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Abstract 
Recent studies have shown that when it comes to forecasting realized volatility, conditional 
autoregressive range (CARR) models, that utilize the daily range of a commodity price, 
outperforms the traditional GARCH approach that models the daily returns. The CARR 
models, however, assume that the unconditional mean range is constant over time, which 
holds only if the unconditional volatility remains fixed over the duration of the study 
period. As several authors have pointed out, there is strong empirical evidence suggesting 
the feasibility of modeling a slow-varying change in the unconditional volatility over the 
study period using long term volatility component. In this paper we propose a new 
composite range based component model to analyze both long term and short term 
volatility components in a daily price range data. The proposed CCARR models long term 
volatility changes as a stochastic component which itself exhibits conditional volatility and 
the application of the proposed model is illustrated by using S&P500 and FTSE 100 stock 
indices. 

Key Words: CARR Models, Range Estimators, Financial Time Series, Market Volatility, 
Duration Models  

1. Introduction 

Financial volatility is defined as a measure of the dispersion of returns for a given asset. It 
is the conventional measure in assessing the risk of speculative assets. In general, riskiness 
of the market is directly proportional to the volatility. Volatility is closely linked with the 
stability of the financial market and plays a vital role in determining the level of economic 
activity.  It is also used as a key input for asset pricing. Thus, financial volatility is an 
essential factor that policy makers and regulators should consider prior to any form of 
financial decision making. Modelling volatility is crucial in understanding the nature of the 
dynamics of the finical market. 

Modeling financial volatility of asset prices has been discussed extensively in the financial 
and econometric literature over the years. One of the most successful volatility models used 
by researchers to model time series volatilities is the Generalized Autoregressive 
Conditional Heteroscedasticity (GARCH) model introduced by Bollerslev (1986). This 
paper, of course, in based on the ideas put forth in the seminal paper by Engle (1982), 
which proposed the Autoregressive Conditional Heteroscedasticity (ARCH) model in 
order to address the complexities of time varying volatility and volatility clustering in the 
financial time series. The ARCH approach models the error variance as a function of actual 
errors of the previous periods while GARCH method, which is an extension of ARCH 
method, models the variance of the error as a function of error terms and its conditional 
variance.  

Owing to the significance of modeling and forecasting asset price volatilities, a wide range 
of empirical and theoretical investigations have been carried out within the context of 
econometric literature to select the ideal model. Akgiray (1989), mentioned that GARCH 
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(1, 1) models fit the daily return series data reasonably well. He stated this after considering 
the evidence from the time series behavior of stock prices. GARCH model used in this 
paper employed rate of return to study the volatility and found that daily return series 
demonstrated a significant level of second order dependence which cannot be modeled 
using merely a linear white noise process. 

Due to the growing interest and developments in financial time series during the 1990’s 
some researchers became heavily invested in modelling the time intervals between events. 
The first durational model was proposed by Engle and Russell (1998). In their publication, 
they introduced a new statistical model which is capable of analyzing irregularly spaced 
financial transaction data and they named the model the Autoregressive Conditional 
Durational Model (ACD). Since then, multiple authors have proposed related versions of 
ACD models such as logarithmic ACD (LACD) models by Bauwens and Giot (2000), 
Nonlinear ACD by Zhang et al. (2001), Box-Cox ACD by Hautsch (2002). 

In many financial time series applications, standard deviation is the most common measure 
of stock return volatility since it not only calculates the dispersion of returns but also 
summarizes the probability of seeing extreme values in returns.  Researchers have focused 
their attention to finding alternative measures of financial volatility such as range. It is a 
well-known fact in statistics that the range is a measure of variability of a random variable. 
Parkinson (1980) argued that volatility measures can be calculated by considering daily 
high, daily low, and opening price of a stock in addition to the traditional closing prices. 
He also compared traditional measures of volatility that are calculated simply by using 
closing prices, with extreme value methods by taking high and low prices of an asset. He 
concluded that range based method is far superior to the available standard methods. 
Beckers (1983) tested the validity of different volatility estimators. In his paper, he 
mentioned that the range of a stock price contains more important and fresh information. 
He also mentioned that using range of a stock price is better than using close to close 
changes. Hence range of an asset price for a given period can be used as a more informative 
proxy variable to measure the assets volatility during that period. Researchers studied this 
alternative approach to volatility modeling and developed new theoretical range based 
models with comprehensive empirical examples. For example, Brandt and Jones (2006) 
fitted effective exponential GARCH (EGARCH) models to range data from S&P500 index.  

