regressors for observation
i denoted xi = (1, x1i, ...xki)

′ with p = k + 1. Consider a corresponding p × 1 vector of
regression coefficients β = (β0, β1, ...βk)

′, whereby the probability of a positive outcome
(πi) is assumed to depend upon the vector of regressors (xi) and the regression coefficients
(β), i.e., πi = π(xi, β). Let the response (Yi) has a Bernoulli distribution with mean and
variance given by

E(Yi) = µi = π(xi, β), (1)

var(Yi) = π(xi, β)
(
1− π(xi, β)

)
. (2)

It is also commonly assumed that the responses are independent across the observations.
Under these assumptions, the likelihood function with respect to β can be obtained from
the joint probability mass function
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L = L(β|y) =
N∏
i=1

π(xi, β)yi(1− π(xi, β))1−yi . (3)

The estimated probability of a positive outcome (π̂i) can be obtained using the maximum
likelihood estimator (MLE) (β̂) by finding the value of β that maximizes (3). As a result, the
estimated probability of positive outcome for observation i is π̂i = π(xi, β̂), i = 1, 2, ...N .

1.2 Link functions

The Bernoulli distribution is a member of the exponential family of distributions, and thus
can be modeled in the generalized linear model (GLM) framework. The link function is
a one-to-one continuous differentiable transformation of the expected value of the random
variable (g(µi)). The linear predictor is defined as ηi = η(xi, β) = x′iβ, so that

g(µi) = ηi = η(xi, β) = x′iβ. (4)

Using the inverse function g−1(·), the above equation can be expressed as

µi = g−1(ηi) = g−1
(
x′iβ

)
. (5)

Different link functions have been applied in logistic regression, including the identity
link, the logit link, the probit link, and the complementary log-log link (Agresti (1990) pp.
86, 103, 105). The logit link

g(µi) = logit
(
π(xi, β)

)
= log

( π(xi, β)

1− π(xi, β)

)
= x′iβ, (6)

is the canonical link and it has a fairly simple interpretation as the log of odds of positive
outcome or log

(
π(xi,β)

1−π(xi,β)

)
.

2. Model selection for logistic regression

Model selection refers to the process of selecting a ‘best-fit’ model among several compet-
ing candidate models. Two models are nested if one of the models (the reduced model) can
be obtained by setting some of the regression coefficients equal to zero in the other model
(the full model).

2.1 Deviance and likelihood ratio test

A likelihood ratio test can be conducted by comparing a reduced model to a full model
in terms of deviance, which is the negative two times the maximum log likelihood, i.e.,
D = −2 ln(L̂), where L̂ = L(β̂). Under the null hypothesis that the reduced model is
the true model, the difference between deviances of the full model and the reduced model
asymptotically follows a chi-square distribution (Myers et al. (2010)), with the degrees of
freedom are equal to the difference (∆) in the number of regression coefficients between
the nested models,

D(reduced)−D(full) = −2 ln
[L(β̂

reduced
)

L(β̂
full

)

]
= −2 ln(Λ) ∼ χ2

∆. (7)
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2.2 AIC and BIC

The Akaike information criterion (AIC) is another tool for model selection

AIC = −2 ln(L̂) + 2p, (8)

where L̂ is the maximized value of the likelihood function for the model, and p is the
number of model parameters (Akaike (1973) and Akaike (1974)). The preferred model is
the one with the minimum AIC value over the candidate set of models.

The Bayesian information criterion (BIC) is defined as (Schwarz (1978))

BIC = −2 ln(L̂) + p× ln(N), (9)

where the model with the lowest BIC among those in the candidate set is preferred.

