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Abstract
Modern advancement of technology permits us to accumulate more complicated data than before.

Unlike the traditional time series where only a scalar or a vector is observed at each time point, in
functional time series, a curve is observed at each time point. Correlation exists among the curves
observed at different time points. In this paper, we consider a functional autoregressive (FAR)
model with general order which is a generalization of the traditional AR model. To fit the FAR
model and obtain the estimate of coefficient functions, we propose a signal compression procedure.
To determine the optimal tuning parameters and optimal order of FAR model, we propose a window-
shifting cross-validation procedure. We compare our method to recently proposed method on both
simulated data and real data, which illustrate the good predictive performance of our method.

Key Words: Functional time series, functiona autoregressive model, signal compression, window-
shifting cross-validation.

1. Introduction

Functional data analysis is an important area of modern statistics. It allows to incorporate
higher dimension and volume of data than regular procedures. Good references are the
books by Ramsay and Dalzell (1991), Ramsay and Silverman (2005). Functional Time
Series (FTS), as a new field in functional data analysis, arise in situations where a series of
functional data are observed over time. We observe such data in different areas like health,
biology, economics, environment etc. Some examples are age specific incidence rates of
a disease that is observed over several years, hourly consumption of electricity which is
recorded for each day over several months, hourlyCO2 emission of a certain chemical plant
recorded each day over the year, etc. Correlation exists among the functional observations
at different time points.

Various models have been proposed to describe the dependency of the curves at dif-
ferent time points. Among them, a functional autoregressive (FAR) model is a class of
important models which are the extension of the autoregressive (AR) models in the classic
time series. An extensive discussion about theoretical background of the FAR models are
provided in the monograph of Bosq (2000).

Damon and Guillas (2002) have incorporated exogenous predictors to first order func-
tional autoregressive models. They also have discussed different error measures for func-
tional data, functional kernel model, ARH and ARHX models. Hörmann et al. (2010),
Hörmann and Kokoszka (2012) have generalized the linear model of Bosq (2000) to incor-
porate non-linear dependence. They have used a moment based notion of weak dependence.
Kokoszka and Reimherr (2013) have proposed a hypothesis based approach to determine
the order of Functional Autoregressive Models. Aue et al. (2015) have discussed autore-
gressive process of general order and its estimation using FPCA. An useful discussion of
existing works and R packages on functional time series are also presented.
∗Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, U.S.A.Email:

hrahman3@gsu.edu
†Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, U.S.A., Email:

xqi3@gsu.edu

 
2767



The general functional autoregressive model of order p can be expressed as

Yi(t) =

p∑
j=1

∫
ψj(t, s)Yi−j(s)ds+ εi(t), (1)

where {Y1(t), · · · , Yn(t)} are functional time series data, εi(t) are independent noise curves,
and {ψ1(t, s), · · · , ψp(t, s)} are coefficient kernel functions.

Different dimension reduction methods, such as FPCA, have been used to estimate FAR
models. In this paper, we will apply a recently proposed dimension reduction approach
proposed by Luo and Qi (2017) to the FAR models and propose new efficient estimation
methods. This dimension reduction has a nice property: among all dimension reduction of
the same form, it has the smallest prediction error.

To facilitate detailed understanding about functional time series models, we provide
some background information in this section. We present a brief discussion on classic
timeseries models along with model identification and estimation in the following subsec-
tion.

1.1 Classic time series and models

Time series data arise sequentially over time. Two major aspects of time series data analysis
are to determine and estimate the underlying model of the observed series and to forecast
future data of our interest from previous values. We refer the reader to the books by Box
et al. (2015), Montgomery et al. (1990), Cryer and Chan (2008) for the theory and applica-
tions of the classic time series. The most popular time series models include autoregressive
(AR), moving average (MA) and mixture of AR and MA models called ARMA models.
Here we provide a brief introduction of these models. A moving average model of order q,
(MA(q)) can be expressed in standard way as follows,

Yt = εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q,

where {Yt} are sequence of observed time series, {εt} are i.i.d. random errors with zero
mean and {θ1, · · · , θp} are weights on the errors.
An autoregressive model of order p, AR(p) can be expressed as,

Yt = φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt,

where {εt} are random error terms and are independent of Yt−1, Yt−2, · · ·Yt−p with zero
mean. A general type of model can be achieved by assuming a mixture of moving average
and autoregressive models, termed as autoregressive moving average model of order p and
q, ARMA(p, q). A mathematical expression of ARMA(p, q) model is expressed as,

Yt = φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q.

In practice, we do not know the underlying model and corresponding parameters for
particular observed data sets. Thus model specification and order detection plays impor-
tant role in timeseries data analysis. Box-Jenkin’s iterative procedure by Box and Jenk-
ins (1976) is a popular approach in this regard. They have used sample autocorrelation
functions, sample partial autocorrelation functions and differencing techniques to identify
underlying models. Sample autocorrelation function (sample ACF) is a useful tool to de-
termine the order of MA(q) model. For MA(q) model, it has cut-off property after lag q.
For large sample, these estimates follows approximate normal distribution. A test of hy-
pothesis can be carried to test the significance of rk, the sample autocorration at lag k, by
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examining (rk ± margin of errors). On the other hand, sample ACF does not show useful
property to identifyAR(p) models. It gradually dies off and make it difficult to identify the
model. sample partial autocorrelation funcrions (sample PACF) are useful in this situation.
This function for lag k, rkk is evaluated after removing the effect of interveining vari-
ables Yt−1, · · · , Yt−k+1. The sample PACF become zero after p lag for underlying AR(p)
model. Sample ACF follows asymptotically normal density with zero mean and variance
1/n after lag p for the underlying AR(p) model. Thus test of hypothesis can be carried out
using ±2/

√
n as critical values for sample PACF estimates larger than lag p. Sample ACF

or PACF functions are effective for MA(q) or AR(p) models. For situations like mixed
models, when neither ACF nor PACF cuts-off, Box and Jenkins (1976) have suggested an
effective procedure to approximate a mixed model. For mixed ARMA models, graphical
approaches like corned method by Beguin et al. (1980), smallest cannonical correlation
method by Tsay and Tiao (1985), extended autocorrelation function EACF, etc. are used.
The EACF procedure has good sampling property for large sample. See Cryer and Chan
(2008) for details of the procedure.

Once we can determine the nature and order of underlying model, we need to esti-
mate the model parameters. Several procedures like method of moments, least-squares
estimation, maximum likelihood estimation and unconditional least squares, etc. are used.
Here we describe the estimation techniques for classical stationary autoregressive models.
Method of moments is implemented by solving sample Y ule−Walker equations, which
is a well-known technique to estimate autoregression parameters. From the classic AR(p)
model, we can obtain the following relation for autocorrelation functions,

ρk = φ1ρk−1 + · · ·+ φk + · · ·+ ρp−k; k > 0,

where ρk is the correlation function among values at lag k. We obtain well-known Y ule−
Walker equations by substituting k with 1, 2, · · · , p. These sets of equations form system
of linear equations for φ1, · · · , φp. Let us assume the following for computational purpose,

φ =


φ1
φ2
...
φp

 , ρ =


ρ1
ρ2
...
ρp

 , P =


1 ρ1 ρ2 · · · ρp−1
ρ1 1 ρ1 · · · ρp−2
...

...
... · · ·

...
ρp ρp−1 ρp−2 · · · 1

 ,

then the linear system becomes, ρ = Pφ. Solving for φ, we can obtain, φ = P−1ρ. Sub-
stituting the sample estimates for the corresponding correlation functions in the relation, we
can obtain Y ule−Walker estimate of the autocorration parameter of a general stationary
AR(p) model. More details can be found in Box et al. (2015).

