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Abstract 
Randomization is frequently misunderstood or neglected by preclinical investigators. I 
used a typical data set for swine models of preclinical research to show how improper 
randomization of treatment allocation adversely affects hypothesis tests and the underlying 
null distributions of the test statistics. Simulations were used to examine effects of true 
randomization (completely randomized design, restricted randomization, randomized 
complete blocks) vs pseudo-randomization (alternation, false “blocking”) on error 
estimates and F-distributions in the presence of systematic trend. True randomization and 
blocking protected against systematic trend, but pseudo-randomization resulted in 
reference distribution collapse. Thus, no meaningful inferential test can be based on non-
random ‘designs’. Both investigators and analysts must be made aware that hypothesis tests 
based on non-randomized data will be both biased and invalid. 
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1. Introduction 
 
Randomization is the assignment of treatments or test interventions to subjects or 
experimental units such that every possible assignment of treatments has the same probability 
of occurrence. Randomization is essential for minimizing the effects of undetected bias1-3 and 
is the basis for exact tests of significance and obtaining unbiased estimators of intervals and 
treatment effects; randomization is therefore the “cornerstone” of  null hypothesis significance 
testing (NHST)4,5. To ensure equal probabilities of assignment, randomization methods 
require generation of a reproducible randomization schedule (the best methods are computer-
based procedures with seed numbers); allocation bias is further minimised by blinding of 
investigators to sequence allocation. ‘Randomization’ thus has both technical and practical 
meaning.1,6 Unfortunately, the concept of randomization appears to be widely misunderstood 
by non-statistician investigators, although the topic has been extensively addressed for 
decades 1,4,5,7-9. Both clinical and preclinical investigators often fail in practice to discriminate 
a true random sequence from those that are ‘quasi-random’, ‘alternating’, ‘unplanned’, or 
‘haphazard’ 10-12. A more insidious problem is the uncritical analysis of data by statistical 
consultants and data analysts. Statisticians analysing data “sight unseen” may be unaware of 
methods by which data were sampled and collected, and thus fail to account for lack of 
randomization in the original design.  
 
The objective of this study was to illustrate the consequences of non-random systematic 
allocation for NHST and inference in the presence of systematic trend, with specific 
application to preclinical animal-based research.  
 

2. Simulations 
2.1 Simulation rationale  
Body weight is a major determinant of nearly all aspects of animal physiology and functional 
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morphology;13 furthermore, many interventions and translational dose conversions are 
weight-based.14 However, weight data with pronounced trend and heterogeneity are common 
in many animal studies. If animal growth rates are rapid, animals processed at different times 
may vary considerably in size even if baseline weights at colony entry were similar. For 
example, Yorkshire swine may gain 4-5 kg/week during the rapid growth phase; 10 week old 
animals weighing 30 kg may weigh >100 kg 8-10 weeks later. Therefore, to reduce selection 
bias and confounding, animal weights should be uniformly distributed across treatment groups 
through the use of specific design tools, such as matching, randomization, and blocking.7 
 
Unfortunately, systematic trend may be a major confounding factor in many animal studies. 
For example, a recent survey of swine models of military-relevant therapeutics 11 indicated 
that more than half of surveyed studies showed a difference of 13-75 kg between the smallest 
and largest animals, but almost none reported appropriate mitigation measures. In addition, 
many studies claiming to be ‘randomized’ described allocation strategies that actually 
consisted of either alternation of treatments to sequential subjects, or alternatively, ‘lumping’ 
the same treatments into ‘blocks’, with sequential allocation of experimental interventions 
first, followed by sequential allocation of controls.11 A number of systematic reviews indicate 
that inadequate or no randomization in preclinical studies is common. 8,15,16  
 
2.2. Simulation procedures 
2.2.1. Data 
 Weight data typical of swine studies were generated from published growth charts for 
finisher pigs aged between 7 and 22 weeks and weighing from 18 to 110 kg 
(http://www.hendersons.co.uk/pigequip/Pig_growth_rate.html). The original 13 observations 
for body weights (W) were expanded to obtain a test population N = 100 by interpolating 
values from 18 to 100 kg (proc expand, SAS 9.4, SAS Inc., Cary NC), for a linear weight 
gradient of approximately 0.8 kg/day (r = 0.99; Figure 1). 
 
 2.2.2. Simulation conditions 
This was designed as a ‘uniformity trial’ simulation for a hypothetical three-group trial. A 
uniformity trial is essentially a ‘trial without treatments’, and can be used to check for 
uncontrolled variation, heterogeneity assumptions, and performance of  statistical inference 
methods and associated tests of significance17,18. Because true treatment effects are zero, any 
differences will be the results of variation in experimental units. 
 
Samples of n = 36 were repeatedly drawn from the test population using simple random 
sampling without replacement (SAS proc surveyselect), and linear trend in W was maintained 
by sorting on ascending values of W.   
 