2.3 Sensitivity, specificity, and ROC

Sensitivity and specificity are often used to measure the predictive performance of the
model fit. A true positive means that the observation was predicted to be positive and it
was observed to be positive. A false positive means that the observation was predicted to
be positive but was observed to be negative. A true negative means that the observation
was predicted to be negative and it was observed to be negative. A false negative means
that the observation was predicted to be negative but was observed to be positive. Accord-
ingly, sensitivity refers to the ability of the fitted model to correctly identify the positive
observations as given by

Sensitivity =
# of true positives

# of true positive+ # of false negatives
, (10)

while specificity refers to the ability of the fitted model to correctly identify the negative
observations as given by

Specificity =
# of true negatives

# of true negatives+ # of false positives
. (11)

The estimated probabilities from logistic regression are used for classification of the
positive or negative outcomes. A predicted classification of ‘positive’ occurs if the value
of the estimated probability (π̂i) is large while a predicted outcome of ‘negative’ occurs if
the estimated probability (π̂i) is small. A cut-point (πc) is used to define a classification
rule quantifying large and small in which ŷi = 1 if π̂i > πc (predicted positive) and ŷi = 0
(predicted negative) if π̂i ≤ πc (Kutner et al. (2005) pp. 604-605). The sensitivity and
specificity depend upon the cut-point value (πc). A complete description of the classi-
fication ability of a model is given by the Receiver Operating Characteristic (ROC) curve
(Hosmer et al. (2013), Section 5.2.4), with the ROC curve being a plot of the sensitivity
versus 1−specificity across a range of potential cut-point values. The area under the ROC
curve provides a measure of the predictive ability of the model where larger areas suggest
better classification than smaller areas. Hosmer et al. (2013) (p.177) give the following
general guidelines:

0.5 ≤ area under ROC < 0.7 =⇒ poor classification, (12)

0.7 ≤ area under ROC < 0.8 =⇒ acceptable classification, (13)

0.8 ≤ area under ROC < 0.9 =⇒ excellent classification, (14)

0.9 ≤ area under ROC ≤ 1.0 =⇒ outstanding classification. (15)
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3. Goodness-of-fit for logistic regression

Goodness-of-fit tests involve the null hypothesis of whether the modeled distribution F
for the responses satisfies H0 : F = F0 where F0 is a specified distribution (Lehmann
(1998)). A fitted model can be inadequate because the linear systematic component of the
model may be incorrectly specified, a covariate may not be specified in the appropriate
functional form, some important covariates may have been omitted from the model, or the
link function may be misspecified (Xie et al. (2008)). All these could affect the consistency
of the coefficient estimation, and lead to biased estimates of treatment effects (Gail et al.
(1988); Hauck et al. (1991)).

Many goodness-of-fit tests have been proposed during the past four decades. The fol-
lowing sections focus on chi-quare and deviance based tests, goodness-of-fit tests based
upon residuals, and other types of goodness-of-fit tests.

3.1 Chi-square and deviance based tests

Chi-square and deviance based goodness-of-fit tests depend on the type of covariates in the
model and the number of covariate patterns of regressors. The covariate pattern represents
a single set of values for the covariates in a model (Hosmer and Lemeshow (2000)). The
following paragraphs summarize three types of covariates and the goodness-of-fit tests that
can be applied.

(1) All the covariates in a logistic regression model are categorical regressors and the
number of covariate patterns is small relative to the number of positive responses. The
Pearson chi-square test and the deviance test are typically relevant for assessing model fit.

(2) The number of covariate patterns is large relative to the number of positive re-
sponses. This happens when there are continuous covariates in the logistic model, or the
sample size is relatively small compared to the number of covariate patterns. The Hosmer
and Lemeshow (1980) approach can be considered for assessing goodness-of-fit.

(3) Both continuous and categorical covariates exist. This scenario can be considered
to be a special case of (2). The Pulkstenis and Robinson (2002) and the Xie et al. (2008)
tests can be considered for assessing goodness-of-fit.