The least-squares and maximum likelihood procedures can also be applied to estimate
AR parameters. Using the least squares estimation procedure using conditional sum of
squares is straitforward for autoregressive models. Unconditional least squares method
requires numerical calculation. Under stationarity and large sample assumption, these pro-
cedures provide similar estimates as that of the Y ule−Walker equations.

We organize the remaining parts of the paper as follows. In section 2, we discuss ex-
isting functional time series models, where we emphasize our discussion on FAR models.
In section 3, we describe our proposed procedure for FAR models. Discussions about the
computation procedures of the proposed method is presented in section 4. Simulation stud-
ies, carried out for the comparison of the performance of proposed method with that of
existing ones, are described in section 5. In section 6, we present the results of applica-
tion of the FAR procedures in Australlian fertility data. We conclude with findings and
discussion in section 7.
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2. Functional time series models

Let, {yi(t)} denote a functional time series (FTS) data obtained over time and indexed
by 1 ≤ i ≤ n. Hourly consumption of electricity data which is obtained each day, age
specific growth rate data which is obtained each year, etc. are examples of functional time
series data. In this section, we discuss some functional time series models and estimation
procedures.

Functional Principal Componet Analysis (FPCA) is a popular dimension reduction
method in functional data analysis. We also observe the use of FPCA in different liter-
atures of functional time series. Hyndman and Ullah (2007), Hyndman and Shang (2009)
have considered the following FTS model,

yi(t) = fi(t) + σi(t)εit,

where εit are independently and identically distributed with zero mean and unit variance.
σi(t) in the model allows heteroscedasticity. The smoothed functions {fi(t)} are decom-
posed using FPCA or weighted FPCA approach as,

fi(t) = µ(t) +
K∑
k=1

βikφk(t) + ei(t); i = 1, 2, · · · , n,

here µ(t) is the mean function, φk(t) is the k-th principal component function, {βik}
are the corresponding coefficients, {ei(t)} denote independent and identically distributed
random functions with zero mean, K < n. Hyndman and Ullah (2007) viewed each
{βik; i = 1, · · · , n} as univariate time series and assumed that the K univariate time se-
ries are independent. They built model for each of them and predicted the future values of
these coefficients. Then they obtained the forecast of the future curves using these predicted
coefficient and the PC functions. Their approach was implemented in the R package FTSA
(see Shang (2013) for details). Hyndman and Shang (2009) have discussed weight based
approach for the estimation and forecasting purpose of functional time series, where higher
weights were associated with more recent data. They also have proposed bootstrap predic-
tion intervals for the forecasts. Hörmann et al. (2010), Hörmann and Kokoszka (2012) have
discussed weakly dependent functional data, where they have provided a general frame-
work of temporal dependence for functional observations. Panaretos and Tavakoli (2013)
and Hörmann et al. (2015) have implemented dynamic functional principal component ap-
proach for functional time series. Aue et al. (2015) have used functional forecasting proce-
dure using multivariate forecast algorithm for functional principal components. Functional
autoregressive models are the extension of the AR models in classic time series. We review
the existing FAR models and methods in the following section.

2.1 Existing FAR models and methods

A general FAR model of order p is expressed as the following form,

Yi(t) =

p∑
j=1

∫
ψj(t, s)Yi−j(s)ds+ εi(t),

where ε(t)′s are uncorrelated errors with mean zero, Y (t)′s are centralized stochastic pro-
cess.

Bosq (2000) has provided theoretical details for Autoregressive process in Hilbert and
Banach spaces. Let {Xn, n ∈ Z} be a stationary random sequence in seperable Hilbart
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space H = L2([0, 1]) with mean µ. Then it is said to be an autoregressive Hilbertian
process of order P associated with (µ, ε,Ψ1, · · · ,Ψp) if it is such that,

Xn − µ = Ψ1(Xn−1 − µ) + · · ·+ Ψp(Xn−p − µ) + εn, n ∈ Z, (2)

where ε = (εn, n ∈ (Z)) is a strong sense H-white noise, µ ∈ H, and Ψ1, · · · ,Ψp ∈ L,
the space of bounded linear operators in H and Ψp 6= 0.

Let, Y = (Yn, n ∈ Z), where Yn = (Xn, · · · , Xn−p+1); µ
′

= (µ, · · · , µ) ∈ Hp,
ε
′

= (ε
′
n, n ∈ Z), ε

′
n = (εn, 0, · · · , 0) ∈ Hp, n ∈ Z and the operator on Hp be defined as,

Ψ
′

=



Ψ1 Ψ2 · · · Ψp−1 Ψp

I 0 · · · 0 0
0 I · · · 0 0
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
0 0 0 I 0

 ; I is the identity operator.

It is shown in Bosq (2000) that, If X is an autoregressive process of order p in H1 as-
sociated with (µ, ε,Ψ1, · · · ,Ψp), then Y is an autoregressive process of order one in Hp

associated with (µ
′
, ε
′
,Ψ
′
). Thus autoregressive process of order one plays the central role

in functional linear autoregressive process.
There exists a unique stationary solution of the process in equation (2), under the fol-

lowing assumption,

(c
′
0) : ||Ψ′j0||Lp < 1 for some j0 ≥ 1,

with the scalar product in separable Hp is defined as,

〈(x1, · · · , xp), (y1, · · · , yp)〉p :=
∑p

j=1〈xj , yj〉; {xi; i = 1, · · · , p}, {yj ; j = 1, · · · , p} ∈
H.

Since the assumption (c
′
0) is difficult to verify and is not a necessary condition, Bosq (2000)

has introduced another condition that is directly related with linear operators Ψ1, · · · ,Ψp.
Let us define,

Q(z) = zpI − zp−1Ψ1 − · · · − zΨp−1 −Ψp, z ∈ C,

where Q(z) is a bounded linear operator over complex extension H ′ of H. Now the alter-
native condition is stated as,

(c
′
1) : Q(z) not invertible =⇒ |z| < 1.

If condition (c
′
1) holds then (c

′
0) holds and thus a unique stationary solution of equation (2)

exists. Bosq (2000) also has stated that if the following condition,

(c2) :
∑p

j=1 ‖Ψj‖L < 1,

holds then condition (c
′
1) holds, which implies the existence of unique stationary solution

of the functional autoregressive process in equation (2).
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2.1.1 Estimation of FAR Models:

Functional autoregressive model of order one, FAR(1) plays the basic role in the study of
functional autoregressive porcess. Bosq (2000), Hörmann and Kokoszka (2012), Horváth
and Kokoszka (2012) and other authors have studied the FAR(1) model extensively. Here
we discuss the existing estimation porcedure for FAR models specially FAR(1) process.
Let us consider FAR(1) model from model (2),

Xn = Ψ(Xn−1) + εn, n ∈ Z,

where {Xn ∈ L2([0, 1])}, have zero mean. The lag-1 autocovariance operator be defined
as:

C1(x) = E[〈Xn, x〉Xn+1], x ∈ H.

CT1 be adjoint operator so that,

CT1 = E[〈Xn, x〉Xn−1] = E[〈Ψ(Xn−1, x〉Xn−1] = C(ΨT )

C1 = ΨC

An estimate like Yule-Walker estimation for the scalar auto regressive (AR) model can
be obtained using finite sample version of the relation Ψ = C1C

−1. Since C is positive
definite Hilbert-Schmidt operator, we have the following decomposition:

C(x) =

∞∑
j=1

λj〈x, vj〉vj ,

where {vj} are orthonormal eigen functions of C with the relation C(vj) = λjvj . The
relation C−1(x) =

∑∞
j=1 λ

−1
j 〈x, vj〉vj makes C−1 unbounded as some λj converge to

zero as j −→ ∞. To solve this problem, only first p important estimated eigen functions
are taken.