Three treatments (A, B, C) were assigned to subjects in each replicate using three randomized, and 
two non-randomized, allocation scenarios. Randomized allocation scenarios were: (a) completely 
randomized (CR), with varying sample size imbalance; (b) ‘restricted’ randomized (RR), with 
randomization constrained to produce equal sample sizes per treatment arm (nt = 12); (c) randomized 
complete block (RCB). Random treatment assignments were generated for the CRD scenario using 
the SAS macro RandBetween (https://blogs.sas.com/content/iml/2015/10/05/random-integers-
sas.html), and for constrained randomization scenarios using the SAS ranuni call routine with fixed 
starting seeds. The two non-random assignments were (d) ‘alternating’ (ABC ABC); and (e) false 
‘blocking’, where the same treatments were assigned consecutively (AAA, BBB, CCC) resulting in 
‘blocks’ of the same treatment.  
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The statistical models used to assess treatment effects under the null hypothesis H0: µ1 = µ2 = 
µ3 were based on one-way ANOVA yi = µ + τi + eij, where yi = Wi, τi are ‘treatments’ i = 1, 2, 
3, treatment assignment 1:1:1; and eij ~ N(0, σe

2) denotes the experimental unit error. I 
examined the effects of blocking (RCB) with the model was yij= µ + βj + τj + eij, where τij are 
treatments i = 1, 2, 3, and eij ~ N(0, σe

2). Block size was either nb = 3 (12 blocks) or 6 (6 
blocks), with randomization within block; it was assumed blocking was performed on a 
variable unrelated to weight. Block effects βj were modelled as random with βj ~ N(0, σ2

b).  
 
I performed hypothesis tests for treatment effect on each replicate with SAS proc mixed to 
obtain F1 – α, ν1, ν2 (where α = 0.05, ν1 = 2, and ν2 = 33 for fixed treatment effects [ν2 = 28 for 
RCBD nb = 6], P-values, residual mean square error MSE, and treatment differences.. 
Empirical distributions were plotted for each allocation scenario; under the null hypothesis, 
F-values should approach the theoretical distribution for F2,33 (or F2,28 for RCBD), and p-
values should be uniformly distributed on the interval [0, 1]19. Estimates were summarised by 
the 5th, 50th, and 95th percentiles on the simulations.  
 
2.2.3. Number of simulations  
I performed 4000 simulations for each scenario. The number of replicates was based on 
assessment of persistent stability and bias of the cumulative type I error rate for a three-arm 
CR trial and F2, 33. Stability was visually assessed by plotting the cumulative error rate vs. 
simulation replicates and determining the number of simulations for stable convergence at α 
= 0.05 with bias range 0.045-0.055. (Figure 2).  

 
3. Results 

 
3.1. F distributions and p-values 
Simulated distributions for randomized allocation strategies (CRD, RR, RCBD) approximated 
the expected F-distributions, and p-values were uniformly distributed (Figure 3, Table 1). In 
contrast, systematic non-randomized allocations (alternating, false ‘block’) resulted in highly 
anomalous F-distributions, with over-representation of either extremely high or low p-values. 
F-distributions tended to ‘collapse’ towards extreme values unrelated to the expected 
theoretical distribution, but related to the direction of bias (Figure 4; Table 1).   
 
3.2. Treatment differences and precision 
Summary statistics for residuals and group differences are shown in Table 2. For randomized  
allocation, blocking resulted in increased precision for estimates of effect sizes. In contrast, 
grouping of similar weights in sequential treatment clusters by false block allocation resulted 
in biased and greatly exaggerated treatment differences that in practice would be flagged as 
highly statistically significant. Problems with treatment alternation in the presence of 
systematic trend are more subtle. Variation was somewhat increased (slightly increasing risk 
of obscuring true treatment differences if they existed), but overall summary statistics 
appeared to resemble those obtained for randomized allocation designs CR and RR. However, 
examination of distributional data indicates that the major underlying problem with alternation 
is invalidation of the null density distribution. 
 

4. Conclusions 
 
The null distribution of the test statistic is the appropriate reference distribution for NHST 
only if treatment allocation was actually randomized. These simulations clearly illustrate that 
inferential tests based on non-randomized treatment allocation will be invalid because the 

 
2839



underlying distributions from non-randomized allocations no longer model the appropriate 
density function for F1 – α, υ1, υ2. As a result, inferential statistics cannot provide valid probability 
statements about treatment effects.  
 
