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Abstract
Single-cell RNA sequencing is a novel technique that allows researchers to measure gene expres-

sion at the resolution of single cells. Compared to “bulk” measurements, single-cell data show an
over-abundance of zero counts, and several statistical models have been proposed to account for
this zero inflation. Here, we show that in the context of dimensionality reduction, a negative bino-
mial factor analysis model leads to similar results than its zero-inflated counterpart, with substantial
computational savings. However, explicitly testing for the difference in the proportion of extra zeros
may help identify interesting genes.
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1. Introduction

The advent of single-cell RNA sequencing (scRNA-seq) has revolutionized the field of
transcriptomics, providing for the first time the tools to disentangle the heterogeneity of
complex tissues (Wagner, Regev, and Yosef 2016).

The negative binomial has emerged as the distribution of choice for the modeling of
RNA-seq gene-level read counts. Indeed, several authors have shown how technical repli-
cates of the same biological unit vary according to Poisson noise (Marioni et al. 2008;
Bullard et al. 2010), while the added biological variability causes over-dispersion (Robin-
son, McCarthy, and Smyth 2010; Anders and Huber 2010). The negative binomial distribu-
tion, which can be seen as a Gamma-Poisson mixture, leading to a quadratic mean-variance
relation, very well fits the observed data in a wide variety of contexts.

From an interpretation point of view, this is best seen by looking at the square of the
coefficient of variation:

CV 2 =
1

µ
+ ϕ,

where µ and ϕ are the mean and dispersion parameters of the negative binomial, respec-
tively. The first term, which tends to zero as the number of reads increases, represents the
technical variability due to the sequencing, while the second term, independent from the
mean, represents the biological variability, a property of the system under study (McCarthy,
Chen, and Smyth 2012).

However, compared to the so-called “bulk” measurements, single-cell data exhibit
higher variance, expression outliers, and an over-abundance of zero counts (Marinov et
al. 2014; Cole et al. 2019). A variety of different approaches have been published to tackle
the problem of over-abundance of zeros. Kharchenko, Silberstein, and Scadden (2014)
proposed a Bayesian mixture of a low-mean Poisson and a negative binomial for the differ-
ential expression of single-cell data; Finak et al. (2015) used a Hurdle Gaussian model for
the same application; Pierson and Yau (2015) and Risso et al. (2018) tackled the problem
of dimensionality reduction, using factor analysis models.
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In an effort to reduce the number of expression outliers, largely due to the so-called
“amplification bias”, a unique molecular identifier (UMI) can be added to each individual
molecule prior to the amplification step of the library preparation (Islam et al. 2014). In
addition to reducing the technical variability, it was recently shown that the inclusion of
UMIs in the protocol can reduce the effect of zero counts on the goodness of fit of the
negative binomial distribution (Townes et al. 2019; Svensson 2019).

Here, we discuss the advantages and disadvantages of explicitly modeling the extra zero
counts observed in real single-cell data, with particular focus on dimensionality reduction
and differential expression.

2. Factor Analysis Models for Count Data

We focus our discussion on the factor analysis model of Risso et al. (2018), which employs
a zero-inflated negative binomial (ZINB) model to account for the count nature of the data
while explicitly modeling the extra zeros observed in real datasets.

Given i = 1, . . . , n samples and j = 1, . . . , p features, let us denote with Y the n ×
p matrix, whose (i, j) element is the realization of a random variable representing the
observed count of feature j in sample i. We assume that Y follows a ZINB distribution, i.e.

pZINB(y;µ, θ, π) = πδ0(y) + (1− π)pNB(y;µ, θ), ∀y ∈ N, (1)

where δ0(·) is the Dirac function, π ∈ [0, 1] is the mixing parameter, and pNB(y;µ, θ) is
the negative binomial distribution with mean parameter µ ≥ 0 and dispersion parameter
θ > 0:

fNB(y;µ, θ) =
Γ(y + θ)

Γ(y + 1)Γ(θ)

(
θ

θ + µ

)θ ( µ

µ+ θ

)y

, ∀y ∈ N. (2)

As in Risso et al. (2018), we specify the following regression models for the parameters:

log(µij) =
(
Xβµ + (V γµ)

⊤ +Wαµ

)
ij
, (3)

logit(πij) =
(
Xβπ + (V γπ)

⊤ +Wαπ

)
ij
, (4)

where where X is a n × M matrix containing M sample-level observed covariates, V is
a p × Q matrix containing Q feature-level observed covariates, and W is a n ×K matrix
of unobserved factors, which can be interpreted as explaining the original data in fewer
dimensions (see Risso et al. (2018) for details).