3.1.1 Pearson chi-square test and deviance test

Consider N outcomes from G groups, with N =
∑G
g=1 ng, where ng represents the num-

ber of observations in group g. Let a grouped binary response Yg denote the number of
positive outcomes out of ng observations and xg = (1, x1g, ...xcg)

′ denote the c categorical
regressors in group g. Let og,1 represent the number observed positive outcomes, and og,0
represent the number observed negative outcomes in group g. The expected number of
positive outcomes can be calculated as eg,1 = ng × π̂(xg, β̂), and the expected number of
negative outcomes can be expressed as eg,0 = ng − eg,1.

The Pearson chi-square statistic (Agresti (1990)) can then be calculated as

ĈP =
G∑
g=1

(og,1 − eg,1)2

eg,1
+

G∑
g=1

(og,0 − eg,0)2

eg,0
. (16)

The deviance statistic from the likelihood ratio test (Myers et al. (2010)) can be ex-
pressed as

D2
df = −2

G∑
g=1

[
og,1 log (

og,1
eg,1

) + og,0 log (
og,0
eg,0

)
]
. (17)
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Under the null hypothesis that the fitted model is correctly specified, ĈP and D2
df are

asymptotically chi-square distributed with degrees of freedom df = G − (c + 1) (Agresti
(1990)), with c being the number of regressors in the model. There are many instances in
which these two types of statistics give similar results (Myers et al. (2010)).

3.1.2 Hosmer-Lemeshow test

When all regressors in a logistic regression are continuous covariates, Hosmer and Lemeshow
(1980) propose an approach to group the subjects based on estimated probabilities, and then
compute a chi-square statistic. Two grouping methods have been proposed. One method is
to collapse the table based on percentiles of the estimated probabilities. The other method
is to collapse the table based on fixed values of the estimated probability. For either group-
ing strategy, the Hosmer-Lemeshow goodness-of-fit statistic is obtained by calculating a
chi-square statistic from the G× 2 table as

ĈHL =
1∑
j=0

G∑
g=1

(og,j − eg,j)2

eg,j
, (18)

where og,j denotes the observed number of positive (when j = 1) or negative outcomes
(when j = 0) in group g, and eg,j denotes the estimated number of positive (when j = 1)
or negative outcomes (when j = 0) in the group g. A chi-square test with degrees of
freedom df = G− 2 on the statistic (ĈHL) has been most commonly used in practice
(Hosmer and Lemeshow (2000)). Further research by Hosmer et al. (1988) has indicated
that the first grouping method is preferable to the second based on fixed cutpoints.

3.1.3 Pulkstenis and Robinson tests

When both continuous and categorical regressors exist, Pulkstenis and Robinson (2002)
propose a two-level subgrouping based on fitted probabilities within each covariate pat-
tern. This approach requires sorting all responses by fitted probabilities within each unique
covariate pattern as defined only by categorical regressors, and then creating two subcate-
gories by splitting the responses based on the median of fitted probabilities within each co-
variate pattern. The proposed test statistics are given by the following modified chi-square
(ĈPR) and deviance (D2

PR) statistics:

ĈPR =
M∑
m=1

2∑
h=1

1∑
j=0

(om,h,j − em,h,j)2

em,h,j
, (19)

D2
PR = −2

M∑
m=1

2∑
h=1

1∑
j=0

om,h,j log
om,h,j
em,h,j

, (20)

where m = 1, . . . ,M indexes covariate patterns based on categorical regressors, h = 1, 2
indexes the substratification due to the median split of the fitted probabilities within each
covariate pattern, and j = 0, 1 indexes the two response categories (negative or positive out-
come). Through simulation studies, Pulkstenis and Robinson (2002) suggest a chi-square
test can be conducted on the modified chi-square (ĈPR) and deviance (D2

PR) statistics with
2M − c− 2 degrees of freedom, where c is the number of variables in the model needed to
represent all non-continuous covariates.
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3.1.4 Tsiatis score test

