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Abstract
Dependent or correlated binary data occur in experimental studies such as teratological risk assessment.

Groups of correlated responses are often called clusters, and the response of interest is the number of af-
fected units in a cluster. The simplest statistical model for binary outcomes is binomial distribution, which
assumes individuals to be independent and identically distributed. However, the assumption of the bino-
mial distribution is often violated. Both parametric (such as Beta-Binomial, q-power) and non-parametric
(exchangeable binary) models have been proposed to model distribution of the number of affected individ-
uals over several treatment groups. We propose a semi-parametric model that combines a non-parametric
baseline describing the within-cluster dependence structure with a parametric between-group effect. The
proposed model avoids making parametric assumptions about higher-order dependence, but is more parsi-
monious than non-parametric models. We fit the semi-parametric model with an Expectation Minimization
Minorize-Maximize algorithm to the boron acid mouse dataset, and compare the semi-parametric estimates
of joint probabilities from different dose levels with corresponding generalized estimating equations and
non-parametric estimates.

Key Words: Clustered binary data, exchangeability, semi-parametric, relative risk, teratological risk as-
sessment

1. Introduction

1.1 Example of Clustered Binary Outcomes

The National Toxicology Program conducted a study on the developmental toxicity of boron acid
by providing pregnant mice with feed containing boron acid (BA) [Heindel et al., 1994]. BA was
provided in mice’s feed at different dose levels throughout gestation to guarantee fetuses’ steady-
state exposure during growth development. The number of fetuses in the litter would not be affected
by the dose exposure because the mice were fed with BA after they were pregnant. At the end of
study, each mouse’s uterus was examined to determine number of resorptions, deaths, or other
abnormalities.

As shown in figure 1, four dose groups corresponding to exposure levels of 0, 0.1, 0.2 and
0.4% BA were used. For each pregnant mouse, represented with the rectangle, the circles within
the cluster, regardless of their colors, represent implantation sites; and out of which the red circles
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Figure 1: Developmental toxicity experiment of boron acid

represent the combined endpoints, either resorbed embryos, or dead fetuses, or fetuses with other
abnormalities. The white circles represent healthy fetuses.

Figure 2 is a stacked bar plot illustrating responses from the mice’s litters under different dose
levels’ exposure. We can see that doses of higher concentrations might increase the risk for indi-
vidual due to the expanded tendency in the number of affected. Our primary parameter of interest
is the entire distribution for the combined endpoints from varying cluster sizes and under different
dose levels exposure. The fetuses are correlated not only because they gestate in the same litter,
but also they are exposed to the same or different concentrations of boron acid. We want to model
this within-cluster effects and exogenous risks and are going to use the second or even higher order
correlation coefficients as parameterization in the proposed models.

1.2 Notations for Clustered Binary Outcomes

In many contexts with clustered binary outcomes, the cluster sizes are not fixed. For a sample
of clusters (i = 1, . . . , I) of corresponding cluster sizes (r1, . . . , ri, . . . , rI), observations in the
ith cluster of cluster size ri are denoted as (Xi1, . . . , Xij , . . . , Xiri). Each observation within
the cluster is a binary outcome with 1 indicating success and 0 indicating failure. Summing up

 
2792



Figure 2: Bar plot for developmental toxicity experiment of boron acid

observations’ responses in the ith cluster of cluster size ri gives the total number of successes
within this cluster, denoted as Si =

∑ri
j=1Xij . The marginal probability of achieving s successes

from a cluster of cluster size r is qs,r = Prr(S = s), where Prr is the probability statement
conditional on the cluster size being r. For a sample consisting of I clusters, the maximum cluster
size is R = max (ri), where 1 ≤ i ≤ I; and the number of clusters of cluster size r and achieving
s successes is denoted with nrs.

1.3 Existing Methods to Model Clustered Binary Outcomes

In the study of clustered binary outcomes, the assumptions of multinomial distribution are vio-
lated in most situations. There are typically two ways to look at the clustering. One is the lack of
independence among observations within the same cluster, and the other is the unobserved hetero-
geneity within a cluster.

The fundamental assumption lying behind all models constructed to handle the clustered binary

 
2793



outcomes is that conditional on the probability of response, the observation is a random variable
subject to Bernoulli distribution. Based on this assumption, there are mainly three types of models
proposed to handle clustered binary outcomes.