Chou (2005) first introduced the Conditional Auto Regressive Range (CARR) model, 
which is primarily an ACD model. While this ACD model is used to model the time 
intervals between events with positive observations , CARR is employed to model price 
volatility of an asset by considering range of the log prices for a given fixed time interval. 
CARR model is similar to the standard volatility models such as the GARCH model. 
However, one distinct difference between the two models is that, the GARCH model uses 
rate of return as its volatility measure while CARR model uses the range its volatility 
measure. The CARR model proposed by Chou is a simple but efficient tool for analyzing 
the volatility clustering property when compared to the GARCH models. This was proven 
empirically via out of sample forecasting of S&P500 data. Chou showed that the 
effectiveness of volatility estimates produced by CARR models is higher than the estimates 
of standard return based models such as GARCH models.  Zou (2014) used CARR model 
and GARCH model to forecast volatility of the stock index in Shanghai stock market. He 
used Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE), which were 
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proposed by Chou (2005), in order to compare the Weibull-CARR model with GARCH-t 
models. In this study he concluded that Weibull CARR model outperforms GARCH-t 
model in the forecasting ability. Quiros (2011) discussed volatility forecasting with range 
models. He improved previous work done by Chou (2005) through extending the time 
period and analyzing the performance of CARR model in contrasting situations such as in 
periods with upward trends and in periods with downward trends. He proposed various 
range estimators to analyze the forecasting performance and further stated that Parkinson 
(1980) model is preferable to CARR model during periods with upward trends while 
CARR is recommended for periods with downward trend.  

Chaing (2016) proposed the Lognormal Logarithmic Conditional Auto Regressive 
(Lognormal Log CARR) model with the aim of examining the volatility outliers and 
improving the accuracy of forecasting. This model was influenced by the Logarithmic 
Autoregressive Conditional Duration (Log ACD) model of Bauwens and Giot (2000). One 
major advantage of using either a Log ACD or a Log CARR model would be that these 
models relax positivity restrictions on the parameters of the conditional expectation 
function. Fernandes et al. (2005), in his works of multivariate extension of CARR model, 
derived the conditions for the existence of statistical properties such as first moment, 
stationarity of the model.  

The broad scope of volatility models proposed by various academics provide us copious 
opportunities to model the volatility, but as a single component. Recent studies carried out 
on the subject leads us to examine the volatility of economic and financial variables as a 
function of long term and short term components. 