Ψ̂ = Ĉ1

p∑
j=1

λ̂−1j 〈x, v̂j〉v̂j =
1

N − 1

N−1∑
k=1

〈
Xk,

p∑
j=1

λ̂−1j 〈x, v̂j〉v̂j
〉
Xk+1

=
1

N − 1

N−1∑
k=1

p∑
j=1

λ̂−1j 〈x, v̂j〉〈Xkv̂j
〉
Xk+1,

is the finite sample estimate for lag 1 coefficient.

2.1.2 Order detection of FAR process

There have been extensive literature on order detection of classical auto regressive models.
In case of functional autoregressive models, very few discussions about the methodology
of order determination have been found. Bosq (2000) have discussed two possible ap-
proaches. In Section 5.5 of Bosq (2000), a partial theoretical solution for a special case
using Shibata-Mourid statistics has been described. An empirical method of order de-
tection was discussed for the general case. We provide a brief overview of the procedure.
Based on predictive ability of the model, order p of a ARH(p) model can be determined
for a number of choices of order p from {1, 2, · · · , pmax}. The estimate p̂ of order p using
n observations is,

p̂n = arg min
1≤ p ≤ pmax

σ̂2n(p),
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where σ̂2n(p) is the estimate of prediction error using n ovservations and ARH(p) model.
Details of the procedure can be found in Section 9.2 of Bosq (2000).

Kokoszka and Reimherr (2013) have introduced hypothesis testing procedure to deter-
mine order of functional autoregressive models. They described model assumptions and
representation for the FAR(p) process. The kernel matrix was estimate using least-squared
estimation procedure. Sequence of hypothesis testing was proposed to estimate the order
of FAR process with a chi-square approximation to the test statistic.

3. FAR using Signal compression approach

In this section, we describe our proposed procedure for functional autoregressive process.
We present the discussion by introducting the signal compression approach proposed by
Luo and Qi (2017) in section 3.1. In section 3.2, we describe the proposed procedure for
FAR models followed by corresponding sample estimates in section 3.3.

3.1 Signal compression approach

Signal compression approach for funcion-on-function linear model by Luo and Qi (2017)
is an efficient dimension reduction framework. A general function-on-function linear re-
gression model can be expressed as follows,

Y = µ+

Q∑
q=1

Ψq(Xq) + ε,

or, Y (t)− µ(t) =

Q∑
q=1

∫ bq

aq

ψq(t, sq)Xq(sq)dsq + ε(t), c ≤ t ≤ d, (3)

where {X1, · · · , XQ} are Q predictor functions with zero mean, Y (t); c ≤ t ≤ d is the
observed response function, ε(t)′s are independent noise functions with mean zero, these
are independent of all the Q predictor functions and {ψq ∈ L2; 1 ≤ q ≤ Q} are coefficient
kernel functions. The signal part of model (1) is, F (t) =

∑p
j=1

∫
ψj(t, s)Xq(s)ds. Thus

the model can be re-expressed as,

Y (t) = F (t) + ε(t),

where, without loss of generality, we assume that Y (t)′s are centralized stochastic pro-
cess. Let, Λ(t, t′) is the cross-covariance function of (F (t), F (t′)) and Σqp(sq, s

′
p) is

the cross-covariance funtion of (Xq(sq), Xp(s
′
p)). Let, φ̃k, k ≥ 1 be scaled eigen func-

tions of Λ(t, t′) with σ2k as corresponding eigen value. The Karhunen-Loeve (KL) ex-
pansion of F (t) is F (t) =

∑∞
k=1 Z̃kφ̃k(t), where Z̃k are uncorrelated random variables

with mean zero and variance σ2k. The truncated KL expansion have minimum mean inte-
grated squared error. This leads to the best finite dimensional approximation of F (t) as∑K

k=1 Zkφk(t) =
∑K

k=1 Z̃kφ̃k(t), where Zk = Z̃k/σk and φk(t) = σkφ̃k(t). This proce-
dure greatly reduce the number of parameters to be estimated, improve the computational
efficiency and prediction accuracy. Let ψ̂Kq be estimates of karnel functions using the K

dimensional approximation of F and y(K)
pred(t) be the prediction based on this. Then, for

any positive integer K, y(K)
pred(t) has the smallest mean integrated square prediction error

among all predicted functions of the form ỹpred =
∑Q

q=1

∫ bq
aq
ψ̃Kq (t, sq)xnew,q(sq)dsq with

ψ̃Kq (t, s) =
∑K

i=1

∑K
j=1 a

(q)
ij ξi(t)ζjq(s), where ξi(t), ζjq(s) are arbitrary square integrable

functions and a(q)ij is an arbitrary number.
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That is for any positive integerK, (
∑K

k=1 φk(t)ϕk1(s1), · · · ,
∑K

k=1 φk(t)ϕkQ(sQ)), as
an estimate of (ψ1(t, s), · · · , ψQ(t, s)) of model 3, has the smallest prediction error among
all estimates of the form

(

K∑
i=1

K∑
j=1

a
(1)
ij ξi(t)ζj1(s1),

K∑
i=1

K∑
j=1

a
(2)
ij ξi(t)ζj2(s2), · · · ,

K∑
i=1

K∑
j=1

a
(Q)
ij ξi(t)ζjQ(sQ));

1 ≤ i, j ≤ K, and 1 ≤ q ≤ Q.

Here ξ1(t), · · · , ξK(t), ζ11(s), · · · , ζKK(s) are arbitrary square integrable functions and
a
(1)
11 , · · · , a

(Q)
KK are arbitrary numbers. {ϕk : k ≥ 1} are charactarized as the solutions to a

generalized eigenvalue problem. Assuming the multiplicity of each positive eigenvalue σ2k
of F (t) is one, ϕk = (ϕk1 · · ·ϕkQ) is the solution to

ϕ = max
ϕ1···ϕQ

Q∑
q=1

Q∑
p=1

∫ bq

aq

∫ bp

ap
ϕq(sq)Bqp(sq, s

′
p)ϕp(s

′
p)dspds

′
p; (4)

subject to
Q∑
q=1

Q∑
p=1

∫ bq

aq

∫ bp

ap

ϕq(sq)Σqp(sq, s
′
p)ϕp(s

′
p)dsqds

′
p = 1,

and
Q∑
q=1

Q∑
p=1

∫ bq

aq

∫ bp

ap

ϕq(sq)Σqp(sq, s
′
p)ϕlp(s

′
p)dsqds

′
p = 0 for all 1 ≤ l ≤ k − 1.

Where the maximum value is σ2k.
Now suppose that we have n independent observations {(yi(t), xi1(t), xi2(t) · · · , xiQ(t)), 1 ≤

i ≤ n} satisfying

yi(t) = µ(t) +

Q∑
q=1

∫ bq

aq

ψq(t, sq)xiq(sq)dsq + εi(t)

= µ(t) +
∑

k:σk>0

zikφk(t) + εi(t); 1 ≤ i ≤ n, (5)

where zik =
∑Q

q=1

∫ bq
aq
xiq(sq)ϕkq(sq)dsq.