The first type of models to handle clustered binary outcomes are the fixed or random effect
models. They treat the correlation among observations within the same cluster as a fixed constant
or a random variable. For fixed effect model, Tallis [1962] added an additional parameter ρ, which
was the correlation coefficient for two variables being marginally distributed as multinomial vari-
ates with common means, to the probability generating functions and derived the joint probability
distribution of correlated observations within the same cluster. Kupper and Haseman [1978] used
the “correction factor”, which was a function of pairwise, higher order correlations and binomial
probability parameters, to multiply the standard binomial probability distributions to “correct for”
the lack of mutual independence among observations. Rao and Scott [1992] applied the concepts
of design effect and effective sample size from sample survey and constructed an adjusted multi-
nomial distribution model with no assumption of intra-cluster correlations. For the random effect
model, Williams [1975] proposed the beta-binomial model assuming that within each cluster, the
binary responses formed a set of Bernoulli trial whose probability parameter varied among clusters
in the same population according to a two-parameter Beta distribution.

The second type of models for clustered binary outcomes are the quasi-likelihood or general-
ized estimating equation (GEE) models. Depending on the research objectives, the expectation and
covariance matrix of the objective can be obtained using the properties of generalized exponential
family or direct derivation from the given distributions and definitions. The estimating equations
consisting of the regression parameters can be solved using different numerical approaches such as
Newton-Raphson algorithm. GEE model produces robust estimates of regression coefficients and
other parameters even when the working correlation matrix characterizing the relation between
observations within the cluster is misspecified. The research objectives can be marginal means
and pairwise correlations [Prentice and Zhao, 1991], odds ratios [Lipsitz et al., 1991], or mean
responses and intra-cluster correlations [Bowman et al., 1995].

The third type of model for correlated binary data is using higher order moments or corre-
lations as parameterization to handle probability distribution under the exchangeability assump-
tion. A sequence of binary random variables X1, X2, . . . is exchangeable if for any n and any
vector (x1, x2, . . . , xn)′, the joint probability Pr(Xπ(1) = x1, . . . , Xπ(n) = xn) = Pr(X1 =
x1, . . . , Xn = xn) for any permutation of indexes 1, 2, . . . , n. Based on the exchangeability as-
sumption, Bowman and George [1995] proposed to use the joint probability λk = Pr(Xj1 =
Xj2 = · · · = Xjk = 1), where {j1, j2, . . . , jk} was a subset of {1, 2, . . . , n} , k = 1, . . . , n
and λ0 = 1, to reparametrize the likelihood function. Estimators of {λk} under equal cluster
size were derived using the maximum likelihood estimation. Stefanescu and Turnbull [2003] pro-
posed an additional assumption “marginal compatibility” to estimate {λk} under varying cluster
sizes. They assumed that clusters of different sizes might be viewed as coming from a sample of
equal-size clusters, with some observations missing completely at random. The marginal compat-
ibility assumption is that the probability distribution of X1,k, X2,k, . . . , Xk,k in a cluster of size
k < n should be the same as that of X1,n, X2,n, . . . , Xk,n in a cluster of size n. For 1 ≤ k ≤ n,

 
2794



λk,n = Pr(X1,n = · · · = Xk,n = 1) = Pr(X1,k = · · · = Xk,k = 1) = λk,k, which no longer
depends on the cluster size. This assumption links up the distributions for different cluster sizes so
that estimation can be based on the combined data from all cluster sizes. The researchers estimated
the {λk} under varying cluster sizes using the EM algorithm. Pang and Kuk [2007] proposed
a penalized kernel smoothing method which performed smoothing in both covariate and response
space. They also proposed a generalized Armitage’s trend test to test for the marginal compatibility
assumption.

Many parametric models have been proposed to model the completely monotonic sequence
{λk}. Kuk [2004] proposed a more manageable two-parameter family of distribution that could be
parameterized in terms of marginal response probability and the intra-cluster association under the
exchangeability assumption. This was achieved by applying power transformation directly to the
response probability. Swapping the 1’s with 0’s for observations gave the q-power model, which
fit real data better than p-power model in some toxicological experiments. The risk of at least one
adverse response within a cluster took on a simple form under the q-power distribution and could
be reduced further to a generalized linear model if a complementary log-log link function was used.