Engle and Lee (1999) introduced an additive component to GARCH models with a long 
term and short term components. The Spline-GARCH model proposed by Engle and 
Rangel (2008) models equity market volatilities as a combination of macroeconomic 
activities and time series dynamics. In this same paper Engle and Rangel named the slow 
the moving trend in the volatility process as a low frequency volatility and presented the 
functional form of the low frequency volatility by adopting a non-parametric approach. In 
essence, they considered the low frequency component as deterministic. Instead of using 
an additive component, a multiplicative component was used in the Spline-GARCH model 
to separate low and high frequency volatilities. Therefore ‘high frequency return volatility’ 
is a product of a slow moving deterministic volatility component which can be represented 
by an exponential spline combined with a unit GARCH model. This model was able to 
capture short and long term behaviors of financial market volatilities. Slow moving 
volatility component can be used to model long run dynamic behavior of the market while 
unit GARCH model can be employed to capture short term dynamics. Based on the Spline 
GARCH model Engle et al. (2013) proposed a new component model with a direct link to 
the economic activities and this new class of models was named as GARCH MIDAS 
models. This paper explained long term volatility using an approach which can handle 
stock volatilities and economic activities recorded in different frequencies, namely, daily 
monthly or quarterly. The MIDAS technique was initially introduced by Ghysels (2006) 
and is used to build a link between the long run volatility component and macroeconomic 
variables. The unit GARCH process was used as in Spline GARCH approach to model the 
short run volatility component. The GARCH MIDAS model is a multiplicative model with 
differentiated short and long run components of volatility. The conditional volatility of 
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returns in this model depends on macroeconomic variables and previous economic periods 
or lags. Engle et al. (2013) formulated long term movement with inflation and industrial 
production growth. They found that including macroeconomic variables to the model 
outperforms the traditional time series in terms of long and short horizon forecasting. With 
the motivation of GARCH MIDAS model, Swanson (2017) proposed CARR MIDAS 
model. In this study, volatility was decomposed in to short and long term components, and 
short run volatility component is explained by an exponential CARR (1, 1) model. Long 
run volatility component is computed by aggregating measures of scaled realized range 
over past k low frequency periods.    

Several other authors also utilize empirical data to illustrate the modeling of short and long 
term volatility components using both Spline GARCH and GARCH MIDAS models. 
Nguyen and Walther (2017) conducted an empirical study using commodity futures which 
are traded in New York Stock Exchange (NYMEX). They fitted both Spline GARCH and 
GARCH MIDAS models. They found that disentangling high and low volatility 
components produced better results for in-sample fit in both models.  

More recent provides a basic insight to different types of volatility models including range-
based volatility models, and discusses the importance of analyzing the long term and short 
term volatility components in them. While CARR models assume a constant unconditional 
mean range over time, several other studies namely, Engle et al. (2013) and Conrad et al. 
(2018) suggest, with empirical evidence, that unconditional volatility in return series 
changed over the study periods.  

In this Study we propose a new class of Composite Range Based Component Models for 
volatility to analyze long term and short term volatilities in daily price range data. We 
introduce a stochastic component to model the long term volatility in daily price range data, 
which in itself exhibits conditional volatility. Both long term and short term components 
are driven by the past realization of range price series. Further we introduce an estimator 
to estimate unobserved long term volatility component and discuss the parameter 
estimation procedure.  Finally multiple indices such as S&P500 and FTSE 100 are used for 
the empirical study and compare the prediction and forecasting ability of proposed 
Composite CARR model against the single component CARR model.       

2. The Model Specification and Discussion 

2.1 The Conditional Autoregressive Range (CARR) Model  
Chou (2005), proposed the CARR model which is primarily a range based model. CARR 
model is employed to fit the price volatility of an asset by considering range as a measure 
of price volatility. A CARR model of order (p, q) is presented as CARR (p, q) and defined 
as follows: 
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Here tλ  is the conditional expectation of the range, based on all information up to time t . 

The non-negative disturbance term, also known as standardized range, is defined by tε

t

t

R
λ

 
= 
 

, which is independent and identically distributed with probability density function 

(.)f with a unit mean. Since tR  and tλ are positive, the coefficients of the conditional 
mean range equation have the following restrictions: 

0, 0, 0i jω α β≥ > > for all (1, 2,3,..., )i p∈ and (1,2,3,..., )j q∈ . 

Let tR  be the price range defined over the time interval ,open closet t   such that: 

max( ) min( )tR P Pτ τ= −  , where ,open closet tτ  ∈   . Here we let Pτ be the price of an asset 
at a given timeτ . 

2.2 The Composite Conditional Autoregressive Range (CCARR) Model 
Let , ,j i tP be the logarithmic price of a speculative asset defined at time j of a given short 
term period (i.e. day) t of any arbitrary long-term period t such as month, quarter and year. 
Here , ,, , [ , ]open t close tj i t i i∈ and 1,2,3,..., ti N=  where tN is the number of days for the 
given long term period t . Here 1, 2,3,...,t T=  where T be the number of long term periods 
in total time span. The observed price range over the short term time period i at a given 
long term period t is denoted as ,i tR and it is defined as follows.  