Let us define,

B̂qp(sq, s
′
p) =

1

n2

n∑
i=1

n∑
j=1

[xiq(sq)− x̄q(sq)]
[∫ d

c
[yi(r)− ȳ(r)][yj(r)− ȳ(r)]dr

]
[xjp(s

′
p)− x̄p(s′p)],

Σ̂qp(sq, s
′
p) =

1

n

n∑
i=1

[xiq(sq)− x̄q(sq)][xip(s′p)− x̄p(s′p)], 1 ≤ p, q ≤ Q. (6)

Then the estimates ϕ̂k = (ϕ̂k1(s1), ϕ̂k2(s2), · · · , ϕ̂kQ(sQ)) of ϕk, 1 ≤ k ≤ K, are ob-
tained by solving

max
(ϕ1,··· ,ϕQ)

g(ϕ1, · · · , ϕQ), subject to
Q∑
q=1

Q∑
p=1

∫ bq

aq

∫ bp

ap

ϕq(sq)Σ̂qp(sq, s
′
p)ϕp(s

′
p)dsqds

′
p = 1,

and
Q∑
q=1

Q∑
p=1

∫ bq

aq

∫ bp

ap

ϕq(sq)Σ̂(sq, s
′
p)ϕ̂lp(s

′
p)dsqds

′
p = 0, for 1 ≤ l ≤ k − 1,

(7)
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where the objective function g(ϕ1, ϕ2, · · · , ϕQ) is given by∑Q
q=1

∑Q
p=1

∫ bq
aq

∫ bp
ap
ϕq(sq)B̂qp(sq, s

′
p)ϕp(s

′
p)dsqds

′
p∑Q

q=1

∑Q
p=1

∫ bq
aq

∫ bp
ap
ϕq(sq)Σ̂qp(sq, s′p)ϕp(s

′
p)dsqds

′
p +

∑Q
q=1 λ

[∫ bq
aq
ϕq(sq)2dsq + τ

∫ bq
aq
ϕ′′q (sq)

2dsq

] .
Let ẑik =

∑Q
q=1

∫ bq
aq

(xiq(sq) − x̄q(sq))ϕ̂kq(sq)dsq, 1 ≤ k ≤ K and 1 ≤ i ≤ n.
The estimates of µ(t), φ1(t), · · · , φk(t) are obtained by solving linear function-on-scalar
regression model 5. In the model, the vector of sample response functions is y(t) =
(y1(t), · · · , yn(t))T with the predictor vectors 1n, ẑ1, · · · , ẑK , where 1n is an n-dimensional
vector with all elements equal to one and ẑk = (ẑ1k, · · · , ẑnk)T; 1 ≤ k ≤ K. Using penal-
ized least squares method as in Chapter 13 of Ramsay and Silverman (2005), estimates can
be obtained by solving,

min
µ(t),

φ1(t),··· ,φK(t)

 1

n

n∑
i=1

∫ d

c

{
yi(t)− µ(t)−

K∑
k=1

ẑikφk(t)

}2

dt+ η

∫ d

c

{
µ′′(t)2 +

K∑
k=1

φ′′k(t)2

}
dt

 ,
(8)

The minimum is taken over all possible functions µ(t) and φi(t), for 1 ≤ i ≤ K, with
square-integrable second derivatives in [c, d] and tuning parameter η. Let µ̂0(t), φ̂1(t), · · · φ̂K(t)
be the estimates obtained by solving equation 8. These estimates can be obtained seperately
because of orthogonality property of the predictor vectors. Thus, µ̂0(t) and φ̂k(t) are the
solutions to

min
µ(t)

[∫ d

c
|µ(t)− ȳ(t)|2dt+ η

∫ d

c
|µ′′(t)|2dt

]
, (9)

min
vk(t)

[∫ d

c
|vk(t)− φ̂0k(t)|2dt+ η

∫ d

c
|v′′k(t)|2dt

]
, 1 ≤ k ≤ K, (10)

respectively, where φ̂0k(t) = 1
n ẑTk y(t) is the least squares estimate of φk(t) without smooth-

ness penalty. Finally, for each 1 ≤ q ≤ Q, ψ̂Kq (t, sq) = φ̂1(t)ϕ̂1q(sq) + φ̂2(t)ϕ̂2q(sq) +

· · ·+ φ̂K(t)ϕ̂Kq(sq) and F̂K(t) =
∑Q

q=1

∫ b
a [xq(s)− x̄q(sq)1n] ψ̂Kq (t, sq)dsq which is the

estimate of F(t) =
∑Q

q=1

∫ b
a xq(sq)ψq(t, sq)dsq, the vector of n sample signal functions,

where xq(sq) = (xq1(s), · · · , xqn(s))T and x̄q(sq) = 1
n

∑n
i=1 xqi(sq).

{ϕk : 1 ≤ k ≤ K} are estimated sequentially, and φk(t), 1 ≤ k ≤ K are estimated
after {ϕk : 1 ≤ k ≤ K} have been estimated. φ1(t), · · · , φK(t) can be estimated sepa-
rately. These greatly reduce the number of parameters to be estimated in each step. This
procedure also improve the computational efficiency and the prediction accuracy. We use
this procedure for functional autoregressive models. The following sections illustrates the
procedure for FAR(1) model.

3.2 SigComp Procedure for FAR models

We consider FAR(1) procedure:

Yn = Ψ(Yn−1) + εn, (11)

here (Yn;n ∈ N) are stochastic processes observed over t ∈ [0, 1], Ψ ∈ L, the space
of bounded and continuous linear operators on H with Ψ(y)(t) =

∫ 1
0 ψ(t, s)y(s)ds. The

error term (εn;n ∈ N) are random noise processes with zero mean, E(‖εn‖2) < ∞ and
are independent of Yn−1. Without loss of generality, we assume that E(Yn) = 0 ∀ n ∈
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N, t ∈ [0, 1].
We can re-express the model in equation (11) as follows:

Yn(t) = Ψ(Yn−1)(t) + εn(t)

=

∫ 1

0
ψ(t, s)Yn−1(s)ds+ εn(t),

with signal part of the model as
∫ 1
0 ψ(t, s)Yn−1(s)ds. The Kernel operator ψ(t, s) ∈

L2{[0, 1] × [0, 1]} satisfies
∫ ∫

ψ2(t, s) dt ds < 1. we have the response functions as
Y = Y2, · · · , Yn and the predictors as X = Y1, · · · , Yn−1. In order to improve prediction
accuracy, we want to get the best finite dimentional approximation to the signal function.

Let us denote Λ(t, t′) = E[F (t)F (t′)] =
∫ 1
0

∫ 1
0 ψ(t, s)Σ(s, s′)ψ(t′, s′)dsds′ as the

covariance function of F (t) with Σ(u, u′) = E[X(u)X(v)] as the covariance function of
X(s). For continuous Λ(t, t′), the KL expansion ofF (t) is given by, F (t) =

∑∞
k=1 Z̃kφ̃k(t),

where φ̃k(t) are unit norm eigen functions of Σ(t, t′) with eigen values σ21 ≥ σ22 ≥ · · · ≥ 0

and {Z̃k =
∫ 1
0 F (t)φ̃k(t)dt; k ≥ 1} be sequence of uncorrelated random variables with

zero mean and E(Z̃2
k) = σ2k. This KL expansion has the minimum mean integrated square

error. To get the unit variance random variables {Zk}, we consider the scaled versions as
Zk = Z̃k/σk and φk(t) = σkφ̃k(t) for k ≥ 1 such that σk > 0. Then according to Theo-
rem 3 of Luo and Qi (2017),

∑K
k=1 Zkφk(t) =

∑K
k=1 Z̃kφ̃k(t) is the best K−dimensional

approximation to F (t) for any K > 0. The transformed function-on-scalar form of model
11 becomes as follows:

Y (t) =
∑

k:σk>0

Zkφk(t) + ε(t), (12)

where {Zk} be uncorrelated scalar predictors and {φk} be coefficient functions. We want
to make prediction on Y (t) based on these scalar {Zk}.