In addition to using {λk} to parameterize the likelihood function, there are other higher order
moments and parameters proposed for reparameterization of likelihood. Ekholm et al. [2003] pro-
posed to use the dependence ratios of all orders together with the first-order moments to represent
the path probability. Lovison [2015] proposed the dependence ratio (DR)-binomial distribution
under exchangeability assumption. The likelihood function was reparametrized using marginal
probability and dependence ratio. The DR-binomial distribution is the reparameterization of Al-
tham’s additive-binomial and Kupper-Haseman’s correlated-binomial distribution.

The sum of exchangeable Bernoulli random variables can be represented as continuous-time
Markov processes via a technique called “probabilistic embedding”. Crawford and Zelterman
[2015] proposed a Markov counting model for correlated binary responses. By introducing an
auxiliary variable, the binary responses are made to depend on the arrival times of points in a
Markov counting process. This formulation provided a flexible way to parameterize and fit models
for correlated binary outcomes, and accommodated different cluster size ascertainment schemes.

Going into more details about clustered exchangeable outcomes, multiple assumptions have
been proposed in order to construct parametric, non-parametric or semi-parametric models to incor-
porate correlations among observations within the same cluster. The semi-parametric model pro-
posed in our study is based on two significant assumptions. One is the exchangeability assumption,
which is stated as given the cluster size being r, the joint probability of a sequence of binary random
variables remains the same for any permutation. This assumption is essentially embedded in many
parametric and non-parametric models. For example, models using the sum of successes from the
cluster S =

∑r
j=1Xj as the response variable are all based on the exchangeability assumption.

Otherwise, the sum is not sufficient to model multiple measurements of the cluster. Based on
the exchangeability assumption, the joint probability λk,r = Prr(X1 = X2 = · · · = Xk = 1)
was proposed by Bowman and George [1995] and could be estimated using the maximum likeli-
hood estimator under equal cluster size. Stefanescu and Turnbull [2003] proposed an additional
assumption, “marginal compatibility”, to estimate {λk,r} under varying cluster sizes using the EM
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algorithm. This assumption links up values of {λk,r} for different cluster sizes so that the parameter
estimation is based on the combined data with all cluster sizes.

The parameter {λk} has a one-to-one mapping to the marginal probabilities {qs}. For s =
0, . . . , r, the relation between {qs} and {λk} is:

qs =

(
r

s

) r−s∑
j=0

(−1)j
(
r − s
j

)
λs+j , (1)

λk =

r−k∑
j=0

(
r−k
j

)
qr−j(
r
r−j
) , (2)

as proved by Bowman and George [1995]. The marginal probabilities {q0, q1, . . . , qr} are subject
to the constraint

∑r
s=0 qs = 1 to be a probability mass function. Since there is a one-to-one

mapping from {qs} to {λk}, {λk} should also be subject to certain constraint to be a new set of
reparametrization for the marginal probabilities {qs} with respect to a distribution. The constraint
is that {λk} should be completely monotone, defined as follows:

∆r−k(λk) ≥ 0, k = 0, . . . , r, (3)

where ∆(λk) = λk − λk+1,∆
2(λk) = ∆(λk) − ∆(λk+1), etc, are the forward differences. The

complete monotonicity property guarantees that the parameters {λk} define a distribution.

2. Semi-parametric model for exchangeable clustered binary outcomes

Based on the exchangeability and marginal compatibility assumptions, we propose the following
semi-parametric model to describe relationship among

{
λ
(g)
k

}
from different dose levels (g =

1, . . . , G):

λ
(g)
k = λ

(0)
k × θ

k
g , k = 1, . . . , r, (4)

where θg is a parameter with range [0, 1];
{
λ
(0)
k

}
is the joint probability for the baseline dose level;

and
{
λ
(g)
k

}
is the joint probability for the gth dose level.

When we set k = 1, λ(g)1 = λ
(0)
1 × θg according to the proposed semi-parametric model (4).

Therefore, θg =
λ
(g)
1

λ
(0)
1

and is essentially the relative risk of the gth dose level compared with the

baseline.
Our model incorporates a flexible baseline

{
λ
(0)
k

}
in order to relax the restrictions of para-

metric model such as Beta-Binomial, and assigns a parameter θg to each dose level’s
{
λ
(g)
k

}
so

that the model is much more parsimonious than fully non-parametric models. Our semi-parametric
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model also guarantees the complete monotonicity property of {λk} because the baseline
{
λ
(0)
k

}
is

completely monotone, and the exponential function θkg is also completely monotone. The product
of these two terms yields a completely monotone sequence. In addition, if we use another type
of reparameterization, the dependence ratio [Lovison, 2015], defined under the exchangeability
assumption as follows:

τk =
Pr(X1 = X2 = · · · = Xk = 1)

Pr(X1 = 1)× Pr(X2 = 1)× · · · × Pr(Xk = 1)

=
π11,12,...,1k

π11π12 . . . π1k
.