, , , , ,(max( ) min( ))*100.i t j i t j i tR P P= −                                         (2)                                                                                                      

The Composite Conditional Autoregressive Range (CCARR) model for the range is 
defined as follows: 

                                         , , , ,ti t i t i tR gτ ε=        (3)  

where , . . .i t i i dε  ,( , )i tf σ ε  with a unit mean (i.e. ,E( ) 1i tε = ), 1, 2,3,..., ti N∀ =  and
1,2,3,..., .t T=  

Observe that the daily price range (= ,i tR ) is separated into short term and long term 
volatility components. 

The long term volatility component tτ  is given by, 

0 1 1 1
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Here tω be the mean of the long term volatility component conditioned on all information 
up to time 1t −  and ( 1)t− is the sigma field generated by the information set up to long 
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term period 1t − . The long term disturbance term is denoted by tη , where ~ . . .t i i dη
( , )tf ν η  and E( ) 1tη = . Long term volatility component tτ  is modeled as a stochastic 

component that itself exhibits conditional volatility according to the Conditional 
Autoregressive Range (CARR (1, 1)) process. 

The short term volatility component ,i tg  is given by, 

                          ( 1, )
, ( 1, )(1 ) .i t

i t i t
t

R
g gα β α β

τ
−

−= − − + +     (5)  

Here the short term volatility component ,i tg is defined as obeying a unit CARR (1, 1) 
model similar to Engle and Rangel (2013). Following the derivation given by Engle et al. 
(2013) for the short term volatility component we can prove that unconditional expectation 
of short term volatility component is ,E( ) 1i tg = . Both short term and long term volatility 
components are driven by the past realization of the range series. 
 

3. Estimations of CCARR Model 

3.1 Estimating of the Long Term Volatility Component 
Observe that the range observed on short term period i  and long term period t is given 
by, 
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we can conclude that t tR τ≈ .  

Therefore, long term unobserved volatility component can be estimated using mean range 
for the given fixed long term period. 

3.2 Parameter Estimation of the CARR Model 
In this section we will derive the log likelihood function for the proposed CCARR model. 
For this derivation, we will assume that model disturbance term ,i tε  is independent and 

identically distributed as a lognormal distribution with mean 
2

2
σ

−  and variance 2σ     (i.e. 

, . .i t i i dε 

2
2,

2
LN σ σ

 
− 
 

 ) where 2 0σ > . The reason for this assumption is empirical 

evidence we gathered from the two data sets we will analyze in Section 4. However, other 
distributions may also be utilized. Under our assumption of the lognormal distribution, 
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,E( ) 1i tε = and 2
,var( ) exp( ) 1i tε σ= − . Long term disturbance term tη is assumed to be 

independently and identically distributed as a lognormal distribution with mean 
2

2
ν

−  and 

variance 2ν  (i.e. . .t i i dη 

2
2,

2
LN ν ν

 
− 
 

) where 2 0ν > . Hence the E( ) 1tη =  and 

variance 2var( ) exp( ) 1tη ν= − . Further we assume that ,i tε  and tη are independent. 

We consider equation (2), (3)  and (4)  to obtain the following results:  
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Since ,i tε  and tη are lognormal distributions, ,ln( )i tε and ln( )tη  are normal 

distributions, and ,ln( ) ln( )i t tε η+  is normally distributed with mean 
2
θ

− and variance θ

where 2 2θ σ ν= + . 

 Then the conditional distribution of ,i tR given 1,i t−  is expressed as: 
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Here 2 2
0 1( , , , , , , )α β γ γ δ σ νΦ = is the parameter vector.   

Thus, the conditional log likelihood function can be derived as follows: 
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Note that the Maximum Likelihood Estimation (MLE) is employed to obtain the model 
parameters for the proposed CCARR model. To utilize the MLE method, initial 
parameter values must be obtained. Determination of these initial values is discussed in 
the following sub-section. 