The consequences of systematic non-randomized treatment allocation for statistical inference 
were identified as early as the 1930s, and intermittently ever since (at least in the agricultural 
literature; see, for example 9,20,21). However, it is still not uncommon to see published 
assertions in the biomedical literature that randomization provides ‘no statistical advantage’ 
(other than improved allocation concealment) over systematic methods such as alternation22. 
In contrast, this study emphasizes the real problem associated with non-randomization is 
invalidation of test statistics. The presence of systematic trend results in highly directional 
bias, and contributes to the extreme F-values and compressed distributions noted here. On the 
other hand, randomization and blocking of experimental units are highly efficient methods of 
accounting for spatial trend; blocking also increase estimate precision and reduces 
experimental error21. 
 
Preclinical studies that are poorly conducted and reported produce biased results, usually in 
the direction of exaggerated treatment effects15,16,23,24. Much of this bias would be avoidable 
if experiments were properly planned and designed prior to data collection25; the same 
avoidable biases may also contribute to the poor translation potential of much animal 
research8. The most serious problem would appear to be the proliferation of studies intended 
to be experimental tests of specific hypotheses, but analyzed as if treatment allocation was 
randomized properly when it was not. A 2009 survey showed that very few (12%) preclinical 
animal-based research reported random treatment allocation15. More recently (2018), over 
60% of studies in a survey of swine preclinical research reported random treatment allocation. 
However, these claims could be directly assessed by calculating the p-value for treatment 
differences for studies reporting baseline summary statistics. Because random allocation of 
subjects to groups should result in an expected treatment difference of zero, the expected p-
value distribution should be uniform (Figure 3). Instead, the surveyed studies were 
characterized both by over-representation of small p-values and inadequate reporting of 
methodology, making it impossible to determine what was actually done.11 Non-uniform p-
value distributions for baseline data have been used to detect non-randomization and, in some 
cases, provide supporting evidence for research fraud and misconduct.26,27  It is not necessarily 
implied that the surveyed swine studies were fraudulent. It is likely these results reflect 
persistent systematic error of the type modelled here, and lack of investigator knowledge about 
the intent and practical implementation of randomization, coupled with ‘boilerplate’ statistical 
methods writing.  Nevertheless, inaccurate reporting casts doubt on the validity of results. 
 
Clearly, a high priority for statistical educators should be the instruction of investigators on 
randomization of experimental units as a critical design component of experimental studies. 
In addition, applied biostatisticians should be alerted to the necessity of enquiring into the 
provenance of the data handed over to them for analysis, especially with respect to strategies 
of data sampling and collection. Observational studies, which are non-randomized by 
definition, have numerous alternatives to conventional statistical methods of analysis and 
probabilistic interpretations28. Non-randomized experimental studies cannot be analyzed the 
same way.  
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Figure 1. Generated test population N = 100 for body weight data. 
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Figure 2: Cumulative type I error rate as a function of simulation replicate for completely 
randomized allocation designs (CRD) with total N = 36 and τ = 3 treatment arms. 
Reference lines (red) are α = 0.05; range 0.045-0.055. 
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Figure 3. F-distributions and p-value distributions obtained from 4000 simulations of three 
randomized allocation schedules for three treatments and N = 36: (A) Completely randomized 
(CRD); (B) Restricted randomization (RRD); (C) Randomized complete block design with 6 
blocks, random block effects (fixed effects not shown). The red line indicates the F density 
function for F2,33 for CR and RR allocation 
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Figure 4. Effects of non-randomized allocation on F-distributions and p-values. Red lines 
indicate theoretical F-distribution for F2,33. Insets show F-distributions over the restricted 
range of simulated values. Note F-distribution ‘collapse’ with over-representation of very 
large (A) or very small (B) p-values. 
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Table 1.  F-value distributions (5th, 50th, and 95th percentiles) based on 4000 simulations for 
randomized and non-randomized (systematic) allocation schemes 
 

 Percentiles  
 5th 50th 95th 

1. Randomised allocation    
     CRD 0.05 0.67 3.19 
     RRD 0.05 0.69 3.43 

RCBD  b = 12 0.05 0.72 3.43 
b = 6    0.05 0.70 3.22 

2. Non-randomised allocation    
Alternating  0.06 0.10 0.14 

       False block  97.29 137.64 192.91 
 
 
 
 
Table 2.  Summary estimates (5th, 50th, and 95th percentiles) for MSE and group differences  
 

   Group differences 50th percentile 

Allocation method MSE 5th, 95th 
percentiles A-B B-C A-C          SE 

1. Randomised         
CRD 604.67 475.75, 733.25 -0.24 -0.30 -0.46 10.25 
RRD 604.28 472.14, 736.08  0.06 -0.18 -0.22 10.04 

RCBD b = 12     7.42 4.51, 11.68 0.02 -0.40 -0.35  1.11 
RCBD b  =  6   22.09 15.54, 30.37 -0.03  0.05 0.02   1.92 

       
2. Non-randomised        

Alternating 637.65 513.65, 760.32  -2.49  -1.92   -4.41 10.31 
       False block   69.24    50.42,  90.83 -23.63 -31.75 -55.83 3.38  
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