(5)

In our semi-parametric model setting, we can come to the conclusion that the model is equiva-
lent to assuming that the dependence ratio is the same across all dose levels. The gth dose level’s
kth dependence ratio in our semi-parametric model setting is:

τ
(g)
k =

Pr(g)(X1 = X2 = · · · = Xk = 1)

Pr(g)(X1 = 1)× Pr(g)(X2 = 1)× · · · × Pr(g)(Xk = 1)

=
λ
(g)
k

(λ
(g)
1 )

k
=

λ
(0)
k × θ

k
g

(λ
(0)
1 × θ1g)

k
=

λ
(0)
k

(λ
(0)
1 )

k
,

(6)

which means that the kth order dependence ratio is a function of the baseline joint probabilities
λ(0), and is independent of the variation of dose level g.

3. Parameter estimation using the EM MM algorithm

Parameter estimation is based on the maximization likelihood estimator with respect to likelihood
function of observed data. Under the marginal compatibility assumption, the parameters λ are
independent of cluster sizes. The likelihood function based on the observed data is written as
follows:

L =

G∏
g=0

R∏
r=1

r∏
s=0


(
r

s

) r−s∑
j=0

(−1)j
(
r − s
j

)
λ
(g)
s+j


n
(g)
rs

. (7)

We implement an algorithm called the Expectation Maximization Minorize-Maximize, abbre-
viated as EM MM, to estimate the parameters. For dose level g, let φg = (λ(0), θg) denote the
parameters in the semi-parametric model. Stefanescu and Turnbull [2003] have proved that the
marginal compatibility assumption is equivalent to assuming that clusters are from a sample of
clusters sharing the same cluster size (the maximum cluster size R is a good choice and is used
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in our study), but some observations are completely missing at random, abbreviated as MCAR.
The expectation step in the EM MM algorithm can be performed based on the MCAR assumption.
For complete data in which all clusters have R observations, the marginal probability of achieving
t successes out of R observations within a cluster is denoted with parameter q(g)t . Estimation of
λ(g) is much more demanding than that of q(g) because the complete monotonicity property of
λ(g) is difficult to control during each EM MM updating iteration. We hence focus on estimating
the parameters q(g) instead of λ(g) because of its robustness during interation. Therefore, we let
φg = (q(0), θg) to denote the set of parameters in our semi-parametric model. Based on the semi-
parametric model (4), and one-to-one mapping formulas (1) and (2), the following equation holds
for the baseline dose level marginal probabilities q(0) and q(g) for dose level g;

q
(g)
t =

(
R

t

)R−t∑
j=0

(−1)j
(
R− t
j

)
λ
(0)
t+jθ

t+j
g

=

(
R

t

)R−t∑
j=0

(−1)j
(
R− t
j

)
θt+jg

{
R−t−j∑
l=0

(
R−t−j

l

)
q
(0)
R−l(

R
R−l
) }

=

(
θg

1− θg

)t
×
R−t∑
l=0

(
R− l
t

)
q
(0)
R−l(1− θg)

R−l

=

(
θg

1− θg

)t
×

R∑
α=t

(
α

t

)
q(0)α (1− θg)α

=
R∑
α=t

(
α

t

)
θtg(1− θg)

α−tq(0)α .

(8)

Let the parameter p(g)rst = PrR(T = t|S = s, r) denote the conditional probability of achieving
t successes out of complete cluster size R for the gth dose level, given that s successes have been
achieved out of the original observed cluster size r. Based on the MCAR assumption, it can be
derived from q

(g)
t [Stefanescu and Turnbull, 2003], shown as follows:

p
(g)
rst = Pr(g)R (T = t|S = s, r)

=
Pr(g)r (S = s|T = t)Pr(g)R (T = t)∑R

t′=0 Pr(g)r (S = s|T = t′)Pr(g)R (T = t′)

=

(
t
s

)(
R−t
r−s
)
q
(g)
t∑R−r+s

t′=s

(
t′

s

)(
R−t′
r−s
)
q
(g)
t′

.