3.3 Initial Value Estimation 
Firstly, we need to find an estimator for the unobserved long term volatility component
( )tτ= . In this study the unobserved long term volatility component is estimated by using 
monthly mean value of daily price ranges as derived in Section (2.2) . The long term 
volatility component ( )tτ= is then modeled by the using CARR (1, 1) process as given in 
the Equation (4) . After fitting a CARR (1, 1) we can find the initial values for parameters

0γ , 1γ ,δ  and 2σ .  Next we need to find the initial values for the model parameters in the 

short term volatility component model ,i tg . Let *
,i tR   be the daily adjusted price range 

which is defined as follows: 
,*

, , ,
i t

i t i t i t
t

R
R g ε

τ
= = , 

where ,i tg is given by, 

                                                 ( 1, )
, ( 1, )(1 ) .i t

i t i t
t

R
g gα β α β

τ
−

−= − − + +                          (7)  

We next fit a unit CARR (1, 1) model to the adjusted daily price range and find the initial 
parameter values for α , β and 2ν . 

4. An Empirical Analysis  

4.1 The Data Sets 
In this study we use two stock indices, namely, the Standard and Poor’s 500 (S&P500) 
index of United States and the Financial Times Stock Exchange 100 (FTSE 100) index on 
the London Stock Exchange. The sample periods for both S&P500 and FTSE 100 start on 
January 4, 1990 and end on December 31, 2018. Daily values for opening price, closing 
price, high price, low price and adjusted price are reported over the span of the study period. 
The data set is downloaded from the “Yahoo Finance” from the web site 
“https://finance.yahoo.com/” by using “quantmod” package in R software. The data set is 
divided in to two samples where one sample spans from January 4, 1990 to December 29, 
2017 and is used for the model parameter estimation and in-sample predictions .The out of 
sample predictions are done by using the sample from January 1, 2018 to December 31, 
2018.  The same sample separation procedure is carried for the both stock indices. 
Table 1 presents the summary statistics of the daily price range series for S&P500 and 
FTSE 100 indices. The daily price range ( ),i tR= of a given day i  on a month t   is obtained 

as given in Equation (2) . 
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Table 1: Summary Statistics for Daily S&P500 and FTSE 100, January 04, 1990 – 
December 29, 2017 (In-Sample) 

Summary Statistics S&P500 FTSE 100 
Mean 1.2524 1.2926 

Median 1.0165 1.0525 
Maximum 10.9041 10.7532 
Minimum 0.1456 0.0762 

Standard Deviation 0.9185 0.9042 
Skewness 3.2012 2.8668 
Kurtosis 18.7175 14.9450 

Jarque-Bera 
(Probability) 

115093 
(0.0000) 

75987 
(0.0000) 

Ljung-Box Q-22 
(Probability) 

41938 
(0.0000) 

42047 
(0.0000) 

 
The high values for Kurtosis indicate a strong deviation from the normal distribution. Both 
price ranges have large positive skewness and it is suggested that a positively skewed 
density should be used to model disturbance term. Jarque-Bera test statistics fall far from 
zero and have extremely low p-values (<0.0000) leading to a rejection of the null 
hypotheses that the data is normally distributed.  The Ljung-Box test null hypothesis is that 
the time series data are independently distrusted. In this study time lags of 22 trading days, 
which is the approximate number of trading dates for a month, was used for the test.   After 
22 lags of sample autocorrelations being examined, the large test statistic values and very 
small p-values (<0.0000) conclude that the data exhibit a strong persistence in daily price 
range data. Time series plots for the daily price range data of S&P500 and FTSE 100 over 
the in-sample period are given in Figure 1 and Figure 2. 
 

 
Figure 1: S&P500 daily price range from 01/04/1990 to 12/29/2017 
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Figure 2: FTSE 100 daily price range from 01/04/1990 to 12/29/2017 

Both graphs exhibit the same behavior over the period of study. Height of the spikes is an 
indication of price volatility and if the spikes are high during a certain period, then that 
period is considered to be highly volatile.  