Tsiatis (1980) proposes a goodness-of-fit test, where the space of covariates (Z1, . . . , Zm)
is partitioned into k distinct regions in m-dimensional space denoted by R1, . . . , Rk. The
indicator function is defined by Ij(j = 1, . . . , k) in which Ij = 1 if (Z1, . . . , Zm ∈ Rj)
and Ij = 0 otherwise. Consider the following logistic regression model

log(
pz

1− pz
) = β

′
Z + γ

′
I, (21)

where I
′

= (I1, . . . , Ik) is the indicator function and γ
′

= (γ1, . . . , γk) denotes the shift
parameters. Here β

′
Z accounts for all of the original covariates and γ

′
I accounts for the

regional shifts. In order to test the null hypothesis H0 : γ1 = · · · = γk = 0 against the
alternative hypothesis H1 : at least one γi 6= 0, Tsiatis (1980) forms a test statistic based
on the efficient scores test

T = X
′
V −X, (22)

whereX denotes the k-dimensional vector (∂l/∂γ1, . . . , ∂l/∂γk), l denotes the log-likelihood,
and V − denotes the g-inverse of V . The k × k matrix V is equal to

V = A−BC−1B
′
, (23)

where Ajj′ = −∂2l/∂γj∂γj′ (j, j
′

= 1, ...k), Bjj′ = −∂2l/∂γj∂βj′ (j = 1, ...k; j
′

=

0, ...,m), and Cjj′ = −∂2l/∂βj∂βj′ (j, j
′

= 0, ...,m). The above terms are evaluated at

γ = 0 and β = β̂, where β̂ is the maximum likelihood estimate of the parameters when
H0 is true. Under the null hypothesis, the statistic T is asymptotically distributed as a
chi-squared distribution with degrees of freedom equal to the rank of V . While Tsiatis
approach is conceptually elegant, it lacks a general rule for how to partition the covariate
space, especially when continuous covariates are present (Xie et al. (2008)).

3.1.5 Xie tests

Xie et al. (2008) integrate cluster analysis, the Pearson chi-square test, and the Tsiatis
(1980) score test together to form a chi-square test and a score test. The tests contain
two steps. First conduct a cluster analysis on all covariates to group observations into G
clusters. Second, calculate a chi-square statistic or score statistic on these clusters.

The Xie chi-square test ( ĈXie) involves constructing the chi-square statistic,

ĈXie =
G∑
g=1

(og,1 − n
′
gπ̄g)

2

n′gπ̄g(1− π̄g)
, (24)

where n
′
g denotes the number of observations in cluster g, og,1 denotes the observed number

of positive outcomes in cluster g, and π̄g denotes the average estimated probability for all
observations in cluster g. Based on simulation studies, Xie et al. (2008) propose using
G = 10 if k < 5 and G = k + 5 if k ≥ 5, then comparing ĈXie to an asymptotic chi-
square distribution with degrees of freedom df = G− (k/2)− 1, with k being the number
of covariates in the model.

By adding a shift parameter γ in each region to the Tsiatis (1980) test via a series of
indicator functions, Xie et al. (2008) propose a modified score test. The extended logistic
regression model is gives by

log(
πi

1− πi
) = x

′
iβ + γ

′
Ii, (25)
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where β = (β0, β1, . . . , βk)
′
, xi = (1, x1i, x2i, . . . , xki)

′
, γ = (γ1, γ2, . . . , γG−1)

′
, and

Ii = (I
(1)
i , I

(2)
i , . . . , I

(G−1)
i ). The goodness-of-fit test consists of testing the hypothesis

H0 : γ1 = γ2 = . . . = γG−1 = 0 against the alternative HA: at least one γg 6= 0, for
g = 1, ..., G − 1. The Xie score test is based on the efficient score statistic T = U

′
V −U ,

where U denotes the G−1 dimensional vector (∂l/∂γ1, . . . , ∂l/∂γG−1), and l denotes the
log-likelihood. The (G− 1)× (G− 1) matrix V can be expressed as V = A−BC−1B

′
,

whereAjj′ = −∂2l/∂γj∂γj′(j, j
′

= 1, . . . , G−1),Bjj′ = −∂2l/∂γj∂βj′(j = 1, . . . , G−
1; j

′
= 0, 1, . . . k),Cjj′ = −∂2l/∂βj∂βj′(j, j

′ = 0, 1, . . . , k) (Rao (1973), Tsiatis (1980)).
All the above terms are evaluated at γ = 0 and β = β̂, with β̂ being the maximum likeli-
hood estimate of β under H0. Under the null hypothesis, T is asymptotically distributed as
a chi-square distribution with degrees of freedom at rank(V ).