(9)

For dose level g, based on the conditional probability p(g)rst and number of clusters achieving s
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successes out of cluster size r, n(g)rs , from the observed data, the expectation of number of successes
n
(g)
t

′
achieved out of complete cluster size R given the kth iteration’s parameters φ(k) can be

derived as follows [Stefanescu and Turnbull, 2003]:

n
(g)
t

′(k)
= EZ [N

(g)
t |Sk,φ(k)] =

R∑
r=1

min(t,r)∑
s=max(0,t+r−R)

n(g)rs p
(g)
rst

(k)
. (10)

The log likelihood function for the complete data given the kth iteration’s parameters φ(k) is:

log(L(φ|φ(k))) =
R∑
t=0

n
(0)
t

′(k)
log(q

(0)
t ) +

G∑
g=1

R∑
t=0

n
(g)
t

′(k)
log(q

(g)
t (θg, q

(0))). (11)

The maximization step uses Minorize-Maximize algorithm to update the parameters φ. We
apply the Jensen’s inequality to lower bound the term log(q

(g)
t (θg, q

(0))) by assigning elementwise
weights to each q(0)α , and transform the log sum expression to obtain a closed form update for
parameters φ. For any set of weights

{
w

(k)
g (α, t)

}
such that

∑R
α=tw

(k)
g (α, t) = 1, we have:

log(q
(g)
t (θg, q

(0))) = log

{
R∑
α=t

(
α

t

)
θtg(1− θg)α−tq(0)α

}

= log

{
R∑
α=t

w(k)
g (α, t)

(
α
t

)
θtg(1− θg)α−tq

(0)
α

w
(k)
g (α, t)

}

≥
R∑
α=t

w(k)
g (α, t) log

{(
α
t

)
θtg(1− θg)α−tq

(0)
α

w
(k)
g (α, t)

}

=
R∑
α=t

w(k)
g (α, t)

[
log

(
α

t

)
+ t log(θg) + α log(1− θg)−

t log(1− θg) + log(q(0)α )− log(w(k)
g (α, t))

]
= t log(θg)− t log(1− θg) +

R∑
α=t

w(k)
g (α, t)

[
log

(
α

t

)
+

α log(1− θg) + log(q(0)α )
]
−

R∑
α=t

w(k)
g (α, t) logw(k)

g (α, t).

(12)
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Therefore, the lower bound of the log-likelihood function is:

H(φg|φ(k)
g ) =

R∑
t=0

n
(0)
t

′(k)
log(q

(0)
t ) +

G∑
g=1

R∑
t=0

n
(g)
t

′(k)[
t log

(
θg

1− θg

)
+

R∑
α=t

w(k)
g (α, t)

(
log

(
α

t

)
+ α log(1− θg) + log(q(0)α )

)
−

R∑
α=t

w(k)
g (α, t) log(w(k)

g (α, t))
]
.

(13)

The weight function w(k)
g (α, t) is selected so that H(φ

(k)
g |φ(k)

g ) = log(L(φ
(k)
g )). Notice that

the weight at the kth iteration is a function of α and t, shown as follows:

w(k)
g (α, t) =

(
α
t

)[
θ
(k)
g

]t
(1− θ(k)g )α−tq

(0)
α

(k)

∑R
γ=t

(
γ
t

)[
θ
(k)
g

]t
(1− θ(k)g )γ−tq

(0)
γ

(k)
. (14)

The Lagrangian of the lower bound of log-likelihood function H(φg|φ(k)
g ) is adding a con-

straint that the q(0) sums up to 1. By taking the derivatives with respective to each parameter,
we can get the updates for φ(k+1) given the previous kth iteration’s parameter values, shown as
follows:

θ(k+1)
g =

∑R
t=0 n

(g)
t

′(k)
t∑R

t=0 n
(g)
t

′(k)∑R
α=tw

(k)
g (α, t)α

; (15)

q
(0)
β

(k+1)
=

n
(0)
β

′(k)
+
∑G

g=1

∑β
ρ=0 n

(g)
ρ

′(k)
wg

(k)(β, ρ)∑R
γ=0(n

(0)
γ

′(k)
+
∑G

g=1

∑γ
ρ=0 n

(g)
ρ

′(k)
wg(k)(γ, ρ))