4.2 Estimation of CARR Model 
Initially fitted a single component CARR model to daily price range data to explain price 
volatility over the study period. We assume the disturbance term tε  in CARR
( 1, 1)p q= =  model specified in the Equation (1) follows Exponential (ECARR), Weibull 
(WCARR) and Lognormal (LNCARR) distributions. 
 

Table 2: Estimation of CARR (1, 1) Model Using Daily S&P500 Index Data 
 ECARR (1,1) WCARR(1,1) LNCARR(1,1) 

0γ  0.0193 (0.0000) 0.0286 (0.0000) 0.0149  (0.0000) 

1γ  0.1679 (0.0000) 0.1780 (0.0000) 0.1653  (0.0000) 

δ  0.8163 (0.0000) 0.7979 (0.0000) 0.8228  (0.0000) 
AIC 15870.63 9868.95  8507.40 

 
Table 3: Estimation of CARR (1, 1) Model Using Daily FTSE 100 Index Data 

 ECARR (1,1) WCARR(1,1) LNCARR(1,1) 

0γ  0.0212 (0.0060) 0.0334 (0.0000) 0.0140 (0.0000) 

1γ  0.1715 (0.0000) 0.1953 (0.0000) 0.1677 (0.0000) 

δ  0.8116 (0.0000) 0.7772 (0.0000) 0.8223 (0.0000) 
AIC 16507.90 10050.41 9424.89 
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Since, daily price range data have large positive skewness, positively skewed distributions 
like Exponential, Weibull or lognormal should be used to model the data. According to the 
AIC values given in Table 2 and Table 3 LNCARR (1, 1) has lower AIC value, hence it 
fits better for the daily price range data for both stock indices.  

4.3 Estimation of CCARR Model 
The proposed CCARR process models daily price volatility by using short term and long 
term volatility components. In this study, day is considered as a short term time period 
while the month is taken as the long term period of interest. Initially we need to find an 
estimator for the unobserved long term volatility component, ,tτ and it is estimated by 
using monthly mean as previously derived in Section (3.1) . Figures 3 and 4 presents the 
comparison of daily price range data and monthly mean as a long term volatility component 
for each of the indices. According to the Figures 3 and 4 monthly mean closely follows the 
long term changes in price volatility and it does a quite good job capturing the periods with 
high volatility.  
 

 

Figure 3: Daily Price Ranges (black) and Monthly Observed Mean for S&P500 (red)               
from 01/04/1990 to 12/29/2017 
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Figure 4: Daily Price Ranges (black) and Monthly Observed Mean for FTSE 100 (red) 
from 01/04/1990 to 12/29/2017 

Based on the method describe the Section 3.3 we estimate the initial values for the both 
indices. Initial values for the S&P500 parameters are (0.20, 0.63, 0.27, 0.20, 0.70, 0.25) 
and that of the FTSE 100 are (0.13, 0.64, 0.25, 0.20, 0.68, 0.26). After determining the 
initial values for the model parameters, the partial log likelihood function (6) is maximized 
by using ‘nloptr’ package which is a nonlinear optimization algorithm in R. Table 4 
presents the MLE results for the CCARR model. 

Table 4: Estimation of the CCARR Model Using Daily S&P500 Index Data and FTSE 
100 Index Data 

 S&P500 
Estimated Coefficients 

FTSE 100 
Estimated Coefficients 

0γ  0.0353 0.0359 

1γ  0.1595 0.2214 

δ  0.8053 0.7536 
α  0.1753 0.1855 
β  0.7758 0.7566 
θ  0.1820 0.1900 

Ljung-Box Q-22 33.048 (0.0619) 24.442 (0.3245) 
 
Ljung-Box Q test is used to test whether the residual series are independently distributed. 
Large values for Ljung-Box Q -22 test for the price range indicate that there is a significant 
persistence in the volatility. However the residual series for the fitted CCARR model 
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demonstrate a significance reduction in Ljung-Box Q-22 statistics with p-values exceeding 
0.05, suggesting the absence of serial autocorrelation up to 22 trading days.  