3.2 Goodness-of-fit based on residuals

In standard linear regression, it is common to use residuals for model diagnostics and to
assess goodness-of-fit. For other generalized linear models (e.g., logistic regression), the
choice of residuals may not be obvious nor how to use them to assess the model fit. The
next few subsections discuss generalized residuals which have been proposed for model
diagnosis in logistic regression, as well as goodness-of-fit tests that are based upon such
residuals.

3.2.1 Pearson residual and deviance residual

(1) The Pearson residual is given by

ri =
yi − niπ̂i√
niπ̂i(1− π̂i)

. (26)

(2) The deviance residual is given by

di = sgn(yi − niπ̂i)
{

2
[
yi log

( yi
niπ̂i

)
+ (ni − yi) log

( ni − yi
ni − niπ̂i

)]}1/2

. (27)

The Pearson residuals and deviance residuals correspond to the Pearson chi-square test
and the deviance test.

3.2.2 Nonparametric kernel method

Nonparametric methods can also been applied to examine the residuals in logistic regres-
sion. Consider a single regressor where g(x) = Pr(Y = y|X = x). Then the associated
hypothesized logistic model with a single predictor, g0(x), is given by

logit(g0(x)) = β0 + β1x. (28)

Copas (1983) introduces a nonparametric kernel method to examine the model-fit graphi-
cally. This approach has been extended by Azzalini et al. (1989), who propose an approach
to compare the function g0(x) with kernel estimate g̃(x) of g(x). Through simulation, the
confidence bands for the nonparameteric curve can be obtained under the null hypothesis.
Azzalini et al. (1989) generate a pseudo-likelihood ratio statistic by comparing the function
g0(x) with g̃(x).
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le Cessie and van Houwelingen (1991) further refine the approach of Azzalini et al.
(1989) using an unbiased estimator. The residuals of the model, yi − g0(xi), can be stan-
dardized under the null hypothesis as

ri =
yi − g0(xi)√

g0(xi)(1− g0(xi))
. (29)

A smoothing function of these standardized residuals is defined by

r̃i =

∑
j rjK[(xi − xj)/hn]∑
jK[(xi − xj)/hn]

, (30)

where hn is the bandwidth that controls the amount of smoothing. The function K is a
nonnegative symmetric bounded kernel function, zero outside a closed interval [−a, a],
and is normalized according to

∫
K(z)dz = 1 and

∫
K(z)2dz = 1.

A weighted sum of the smoothed standardized residuals is used as the goodness-of-fit
measure. The test statistic T is defined by

T =
1

n

n∑
i=1

r̃2
i vi, (31)

where vi =
{
∑

j
K[(xi−xj)/hn]}2∑

j
K[(xi−xj)/hn]2

is the inverse of the variance of the smoothed standardized

residual.
Under the null hypothesis, g(x) is close to g0(x), and the expected value of T condi-

tional on the predictor x is 1. The variance of T has complex form but can be calculated
exactly as

var(T ) = n−2
∑
i

∑
j

[∑
k

w2
ikw

2
jk

]−1[∑
k

w2
ikw

2
jk(6g0(xk)

2 − 6g0(xk) + 1)

g0(xk)(1− g0(xk))
+2
(∑

k

wikwjk
)2]

,

(32)
where wij = K[(xi − xj)/hn]. Consequently, the test statistic and associated p-value can
be calculated as in the le Cessie and van Houwelingen (1991) test.