. (16)

We use the above expressions to update the parameters in the proposed semi-parametric model.
An appropriate choice of starting values for parameters is important for quick convergence and
consistent estimates. We recommend to assign non-parametric estimates of the baseline marginal

probabilities as the starting values of q(0); and non-parametric estimates of λ
(g)
1

λ
(0)
1

to the gth dose

level’s parameter θg as the starting values. This Expectation Maximization Minorize-Maximize
algorithm preserves the ascent property of the EM algorithm. The iteration stops when the pre-
specified convergence criteria are met.
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4. Simulation

We conducted a simulation study to compare the performance of the proposed method to a relative
risk GEE, which shared the same model for the marginal event probability. The simulation shared
the same setting as the boron acid mouse study. We set the maximum cluster size to 10, and
the true values of θ as 0.25, 0.5 and 0.75 corresponding to three dose levels. Each dose level
had 250 clusters with varying cluster sizes and the baseline marginal probabilities were subject
to a beta-binomial distribution with probability of success being 0.5 and overdispersion parameter
being 1. We conducted 1000 simulations and applied both our proposed semi-parametric model
and a relative risk GEE model to it. The simulation results are shown in table 1. Notice that the
parameter estimates in table 1 are Monte-Carlo means and standard errors. We can see that the θ
estimates are quite similar between two models, but the proposed semi-parametric model provides
smaller standard errors.

Table 1: Simulation θ estimates for different dose levels

Dose level True value of θ
Semi-parametric model Relative risk GEE model
θ estimate SE of θ θ estimate SE of θ

0 reference
1 0.25 0.249 0.022 0.250 0.025
2 0.5 0.500 0.033 0.502 0.042
3 0.75 0.748 0.037 0.749 0.056

5. Application

We applied the proposed semi-parametric model with the EM MM algorithm to the Boron acid
mouse dataset and compared the semi-parametric estimates of λ from different dose levels with
non-parametric estimates. In figure 3, the black dotted lines represent non-parametric estimates
and the colored solid lines represent semi-parametric estimates according to the proposed model.
We see that the λ estimates are similar between both models.

As for the likelihood ratio test, the log-likelihood of the non-parametric model is -352.43,
whereas that of the proposed semi-parametric model is -357.46; with p-value equal to 1 on 45 de-
grees of freedom, indicating the semi-parametric model fits the data well and is more parsimonious
than the non-parametric model.

Estimates of θ from different dose levels are shown in table 2. The standard error of θ is
calculated using the bootstrap method. Based on the marginal compatibility assumption and model
fitting estimates, we can calculate the entire distribution for varying cluster sizes, which cannot be
estimated using the GEE models. Table 3 lists the baseline univariate marginal probabilities for
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Figure 3: Compare estimates of λ between semi-parametric and non-parametric models

cluster sizes ranging from 1 to 7.

Table 2: θ estimates for different dose levels

dose level (%) θ estimate SE of θ
0.4 reference
0.2 0.224 0.164
0.1 0.426 0.206
0 0.280 0.126

6. Conclusions

In this paper, we propose a semi-parametric model for clustered binary outcomes that combines a
non-parametric baseline describing within-cluster dependence structure with a parametric between-
group effect, based on the exchangeability and marginal compatibility assumptions. The proposed
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Table 3: Matrix of marginal probabilities for varying cluster sizes (baseline dose level)

Cluster size (r)

Number of responses (s)
s=0 s=1 s=2 s=3 s=4 s=5 s=6 s=7

r=1 0.701 0.299
r=2 0.541 0.321 0.138
r=3 0.4306 0.3300 0.1520 0.0874
r=4 0.3497 0.3238 0.1743 0.0865 0.0657
r=5 0.2881 0.3081 0.1932 0.0973 0.0595 0.0538
r=6 0.2408 0.2839 0.2145 0.1005 0.0705 0.0432 0.0466
r=7 0.2045 0.2538 0.2322 0.1134 0.0625 0.0612 0.0300 0.0424

model provides estimates of the entire distribution for varying cluster sizes, so that we can infer
about quantities other than the marginal means, such as the probability of at least one adverse event.
It also provides smaller standard errors of estimates compared to GEE.

Some data may not be well described by a constant dependence ratio structure (but we can
detect the lack of fit) and the model can only describe decrease from the baseline dose level. Our
future work will focus on eliminating some of these restrictions.
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