4.4 Comparison between LNCARR Model and CCARR Model 
In this section we test the in-sample prediction and out of sample forecasting ability of 
proposed CCARR model. To test the differences in prediction and forecasting power 
between CCARR and LNCARR, we conduct in-sample prediction and out of sample 
forecasting .In order to test how well the proposed CCARR models perform in extreme 
situations such as a recession period, we conduct the analysis for the period from December 
2007 to June 2009 for S&P500 and April 2008 to June 2009 for FTSE 100. 
 
In-sample prediction for the LNCARR is its conditional mean range and that of the 
CCARR is the product of estimated long term and short term volatility components. In 
order to compare the in-sample prediction and out of sample forecasting ability, we 
calculate AIC and mean-absolute error (MAE) statistics for both CCARR and LNCARR. 
MAE is calculated as follows: 

( ), ,
,MAE

i t i t
i t

MV PV

N
∀

 −
 

=  
 
 

∑
                                          (8)  

The unobserved real volatility is represented by ,i tMV  and here we use price range ,( )i tR
as proxy variable for real volatility. Predicted values ,i tPV are the fitted values for price 

range  ,( )i tR . 
 
Table 5 presents the model comparison between LNCARR (1, 1) model and CCARR 
model. The CCARR model shows a better performance over the LNCARR model for all 
periods. During the full period of in-sample and the time of recession CCARR models have 
smaller MAE values and lower AIC values when compare to the LNCARR models for 
both stock indices. Further, diagnostic test results for the residuals indicates that they are 
independently and identically distributed in the CCARR model. However there is a clear 
rejection of the null hypothesis in LNCAR model where errors show high persistence in 
the residual of price range data. We calculated the one step out of sample forecasted values 
for both stock indices. Based on the out of sample statistics CCARR model dominates over 
LNCARR model with respect to MAE statistics.  
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Table 5: Model Comparison between LNCARR (1, 1) and CCARR for S&P500 and 
FTSE 100 

Sample 
Period 

 S&P500 FTSE 100 

LNCARR 
(1,1) 

CCARR LNCARR 
(1,1) 

CCARR 

In-Sample MAE 0.422 0.420 0.415 0.410 
Standardized 

Residuals 
Q(22) 

51.724 
(0.0003) 

33.048 
(0.0612) 

50.084 
(0.0050) 

24.442 
(0.3245) 

AIC 8507.395 8466.001 9424.89 9375.982 
Recession  MAE 0.88 0.87 0.93 0.92 
Out of 
Sample 

MAE 0.47 0.46 0.34 0.33 

 

 

Figure 5: In-Sample Prediction by CCARR Model for S&P500 
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Figure 6: In-Sample Prediction by CCARR Model for FTSE 100 

 

Figure 7: 1-step ahead forecasted value Comparison between LNCARR (1, 1) and CCARR 
for S&P500 
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Figure 8: 1-step ahead forecasted value Comparison between LNCARR (1, 1) and 
CCARR for FTSE 100 

Figure 7 and Figure 8 show how well the proposed model performs in 1-step prediction. It 
can be seen in the figures that the CCARR model picks high volatility periods (high spikes) 
as LNCARR does however CCARR quickly capture the low volatile periods (short spikes) 
while LNCARR does not have the flexibly to adapt to such situations.   

5. Conclusion 

In this study we propose a composite range based model to estimate long term and short 
term volatility components. The proposed methodology models the long term volatility by 
using a stochastic process which itself exhibits conditional volatility. Further, both short 
term and long term volatility components are driven by the past realization of price range 
data. The empirical results based on MAE and AIC values show that the CCARR model is 
dominates the LNCARR model (which as selected based on performance out of other 
CARR models) in performance, especially during the recession periods. The proposed 
CCARR model does better than the single component LNCARR model with respect to the 
residual diagnostics as well. 
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