If we define ξk(s) as ξk(s) = 1
σk

∫ 1
0 φ̃k(t)ψ(t, s)dt = 1

σ2
k

∫ 1
0 φk(t)ψ(t, s)dt, for inte-

gers k > 0 such that σ2k > 0, then Zk can be defined as,

Zk = σ−1k Z̃k = σ−1k

∫ 1

0
[F (t)]φ̃k(t)dt = σ−1k

∫ 1

0

[ ∫ 1

0
ψ(s, t)X(s)ds

]
φ̃k(t)dt =

∫ 1

0
X(s)ξk(s)ds.

In practice, in order to avoid too small values of σk and for some other computation issues,
we consider only first few reasonable number of eigen functions and thus can estimate
only few {Zk ; k = 1, · · · }. These gives the finite dimensional approximation of F (t)
as
∑K

k=1 Zkφk(t) =
∫ 1
0 ψ

K(s, t)X(s)ds, with ψK(t, s) =
∑K

k=1 φk(t)ξk(s). Based on
Theorem 3 of Luo and Qi (2017), ψK(t, s) has the minimum prediction error over a large
number of families and the expression

∫ 1
0 ψ

K(s, t)X(s)ds is the best K dimensional ex-
pression of F (t) for finite K > 0.

In order to get an estimate of the model, we first get estimate of ξk(s), then the estimate
of φk(t). Assuming that the multiplicity of each (σ2k > 0) is one, ξk(t) can be obtained as
the solution of the generalized eigen value problem. This solution may not be unique but
will have the minimum mean integrated squared prediction error property. Now we discuss
the sample version of the procedure in the following section.

3.3 Sample estimates

After theoretical demonstration in the previous section, we relate the stated SigComp pro-
cedure with observed sample curves in this section. Let us assume that there are n observed
curves {yi(t)}, which can be expressed as n−1 pairs of sample curves as {(yi(t), yi−1(s)); 2 ≤
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i ≤ n}. For the underlying AR(1) model, observations for dependend or response func-
tion Y (t) are {y2(t), y3(t), · · · , yn(t); 0 ≤ t ≤ 1} and observations from explanatory
or covariate functions X(s) are {y1(s), y2(s), · · · , yn−1(s); 0 ≤ s ≤ 1}. Without losss
of generality, we assume that the obsevations are centered from the mean. The observed
AR(1) model can be expressed as,

yi(t) =
∑

k:σk>0

zikφk(t) + εi(t); 2 ≤ i ≤ n,

where zik is the i-th observation for Zk. Let Σ̂(s, s′) = 1
n−1

∑n
i=2 yi−1(s) yi−1(s

′) be the
sample covariance function of the covariate functions. Since we can not observe the signals
F (t), the estimates B̂ for B are obtained as,

B̂(s, s′) =
1

(n− 1)2

n∑
i=2

n∑
j=2

yi−1(s)
[ ∫ 1

0
yi(r) yj(r) dr

]
yj−1(s

′).

It has been shown in Luo and Qi (2017) that,
n∑
i−2

yi−1(s)yi(r)/(n− 1) =
n∑
i−2

yi−1(s)fi(r)/(n− 1) +
n∑
i=2

yi−1(s)εi(r)/(n− 1)

converges to E[X(s)F (r)] as the error terms are independent of the covariates and fi(t) =∫ 1
0 ψ(s, t)yi−1(s)ds is the sample signal function. Now, the sample estimates {ξ̂k; k =

1, 2, · · · } of {ξk; k = 1, 2, · · · } can be obtained as follows:

ξ̂k = max
ψ

∫ 1
0

∫ 1
0 ξ(s)B̂(s, s′)ξ(s′)dsds′∫ 1

0

∫ 1
0 ξ(s)Σ̂(s, s′)ξ(s′)dsds′ + λ

[ ∫ 1
0 ξ(s)

2ds+
∫ 1
0 ξ
′′(s)2ds

] (13)

subject to
∫ 1

0

∫ 1

0
ξ(s)Σ̂(s, s′)ξ(s′)dsds′ = 1,

and
∫ 1

0

∫ 1

0
ξ(s)Σ̂(s, s′)ξl(s

′)dsds′ = 0;∀ 1 ≤ l ≤ k − 1.

After determining reasonable K > 0, we estimate the K functions ξ̂1(s), · · · , ξ̂K(s) and
corresponding predictors zi1, · · · , ziK where zik =

∫ 1
0 yi−1(s)ξ̂k(s)ds, for 2 ≤ i ≤ n

and 1 ≤ k ≤ K. Now the coefficient functions {ξk(t); 1 ≤ k ≤ K} of the function-
on-scalar regression model (12) is estimated using the observed sample response functions
y(t) = (y2(t), · · · , yn(t)) and K predictors as {ẑk = (ẑ2k, · · · , ẑnk)T ; k = 1, 2, · · ·K}.

The co-efficients functions can be estimated using penalized least square method stated
in Ramsay and Silverman (2005),

min
φ1(t),··· ,φK(t)

[ 1

n

n∑
i=2

∫ 1

0

{
yi(t)−

K∑
k=1

ẑikφk(t)
}2
dt+ η

∫ 1

0

{ K∑
k=1

φ′′k(t)
2
}
dt
]
, (14)

where η is the tuning parameter. The estimates {φ̂k(t); 1 ≤ k ≤ K} can be found sepa-
rately since {ẑk} are orthogonal. This greatly reduce the computational cost. Moreover, it
can be shown that, {φ̂k} are the solutions of,

min
vk(t)

[ ∫ 1

0
|vk(t)− φ̂0k|2dt+ η

∫ 1

0
|v′′k(t)|2dt

]
, 1 ≤ k ≤ K, (15)

where φ̂0k = 1
n ẑTk y(t) is the simple unconstrained least squares estimate of φ(t). Using

the solutions, estimate of ψK(t, s) can be obtained as, ψ̂K(t, s) =
∑K

k=1 φ̂k(t)ξ̂k(s) and
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the estimate of the signal function F(t) =
∫ 1
0 x(s)ψ(t, s)ds can be obtained as F̂K(t) =∫ 1

0 x(s)ψ̂K(t, s)ds, where x(s) = (y1(s), · · · , yn−1(s))T . In this section, we have de-
scribed the procedure for functional autoregressive model of order one. Higher order mod-
els can be estimated in similar procedure.

4. Computational procedures

In this section, the computational procedures of solving the optimization problems, choos-
ing number of components and tuning parameters, the cross validation procedure will be
discussed. Due to high dimesionality of the data and complexity of constraints optimization
problems, we need to incorporate some numerical techniques to obtain the estimates. For
the current problem of our interest, we assume that the n functional observations {yi(t)}
are densely and regularly observed over the interval [0, 1]. Each functional observations
of {yi(t); i = 1, · · · , n} are observed at a common set of l discrete observation points
a = t1 = 0 < t2 < · · · < tl < 1 = b. Here the choice of a = 0, b = 1 can be assumed
without loss of generality. Now, for any continuous function g(t); 0 ≤ t ≤ 1, we can
approximate the integral by the weighted summation

∫ b
a g(t)dt =

∑l
k=1 δkg(tk), with the

weights {δk}. These weights can be chosen in different procedures. For equally spaced
observation points, we use equal weights for all k, δk = (b − a)/l; 1 ≤ k ≤ l. If the
observation points are unequally spaced, then we can choose the weights using trapezoidal
formula, where δ1 = (t2 − t1)/2, δl = (tl − tl−1)/2, and δk = (tk+1 − tk−1)/2 for
1 < k < l.