The ZINB distribution is particularly appealing since it reduces to the negative binomial
if the data are not truly zero inflated and it is able to discriminate different types of zeros.
In fact, some zeros may be “biological”, i.e., genes that are simply not expressed in the cell
under study, or “technical”, i.e., genes that are expressed but not captured by the technology.
Note that this is a fundamental difference between zero-inflated models and Hurdle models,
which assume that all the zeros are coming from a separate component. In zero-inflated
models, instead, the structural zeros (in this case called biological zeros) should be captured
by the point-mass at zero and the sampling zeros (in this case called technical zeros) are
modeled by the negative binomial distribution.

If zero inflation is not evident in the data at hand, it might be beneficial to consider a
more parsimonious model, in which Y follows a negative binomial distribution with pa-
rameters µij ≥ 0 and θj > 0 and

log(µij) =
(
Xβ + (V γ)⊤ +Wα

)
ij
, (5)
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Figure 1: Per-gene distribution of the estimates of π. Left panel: 10X data. Right panel:
Fluidigm data.

where X , V , and W are the same as in equation (3). The number of parameters of the
model in equation (5) is J(M + K + 1) + n(Q + K), J(M + K) + nQ fewer than the
model in (3).

2.1 Parameter estimation

To infer the parameters, we used a numerical algorithm that maximizes the penalized like-
lihood, as done in Risso et al. (2018).

Briefly, we solve

max
β,γ,W,α,ζ

{ℓ(β, γ,W,α, θ)− Pen(β, γ,W,α, θ)} ,

where ℓ(·) is the log-likelihood function and Pen(·) is a regularization term to reduce over-
fitting and improve the numerical stability of the optimization problem in the setting of
many parameters. See Risso et al. (2018) for details.

The likelihood only depends on W and α through their product R = Wα and the
penalty ensures that at the optimum W and α have orthogonal columns, which is useful for
visualization or interpretation of latent factors (Lemma 1 of Risso et al. (2018)).

3. Datasets Used

For the analyses in the next section, we used two publicly available scRNA-seq datasets.
The first, referred to as the 10X dataset, was created by concatenating two sets of pe-
ripheral blood monocytes (PBMCs) coming from two healthy individuals, available in
the TENxPBMCData Bioconductor package (Hansen, Risso, and Hicks 2019). In particu-
lar, the datasets frozen pbmc donor a and frozen pbmc donor b were used; by using two
donors we expected to observe a “batch effect” and we used this dataset to test the ability
of the models of removing such effect.

The second dataset, referred to as the Fluidigm dataset, was retrieved from the scRNAseq
Bioconductor package (Risso, Cole, and Lun 2019) and contains a set of maturing neurons
and neuronal progenitor cells described in Pollen et al. (2014). The dataset includes 65
cells sequenced at two different depths: the “low-coverage” data have an average of about
90,000 reads per cell, while the “high-coverage” data have an average of about 3 million
reads per cell.

Of note, the first dataset employs UMIs to reduce the amplification bias, while the
second does not. Hence, we expected a more dramatic zero inflation in the Fluidigm data
than in the 10X data.
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Figure 2: Low-dimensional representation of the 10X data (K = 2). Left panel: PCA; cen-
ter panel: NB; right panel: ZINB. Red points are cells coming from frozen pbmc donor a,
while blue points are cells from frozen pbmc donor b.

4. Results

4.1 Zero inflation in single-cell data

Recently, Townes et al. (2019) and Svensson (2019) independently observed that in some
single-cell data, particularly those that employ UMIs, the abundance of zeros (which can
be as large as 80% of the data) can be fully explained by the negative binomial distribu-
tion, with no need to treat zeros differently than any other count. Hence, UMIs, while not
affecting the proportion of zero counts, indirectly impact the fit of the negative binomial.
In fact, by construction, UMI counts are lower than read counts and while the number of
zeros stays the same in the two cases, the negative binomial distribution with a lower mean
is much more likely to explain the high proportion of observed zeros.

To confirm this observation, we fitted the ZINB model of equations (3) and (4) to both
a UMI and a non-UMI dataset. The per-gene distribution of the resulting estimated π is
shown in Figure 1: the difference between the two datasets is evident, with the UMI data
showing a lack of zero inflation (π̂ = 0) for a large fraction of genes, and the non-UMI data
showing zero inflation for virtually all genes.