This approach can be extended to higher dimensions with multiple covariates. The
choice of the bandwidth is crucial, which depends on the number of observations, the num-
ber of variables, and the alternative hypotheses. le Cessie and van Houwelingen (1991)
suggest a bandwidth such that each region over which the residuals are averaged contains
approximately

√
n observations.

3.2.3 Generalized R2 coefficients

Generalized R2 coefficients have been developed for logistic regression. Mittlbock and
Schemper (1996) study the properties of 12 different R2 measures and recommend two R2

coefficients for routine use.
(1) The squared Pearson correlation coefficient of observed outcomes with the predicted

probabilities is defined as follows

r2 =
[
∑n
i=1(yi − ȳ)(π̂i − π̄)]2∑n

i=1 (yi − ȳ)2∑n
i=1 (π̂i − π̄)2 , (33)

with n denotes the number of covariate patterns.
(2) The linear regression-like sum-of-square R2, which is defined as
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R2
ss = 1−

∑n
i=1 (yi − π̂i)2∑n
i=1 (yi − ȳi)2 . (34)

Mittlbock and Schemper (1996) also recommend

R2
l =

l0 − lp
l0

= 1− lp
l0
, (35)

where l0 and lp denote the log-likelihoods for the models containing only the intercept
versus the model containing the intercept plus p covariates, respectively. However, Hosmer
and Lemeshow (2000) suggest these R2 coefficients typically have low values in logistic
regression and are not good measure for assessing model fit.

3.3 Other goodness-of-fit tests

There are a number of goodness-of-fit tests in addition to those previously described. White
(1982) proposes a test to detect model mis-specification based on information matrix.
Newey (1985) further discusses the information matrix test for probit models and notes
that this approach is sensitive to heteroskedasticity and non-normality. He proposes a sim-
ple calculation procedure which employs the “outer product of the gradient” (OPG) co-
variance matrix estimator of the information matrix test statistic. Orme (1988) proposes a
simple calculation procedure for the information matrix test statistic for general binary data
models by employing the maximum likelihood covariance matrix estimator rather than the
OPG estimator. Stukel (1988) incoporates two shape parameters to extend the formulation
of logistic model and improve the model fit. Hosmer et al. (1997) suggest that the Stukel
test has higher power than other tests they examined for misspecified link functions and
comparable power to other tests overall. Copas (1989) conducts a study on the unweighted
residual sum of squares, which can be considered as a modification to the original Pearson
chi-square statistics. However, according to Copas (1989), a major disadvantage is that the
test statistic no longer has a chi-square distribution, even asymptotically. Further studies are
still needed to examine whether the scaled chi-square distribution is a good approximation
on the null distribution of the test statistic. The unweighted sum-of-squares goodness-of-
fit test is described in Hosmer et al. (1997) and is frequently termed the “le Cessie-van
Houwelingen-Copas-Hosmer goodness of fit test”. Hosmer et al. (1997) find this test to be
superior to the other tests they examined based on overall performance. McCullagh (1985)
proposes a goodness-of-fit test for logistic regression models using conditional asymptotic
moments from Pearson chi-square statistics. Farrington (1996) extend McCullagh (1985)
test based on conditioning principles. He proposes a test using first-order modification to
the Pearson statistic. Osius and Rojek (1992) derive asymptotic moments for a general
class of goodness-of-fit statistics (power-divergence family), and use that to conduct a stan-
dardized test statistic. The p-value is calculated by comparing the statistic to a standard
normal distribution. Qin and Zhang (1997) test the logistic regression assumption under a
case-control sampling plan, and propose a Kolmogorov-Smirnov statistic to test the validity
of the logistic link function.