4.1 Solving optimization problem

Let {b1, b2, · · · , bm} be m basis functions in L2[0, 1]. We need to choose a large enough
number for m. The optimization problem (13) can be solved in the space spanned by
these basis functions. Then any ξ(s) can be expressed as ξ(s) =

∑m
j=1 cjbj(s) = cTb,

where b = (b1, · · · , bm)T and c = (c1, · · · , cm)T . Using this basis function expansion,
the numerator of the objective function of (13) can be expressed as follows:∫ 1

0

∫ 1

0
ξ(s)B̂(s, s′)ξ(s′)dsds′ = cT

[ ∫ 1

0

∫ 1

0
b(s)B̂(s, s′)b(s′)Tdsds′

]
c.

Using the numerical approximation of integrals stated above, we have,∫ 1

0

∫ 1

0
b(s)B̂(s, s′)b(s′)Tdsds′

=

∫ 1

0

∫ 1

0
b(s)

1

(n− 1)2

n∑
i=2

n∑
j=2

yi−1(s)
[ ∫ 1

0
yi(r) yj(r) dr

]
yj−1(s

′)b(s′)Tdsds′

≈ Q =
1

(n− 1)2

n∑
i=2

n∑
j=2

[ l∑
k1=1

b(sk1)yi−1(sk1)δk1

][ l∑
k2=1

yi(rk2)yj(rk2)δk2

][ l∑
k3=1

bT (s′k3)yj−1(s
′
k3)δk3

]
.

Thus the numerator of the objective function (13) can be approximated by cTQc, where c
is the coefficient vector of of the basis functions of ξ(.). In similar way, the denominator
of the objective function (13) can be approximated by cTCc, with C = H + λ(J + J (2)),
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where the quantities H,J and J (2) is defined as follows:∫ 1

0

∫ 1

0
ξ(s)Σ̂(s, s′)ξ(s′)dsds′ + λ

[ ∫ 1

0
ξ(s)2 +

∫ 1

0
ξ′′(s)2ds

]
=

∫ 1

0

∫ 1

0

[
ξ(s)

1

n− 1

n∑
i=2

yi−1(s) yi−1(s
′)ξ(s′)

]
dsds′ + λ

[ ∫ 1

0
ξ(s)2ds+

∫ 1

0
ξ′′(s)2ds

]
=

1

n− 1

n∑
i=2

∫ 1

0

∫ 1

0

[
ξ(s)yi−1(s) yi−1(s

′)ξ(s′)
]
dsds′ + λ

[ ∫ 1

0
ξ(s)2ds+

∫ 1

0
ξ′′(s)2ds

]
≈ cTCc = cT

[
H + λ(J + J(2))

]
c;

cTHc =
1

n− 1

n∑
i=2

cT
[ l∑
k1=1

b(sk1)yi−1(sk1)δk1

][ l∑
k2=1

bT (s′k2)yi−1(s
′
k2)δk2

]
c,

cTJc =cT
[ l∑
k3=1

b(sk2)b(sk3)
T δk3

]
c and cTJ(2)c = cT

[ l∑
k4=1

b′′(sk4)b
′′(sk4)

T δk4
]
c,

where Q,C are symmetric non-negative definite matrices. Then the following problem is
solved sequentially,

ĉk = max
c

cTQc

cTCc
, subject to cTHc = 1, cTHĉl = 0, ∀1 ≤ l ≤ k − 1. (16)

Then we obtain the corresponding ξ̂k(s) = ĉkb(s) for 1 ≤ k ≤ K. Now instead of solving
the optimization problem (16) stated above, we focus on the following problem that differs
only by a scalar constant,

max
c

cTQc

cTCc
, subject to DT

k−1c = 0, (17)

where DT
k−1 = [Hĉ1, · · · ,Hĉk−1]. When λ > 0, C is of full rank. We can use Cholesky

decomposition as C = RTR, where R is an invertible upper triangular matrix. Then
c̃k = R−1uk will be solution to optimization problem (17). Here uk is the solution to
following optimization problem:

max
u

uTAu

‖u‖22
, subject to ET

k−1u = 0, (18)

where A = (R−1)TQR−1 and Ek−1 = R−1)TDk−1. Let us assume that the space
spanned by the columns of Ek−1 is Ak−1 and Pk−1 be the orthogonal projection matrix
onto the space. For k = 1, Ek−1 = Pk−1 = 0. The solution of the optimization problem
(18) is the first eigen vector of (I − Pk−1)A(I − Pk−1). We use the power method to
find this largest eigenvector. Once we obtain uk, we can get the solution of optimization
problem (17) as c̃k = R−1ck, which will lead to the solution of the original optimization

problem (16) as ĉk = c̃k/
√

c̃TkHc̃k.

4.2 Calculating φ̂k(t)

We can compute the transformed predictors ẑk = {ẑik; i = 1, · · · , n} using the estimates
ξ̂k(s) as follows:

ẑik =

∫ 1

0
yi−1(s)ξ̂k(s)ds ≈

m∑
k1=1

yi−1(sk1)ξ̂k(sk1)δk1; 1 ≤ i ≤ n, 1 ≤ k ≤ K.
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We can obtain estimated φ̂k(t) by solving an approximation of the optimization problem
(15) using basis expansions. Let Φ(t) = (φ1(t), · · · , φmt(t))T be the mt basis functions in
L2[c, d] with the relation φk(t) = Φ(t)Th, where h be unknown coefficients of the basis
functions. We observe the l time points t1, · · · , tl.

min
h

[ l∑
j=1

[Φ(tj)
Th− φ̂0k(tj)]2δj + ηhT

( ∫ 1

0
Φ′′(t)Φ′′(t)dt

)
h
]
, (19)

where φ̂0k(t) = 1
n ẑTk y(t). The solution of the above problem is,

ĥk =
[ l∑
j=1

Φ(tj)Φ(tj)
T δj + η

∫ 1

0
Φ′′(t)Φ′′(t)dt

]−1[ l∑
j=1

Φ(tj)φ̂
0
k(tj)δj

]
,

and this leads to the estimate of φk(t) as φ̂k(t) = Φ(t)T ĥk.

4.3 Choice of number of components and tuning parameters

We select the number of components K and the tuning parameters λ and η based on
the cross validation procedure described in the following sub-section. Number of ba-
sis functions is chosen to be 50. Tuning parameters are chosen from the set of values
{10−9, 10−7, 10−5, 10−3, 10−1, 1, 10, 100, 103, 105, 107}. The maximum number of com-
ponents is chosen to be 10.

4.4 Cross Validation for FAR

Cross validation porcedures are used to evaluate forecast accuracy of models. The proce-
dure is also widely used to evaluate better performing models and in othter model fitting
purposes. In general cross validation procedures, available data are randomly divided into
training data and test data sets. The training data is used to fit the model that will be used
for the purpose of interest and the test data is used to estimate the prediction error as well
as forecast accuracy for the fitted model. In time-series analysis, random spliting of data
set into training and test data sets is not valid as future data should not be used to fit the
model that will be used to predict the past data. Possible non-stationarity and serial cor-
relation in the data can also make the use of usual cross validation procedure problematic.
In Bergmeir et al. (2015), Györfi et al. (2013), Burman and Nolan (1992) and Burman
et al. (1994), approches like ’bias correction’, ’h-block cross validation’, etc. have been
discussed for cross validation procedures in the dependent cases. For the time-series setup,
a more sophisticated version of such procedures is ’time series cross-validation’. See Hyn-
dman and Athanasopoulos (2018) for more details. In this procedure, test sets are consists
of single observations and corresponding training sets are consists of all the prceding obser-
vations of the test data. This approach is also known as ”evaluation on a rolling forecasting
origin”. This porcedure can also be modified to get multi-step ahead forecast, which is of
more usefulness for time series analysis. The very first training set need to consists of suf-
ficient number of observations to fit the model and the next observation can be used as the
first test data for one-step forecast. Let us assume that we haveN observations and we need
atleast M observations to fit a time series model. then our first training set will consists
of observations {1, 2, · · · ,M} and the (M + 1)th observation will be the first test data.
Observations {1, 2, · · · , (M+1)} will build the second set of training data with (M+2)th

observation as the test data. In this way, we will have (N −M) different training and test
data sets. We can calculate forecast errors for all of these (N −M) sets. For functional
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Figure 1: Selection of cross-validation sets for functional time series data.