4.2 Effects on Dimensionality Reduction

We then looked at the effect of zero inflation on dimensionality reduction. We compared the
performance of the ZINB and negative binomial (NB) factor models, as well as of a naive
procedure that applies principal component analysis (PCA) on the logarithm of normalized
counts.

Compared to PCA, both the ZINB and NB models were able to remove the batch effects
(included as a covariate in X) and generally led to more distinct and well-behaved clusters
of cells (Figure 2). To evaluate the dependence of the inferred low-dimensional signal on
technical variation, we computed the absolute correlation between each dimension (e.g.,
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Figure 3: Absolute correlation between QC measures and the first 5 factors inferred by the
models. Left panel: PCA; center panel: NB; right panel: ZINB.

principal component) and a set of quality control (QC) measures, computed with the scater
Bioconductor package (McCarthy et al. 2017). While PCA showed high correlation with
several of these metrics, both the NB and ZINB model did not, suggesting that the inferred
signal represents biological, rather than technical, variation (Figure 3).

4.3 Effects on Differential Expression

The models described in equations (3 - 5) can be used to detect differentially expressed
genes. To do so, it is sufficient to include an indicator variable (or a set of dummy variables)
representing the groups to compare as a column of X and to test the null hypothesis that
the corresponding element of βµ and/or βπ is equal to zero.

Clearly, the NB model is limited to testing the coefficient of the regression on the
negative binomial mean. The ZINB model, on the other hand, can test both the effect of
the variable of interest on the mean count and on the proportion of zeros. The latter can be
useful to identify those genes that are expressed only in a subset of cells per condition.

For illustration, we employ a Bayesian approach to identify differentially expressed
genes. In particular, we fit a simpler version of the models without the Wα terms and we
assume independent normal priors for the parameters, i.e.

βj
µ ∼ N(0, τβ);

βj
π ∼ N(0, τβ);

γiµ ∼ N(0, τγ);

γiπ ∼ N(0, τγ);

log θj ∼ N(0, τθ).

The model was implemented in RStan (Stan Development Team 2019) to obtain the
posterior distribution of the parameters. In order to identify differential expression on the
proportion of zero counts, the null hypothesis H0 : β

j
π = 0 was tested for each j = 1, . . . , p.

The Bayesian False Discovery Rate approach of Van De Wiel et al. (2013) was used to
identify significant genes.

To check whether the model is able to identify truly biological zeros, we identify dif-
ferentially expressed genes in the low-coverage data and display the same genes in the
high-coverage data. Figure 4 shows that the majority of the zeros found by the model stay
zero even when many more reads are sequenced, suggesting that the model is successful in
distinguishing biological versus technical zeros.
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Figure 4: Differentially expressed genes identified in the low-coverage Fluidigm data (left
panel) and displayed in the high-coverage Fluidigm data (right panel).

4.4 Computational Considerations

Since the ZINB model is a flexible generalization of the negative binomial, one could argue
that the former should be preferable, since it would be able to fit the data even in the absence
of zero inflation. However, in such cases, the extra zeros may cause an increase in vari-
ability that might be captured either by an increase in the estimated dispersion parameter
or mixing parameter, making the estimation procedure unstable. Moreover, the computa-
tional burden of estimating almost twice as many parameters with respect to the negative
binomial model makes the model unappealing for large datasets. The negative binomial is
three times faster than the ZINB for a dataset with 1000 cells and is more scalable, being
linear in the number of cells.

5. Discussion

In this paper, we focus on the effects of explicitly modeling zero inflation in single-cell
RNA-seq data, with particular focus on the problem of dimensionality reduction and differ-
ential expression. While UMI data contain at least as many zero counts as non-UMI data, it
has been shown that, due to a decrease in mean, these zeros can be explained by a negative
binomial distribution, without any special care.

Here, we show that a negative binomial factor analysis model is sufficient to capture the
biologically relevant signal in the data and is much faster than its zero-inflated counterpart.
However, explicitly modeling the difference between biological and technical zeros may be
beneficial in the context of differential expression, in which interesting genes might show
a differential pattern of “on / off” expression in the compared conditions.

The negative binomial factor analysis model is implemented in the zinbwave Biocon-
ductor package, starting from version 1.7.4, and can be used by specifying the option
zeroinflation=TRUE in the zinbwave function.
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