4. Conclusion

This paper provides an overview of logistic regression. Several model selection procedures
were described, including the likelihood-ratio test, AIC and BIC, sensitivity, specificity
and the ROC curve. Goodness-of-fit tests were discussed with emphasis on chi-square and
deviance approaches as well as nonparametric methods. When only categorical covariates
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exist, one can apply the Pearson chi-square test and the deviance test. When continuous
regressors exist in a logistic regression, one can apply the Hosmer and Lemeshow (1980)
test. When both continuous and categorical covariates exist in the model, one can apply the
Pulkstenis and Robinson (2002) tests and the Xie et al. (2008) tests in conjunction with the
standard Hosmer and Lemeshow (1980) test. The nonparametric kernel methods developed
by le Cessie and van Houwelingen (1991) can also be applied to logistic regressions with
multiple covariates, but the test results could be sensitive to the choice of the bandwidth
from the smoothing functions.

This overview describes many of the important criteria for assessing logistic regression
models. Further research could involve the incorporation of all of these criteria into the
model selection process. Multiobjective decision making tools may be useful for identify-
ing a suitable logistic regression model based upon these multiple conflicting criteria.

5. Appendix: R functions for model assessment in logistic regression

Logistic regression
glm (formula, family = binomial (link=‘logit’, ‘probit’, or ‘cloglog’) ) can be used for
logistic regression with link function chosen from the logit link, the probit link, and the
complementary log-log link (stats package). fitted is a generic function which extracts
fitted values from objects returned by modeling functions. fitted.values is an alias for it.

Model selection
logLik: is a generic function to calculate the log-likelihood of a model (stats package). The
model deviance can be calculated by -2 * logLik.
pchisq: is the distribution function for the chi-squared distribution with df degrees of free-
dom (stats package). It can be used to compute the p-value for chi-square based tests.
AIC: is a generic function to calculate the Akaike information criterion (stats package).
BIC: is a generic function to calculate the Bayesian information criterion (stats package).
roc.area: is a function to calculate the area uderneath a ROC curve (verification package).

Goodness-of-fit
Pearson chi-square test statistic can be calculated by sum(((tapply(y, g, sum) - tap-
ply(phat, g, sum))ˆ2) / tapply(phat, g, sum)) + sum (((tapply((1-y), g, sum) - tapply((1-
phat), g, sum))ˆ2) / tapply((1-phat), g, sum)), and the deviance test can be calculated
by sum(2*tapply(y, g, sum) * log(tapply(y, g, sum) / tapply(phat, g, sum))) + sum (2 *
tapply((1-y), g, sum) * log(tapply((1-y), g, sum) / tapply((1-phat), g, sum))), where y is
the observed value (0 or 1), phat is the fitted value from logistic regression model, and g is
the group factor for each observation.
logitgof: performs the Hosmer-Lemeshow goodness-of-fit test for binary, multinomial
and ordinal logistic regression models (generalhoslem package).
pulkrob.chis, pulkrob.deviance: perform the Pulkstenis and Robinson (2004) chi-square
and deviance tests for ordinal logistic regression models (generalhoslem package). Please
contact the authors for sample R codes for the Pulkstenis and Robinson (2002) chi-square
and deviance tests on binary responses.
PseudoR2 (mod, ‘all’): is a function to compute several variants of pseudo R2 statis-
tics for logistic regression model, including the AldrichNelson pseudo-R2, the McFadden
pseudo-R2, the McFadden adjusted pseudo-R2, the Cox and Snell pseudo-R2, the Nagelk-
erke pseudo-R2, the McKelvey and Zavoina pseudo-R2, the Effron pseudo-R2, and the
Tjur pseudo-R2 (DescTools package).
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1 - logLik(current model) / logLik(null model): can be used to compute the Mittlbock
and Schemper R2 based on the log-likelihoods for the null model (only containing the
intercept) versus current model (containing the intercept plus k covariates), respectively.
resid is the function in the Design package for the le Cessie and Houwelingen test, though
it requires using the lrm function for logistic regression. Package ‘Design’ was removed
from the CRAN repository. Formerly available versions can be obtained from the archive
(https://cran.r-project.org/src/contrib/Archive/Design/), and can be installed to earlier ver-
sion of R.
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