autoregressive model fitting and calculating forecast accuracy, we have adapted the above
described ’time series cross-validation’ approach for functional observations. Here the first
training set is consists of {1, 2, · · · ,M}th functional observations and the first test set is
the (M + 1)th functional observation. To have consistent error calculation, we keep the
number of functional observations in each training data set fixed. Our second set of training
data consists of {2, 3, · · · , (M + 1)}th functional observations and (M + 2)th observation
is the second test set and so on. The process is illustrated in figure (1).

5. Simulation studies

In this paper, we have considered functional autoregressive models of order two (FAR(2))
and functional autoregressive models of order three (FAR(3)). We generated data from
these two types of model using three different sets of kernel functions. Our considered
FAR(2) model is as follows:

Yi(t) =

∫
ψ1(t, s)Yi−1(t)ds+

∫
ψ2(t, s)Yi−2(t)ds+ εi(t), (20)

The first set of Kernel functions we have considered was taken from Kokoszka and
Reimherr (2013),

Setting1 :

{
ψ1(t, s) = P1

0.7468e
−(t2+s2)/2

ψ2(t, s) = P2
0.7468e

−(t2+s2)/2

We also have considered two additional sets of Kernel functions:

Setting2 :

{
ψ1(t, s) = (P1 ∗ 2.4) ∗ cos(2πt) ∗ cos(2πs)

ψ2(t, s) = (P2 ∗ 2.4) ∗ cos(2πt) ∗ cos(2πs)

Setting3 :

{
ψ1(t, s) = P1

1.6{2− log(0.5 + t+ s)}
ψ2(t, s) = P2

1.6{2 + log(0.5 + t+ s)}
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Figure 2: Graphical presentation of kernel function for setting 1.

The ε′is are considered as standard brownian bridges. We have taken P1 = 0.5 and P2 =
0.3, 100 observations for s and t.

Similarly, our considered FAR(3) model is as follows:

Yi(t) =

∫
ψ1(t, s)Yi−1(t)ds+

∫
ψ2(t, s)Yi−2(t)ds+

∫
ψ3(t, s)Yi−2(t)ds+ εi(t),

(21)

with considered three different Kernel functions as,

Setting1 :


ψ1(t, s) = P1

0.7e
−(t2+s2)/2

ψ2(t, s) = P2
0.7e

−(t2+s2)/2

ψ3(t, s) = P3
0.7e

−(t2+s2)/2

Setting2 :


ψ1(t, s) = (P1 ∗ 2.1) ∗ cos(2πt) ∗ cos(2πs)

ψ2(t, s) = (P2 ∗ 2.1) ∗ cos(2πt) ∗ cos(2πs)

ψ3(t, s) = (P3 ∗ 2.1) ∗ cos(2πt) ∗ cos(2πs)

Setting3 :


ψ1(t, s) = P1

1.7{2− log(0.5 + t+ s)}
ψ2(t, s) = P2

2 {2 + log(0.5 + t+ s)}
ψ3(t, s) = P3

1.7{2− log(0.5 + t+ s)}

Where ε′is are standard brownian bridges, considered P1 = 0.4, P2 = 0.3 and P3 = 0.2.
100 observations were taken for s and t.
We have generated a total of 280 + 50, 400 + 50 or 500 + 50 observations. First 200
observations were discarded as burn-in samples for each of the situations and a total of 50
functional observations were used as test data set. The remaining 80, 200 or 300 observa-
tions were used to build the Functional autoregressive model. We have repeated the whole
procedure 1000 timese and recorded averages and standard deviations of observed Mean
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Figure 3: Graphical presentation of kernel function for setting 2.

Squared Errors (MSE) and the Relative Estimation Errors (REE). We also have applied au-
toregressive forecast procedure of ”FTSA” package of R software for the same simulated
data sets and recorded averages and standatd deviations of observed mean squared errors.
The results are listed in table 1 and 2.

Table 1: The averages (and standard deviations) of MSEs of 80, 200 and 300 sample sizes
for FAR(2) model.

Settings for ψ1(t, s),ψ2(t, s) Sample size Mean SigComp Mean MSE (S.E.)
REE (S.E.) SigComp FTSA

ψ1(t, s) ∝ e−(t2+s2)/2 80 1.347 (6.691) 0.228 (0.086) 0.287 (0.113)

ψ2(t, s) ∝ e−(t2+s2)/2 200 0.515 (2.498) 0.202 (0.052) 0.267 (0.087)
300 1.141 (3.853) 0.203 (0.058) 0.262 (0.087)

ψ1(t, s) ∝ cos(2πt) cos(2πs)
80 1.424 (4.008) 0.351 (0.247) 0.420 (0.370)

ψ2(t, s) ∝ cos(2πt) cos(2πs)
200 0.743 (1.862) 0.261 (0.195) 0.363 (0.239)
300 1.113 (2.394) 0.241 (0.152) 0.360 (0.210)

ψ1(t, s) ∝ {2− log(0.5 + t+ s)} 80 1.033 (4.379) 0.311 (0.374) 0.767 (0.895)

ψ2(t, s) ∝ {2 + log(0.5 + t+ s)} 200 0.367 (1.559) 0.220 (0.155) .616 (0.519)
300 0.772 (3.518) 0.221 (0.140) 0.630 (0.525)

We have observed that, for different settings, SigComp procedure provides smaller
average of Mean Squared Errors compared to that of ”FTSA” package. In terms of observed
standard deviations, we also observe smaller values for SigComp procedure compared with
”FTSA” package.

We also have listed our selected optimal orders with corresponding percentages using
SigComp procedure for the 80, 200 and 300 sample sizes for all the three choice of Kernel
functions and two different settings of FAR model. We have observed that the procedure is
choosing the actual order or closer values as optimal order in satisfactory number of times.
The results are listed in table 3 and 4.
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(a) The first kernel function (b) The second kernel function

Figure 4: Graphical presentation of kernel functions for setting 3.

Table 2: The averages (and standard deviations) of MSEs of 80, 200 and 300 sample sizes
for FAR(3) model.

Settings for ψ1(t, s), ψ2(t, s), ψ3(t, s) Sample size Mean SigComp Mean MSE (S.E.)
REE (S.E.) SigComp FTSA

ψ1(t, s) ∝ e−(t2+s2)/2 80 1.666 (8.097) 0.292 (0.478) 0.647 (0.689)
ψ2(t, s) ∝ e−(t2+s2)/2 200 1.479 (5.514) 0.233 (0.254) 0.545 (0.492)
ψ3(t, s) ∝ e−(t2+s2)/2 300 1.790(5.694) 0.246(0.737) 0.530(0.422)
ψ1(t, s) ∝ cos(2πt) cos(2πs) 80 3.345 (6.978) 0.274 (0.238) 0.304 (0.268)
ψ2(t, s) ∝ cos(2πt) cos(2πs) 200 2.694 (9.820) 0.203 (0.094) 0.268 (0.113)
ψ3(t, s) ∝ cos(2πt) cos(2πs) 300 2.735(6.978) 0.196 (0.090) 0.263(0.121)
ψ1(t, s) ∝ {2− log(0.5 + t+ s)} 80 1.612 (7.376) 0.247 (0.487) 0.566 (2.785)
ψ2(t, s) ∝ {2 + log(0.5 + t+ s)} 200 2.009 (8.812) 0.207 (0.124) 0.441 (0.331)
ψ3(t, s) ∝ {2− log(0.5 + t+ s)} 300 2.068 (7.305) 0.200(0.110) 0.421(0.293)

6. Application to Australia Fertility Data

We have applied the functional autoregressive model to Australia fertility data set and com-
pared the resulted MSE with that of procedure using FTSA package of R. The data were
obtained from the Australian Bureau of Statistics (Cat.No.3105.0.65.001, Table 38). It is
also available in ”rainbow” package of R software. The observed data were smoothed us-
ing the penalized regression spline with concave constraint. The procedure is described in
Hyndman and Ullah (2007). We have used the smoothed australlia fertility rates of women
aged 15- 49 for the years 1921 - 2006 from R package ”rainbow”.

We have used fertility rates of the yars 1921 to 1994 as trainee data, fitted both the
Functional Autoregressive Models (FAR) using Sigcomp procedure and Functional Autore-
gressive Procedures available in ”FTSA” package of R software. After fitting the models,
we predicted age specific fertility rates using both of the procedure for a total of 12 forecast
horizons for the years 1995 to 2006 and calculated Mean Squared Errors. We have calcu-
lated average of observed Mean Squared Errors over all the twelve years and observe that
SigComp procedure provides an average MSE as about 64.48 whereas forecast procedure
of ”FTSA” package provides average MSE as about 1557.37. We also have calculated av-
erage of the MSEs for each of the forecasted years. Based on MSE, we have obtainde very
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Table 3: The observed frequency (percent) of selected optimal orders using cross validation
and SigComp procedure for FAR(2) model.

ψ1(t, s), ψ2(t, s) Sample size Observed Optimal Order
P = 1 P = 2 P = 3 P = 4 P = 5

ψ1(t, s) ∝ e−(t2+s2)/2 80 285 (28.5) 399 (39.9) 138 (13.8) 99 (9.9) 79 (7.9)

ψ2(t, s) ∝ e−(t2+s2)/2 200 113 (11.3) 575 (57.5) 140 (14.0) 94 (9.4) 78 (7.8)
300 132 (13.2) 448 (44.8) 163 (16.3) 136 (13.6) 121 (12.1)

ψ1(t, s) ∝ cos(2πt) cos(2πs)
80 784 (78.4) 178 (17.8) 28(2.8) 7(0.7) 3 (0.3)

ψ2(t, s) ∝ cos(2πt) cos(2πs)
200 383 (38.3) 508 (50.8) 73 (7.3) 26(2.6) 10 (1.0)
300 301 (30.1) 469 (46.9) 112 (11.2) 75 (7.5) 43 (4.3)

ψ1(t, s) ∝ {2− log(0.5 + t+ s)} 80 135 (13.5) 571 (57.1) 140 (14.0) 86 (8.6) 68 (6.8)

ψ2(t, s) ∝ {2 + log(0.5 + t+ s)} 200 37 (3.7) 704 (70.4) 112 (12.2) 71(7.1) 76 (7.6)
300 63 (6.3) 587 (58.7) 130 (13.0) 99 (9.9) 121 (12.1)

Table 4: The observed frequency (percent) of selected optimal orders using cross validation
and SigComp procedure for FAR(3) model.

ψ1(t, s), ψ2(t, s), ψ3(t, s) Sample size Observed Optimal Order
P = 1 P = 2 P = 3 P = 4 P = 5

ψ1(t, s) ∝ e−(t2+s2)/2 80 110 (11.0) 287 (28.7) 389 (38.9) 94(9.4) 120 (12.0)
ψ2(t, s) ∝ e−(t2+s2)/2 200 77 (7.7) 235 (23.5) 402 (40.2) 122(12.2) 164(16.4)
ψ3(t, s) ∝ e−(t2+s2)/2 300 73 (7.3) 187 (18.7) 433 (43.3) 167(16.7) 140 (14.0)
ψ1(t, s) ∝ cos(2πt) cos(2πs) 80 757 (75.7) 165 (16.5) 36(3.6) 28(2.8) 14 (1.4)
ψ2(t, s) ∝ cos(2πt) cos(2πs) 200 261 (26.1) 384 (38.4) 261 (26.1) 66(6.6) 28(2.8)
ψ3(t, s) ∝ cos(2πt) cos(2πs) 300 197 (19.7) 329 (32.9) 308 (30.8) 100(10.0) 66 (6.6)
ψ1(t, s) ∝ {2− log(0.5 + t+ s)} 80 117 (11.7) 317 (31.7) 353 (35.3) 123 (12.3) 90 (9.0)
ψ2(t, s) ∝ {2 + log(0.5 + t+ s)} 200 63(6.3) 250(25.0) 427 (42.7) 131(13.1) 129(12.9)
ψ3(t, s) ∝ {2− log(0.5 + t+ s)} 300 72 (7.2) 208 (20.8) 437 (43.7) 137(13.7) 146(14.6)

impressive performance by the FAR using SigComp procedure over that of FTSA pack-
age. Eventhough for smaller forecast horizons, FAR procedure in FTSA package performs
satisfactory, for larger forecast horizons, FAR using Sigcomp procedure outperforms the
FAR in FTSA package. The FAR in FTSA package gets very high MSE for higher forecast
horizons. The results are displayed in Figure 8.

7. Discussion

We proposed functional autoregressive model of general order using signal compression
approach for function on function regression model proposed by Luo and Qi (2017). The
singal compression approach takes account of possible dependency of covariate functions
of FAR model of general order where dependency exists among the lag functions. Signal
compression procedure makes finite dimesional approximation of coefficient functions that
also reduce computation cost.

We also have proposed order detection procedure for FAR model. We used proposed
extension of timeseries cross-validation procedure to functional time series data. Based
on minimum cross-validation error, the optimal order of FAR model was selected. The
selected model with optimal order was furter used for forecasating purpose.

We performed simulation studies considering different orders and structures of coeffi-
cient or kernel functions. We observed performeces of our porposed procedure with exist-
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Figure 5: Smoothed fertility rates’ curve observed in different years during 1921 to 2006
over women’s age 15-49 in Australia.

ing ”FTSA” package of R software.
We have observed that, on average there are comparatively smaller mean squared error

for SigComp procedure compared to the existing procedure of ”FTSA” package. We also
have observed satisfactory performance of the procedure in terms of determining order of
underlying FAR model.

In this paper, we did not have the scope to compare the performance of order selection
procedure with other porcedures, rather than reportign the correct order detection rates. We
consider the comparison for future scope. We want to perform more comarisons of our
model with other existing procedures both in terms of the performence of forecast accuracy
and optimal order selection.

Incorporating exogenous predictors can imporve the performance of the model, it can
also take care of missing value problems. Our future goal would be to extend the model
to incorporate exogenous predictors. Prediction intervals provide better understanding of
the estimation accuracy. In future, we would like to develop prediction intervals for the
forecasted curves of our proposed procedure.

Our future interest would also be on comparison of machine learning porcedures in
such area in terms of performance. The SigComp procedure is computationally intensive,
there can be some scope of improvements in the computations and optimization porblems.
We would also like to apply the procedure to recent datasets of different areas of interest.
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Figure 6: Age specific fertility rates of Australian women of ages 15- 49 over the years
1921 - 2006.
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