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Abstract 
The purpose of this paper is to continue work on a composite coincident indicator (CCI) 
for the United States and by each state as covered in Putcha and Sloboda (2017, 2018).  
This research looks at the economic time series for the United States by examining 
behavior of the key time series and applying the peak-valley algorithm as proposed by 
Schneider (2011) before creating the CCI. The detection of peaks and valleys in time 
series has been a longstanding problem in economic time series. To identify the trends in 
the economic time series, we provide two approaches to determine the trend in the time 
series: the geometric approach and the statistical definition of peaks and valleys. These 
two approaches can detect the significant trends within economic time series. This 
preliminary research examines the proposed variables that could be included into an 
eventual CCI for the United States.  
 
Key Words: Peak-Valley Algorithm, local maximum and minimum, global maximum 
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1. Introduction 
 
The composite coincidental index (CCI) is an index combining two or more economic 
and financial variables. However, the process of combining two or more variables to 
develop a CCI can be tedious because of the behaviors underlying each of the variables 
being combined. As a remedy, peaks and valleys denote significant events in an 
economic time series. In fact, these events can be described as an abrupt increase with a 
recession or other economic event. A peak or a valley represents a significant event 
within a time series, and a significant event is a point where the function changes from 
increasing (decreasing) behavior to decreasing (increasing) behavior. Because of the 
latter changes, the identification of these behaviors is important for analysis, especially in 
the creation of the CCI. However, the detection of the peaks and valleys is not simple, 
and Schneider (2011) proposed an algorithm to determine the peaks and valleys in the 
time series data. In this preliminary research, we applied the Schneider (2011) algorithm 
to assist in the construction of a potential CCI. The literature concerning the historical 
development and recent advances in the development of the CCI is not presented here, 
but the reader is advised to review Putcha and Sloboda (2017, 2018) as well as other 
literature.  
 

2. Methodology 
 
2.1 Background on the Peaks and Valleys  
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To understand the behavior of the economic time series data, the time series were then 
analyzed for detecting local peaks after a change in the time series (e.g., a recession or 
growth). We employed a peak-valley detection algorithm as proposed by Schneider 
(2011) to detect the ‘adaptation stages’ by finding peak values that were above the global 
mean (average of the mean of all-time series amplitudes), which were separated from 
those stages that the time series spent minimal time on (peak values below global mean). 
This framework for peak-valley detection can also be of high value where the 
observational data are large or the observation time span is longer, and thus, it is difficult 
to observe the local maxima or the local minima in the data. The discussion sketches the 
background in the application of this algorithm proposed by Schneider (2011).  
 
Mathematically, a peak of a given series means local maxima has a change in the slope 
from positive to negative.' Let f (x) is a function which transforms x from a user-defined 
subdomain A ⊆ R to the domain R as follows 
 

f: A→R 
Let's consider an interval I=(a, b), and let's assume I  ∩ A = ∅ 
 
A local maximum is detected at point x0 ∈ I  if  f (x0) ≥ f (x), ∀x ∈ I. As for the local 
minimum, it is detected at point point x0 ∈ I if  f(x0) ≤ f(x), ∀x ∈ I.  
  
The difference between a global maximum and a local maximum is the domain of I. If  
I ∩ A = A, then we will have a global maximum. It will also be similar for a global 
minimum and local minimum. Using the previous definitions for the global maximum 
and minimum, we obtain a global maximum point at x0 if f(x0) ≥ f(x) ∀x ∈ A. Similarly, 
the function has a global minimum point at x0 if f(x0) ≤f(x) ∀x ∈ A. Based on the previous 
definitions, a peak is considered a local maximum, and a valley is a local minimum. 
 
Given the latter definitions, the algorithms of detection of peaks and valleys must fulfill 
some additional requirements. That is, we need to assume that the time series is 
represented by a real function because this requirement guarantees there exist points 
between any two given points of a function. The latter requirement is called the 
continuity principle. From calculus, one can recall the concept of derivative using tangent 
lines. A tangent defines a linear slope which contacts a given function f(x) in each point 
x0. Then, the angle between the tangent and the horizontal axis is used to describe the 
behavior of the function f(x) in point x0. The value of the angle defines the slope of the 
tangent at f(x0). A positive value denotes an increasing trend of the function f(x) in point 
x0, while a negative angle denotes a decreasing trend. If the angle equals zero, there is a 
flat trend in point x0 which means there is a local extremum in point x0. If f(x) is a 
differentiable function with an existing derivative function f’(x) and at point x0 ∈ I ⊂ R 
exists f’(x0) = 0, then f(x) has a local maximum or a local minimum in point x0. Rolle’s 
Theorem states that there exists at least one position x0 ∈ (a, b) having f’(x0) = 0. So, this 
theorem ensures that there exists one local maximum or local minimum at least between 
points a and b. Consult any calculus book for additional details on Rolle’s Theorem.  
 
2.2 Identification of the Peak and Valleys in Time Series Data 
The Peak-Valley algorithm uses a geometrical approach to find local peaks and local 
valleys in a time series. This algorithm detects all local peaks and valleys given in a time 
series. In this algorithm, a peak cannot be a valley and vice versa. If the points are not a 
peak or a valley, the algorithm ignores these time series. 
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Let’s take a time series T with n observations. We assume there exists a peak function 
and a valley function that will identify the local peaks and local valleys. The peak and the 
valley functions produce values xi ∈ R with i = 1, . . . , n ∈ N. A peak function S produces 
for a local peak a positive value. We can define the set of local peaks as P with P= {(ti , 
xi)|S(xi) > 0} with i = 1, . . . ,L.  The valley function is vice versa to the peak function. ` 0 
local valleys V= {(ti , xi)|S(xi) ≤ 0} with i = 1, . . . ,L’.  Then, from these points, we can 
estimate the mean, variance, and the standard deviation. See Schneider (2011) for the 
analytical details on the latter and how the estimation of the peak function is used to 
determine the peaks in the time series data.    
 
The peak function requires the use of at least three points to determine the peak by 
comparing the different points. If there are additional peak functions to be used, these 
peak functions are estimated using the entropy function. Schneider (2011) lays out a nice 
analytical discussion of the entropy function and uses kernel functions to compute the 
probability of the values inside the sequence of a given time series to determine if there is 
a peak or valley in the time series. The entropy of a given sequence is the measurement of 
disorder in this sequence. Also, the calculation of entropy is based on the probability of 
the appearance of the values inside the given sequence of the time series, and the entropy 
function would be minimized. Then, the use of the kernel functions is used to estimate 
these probabilities to determine the peak and valley in the time series. The general 
estimate of the kernel function is given as  
 

𝑓(𝑥) =
1

𝑛ℎ
∑ 𝐾 (

𝑥𝑖 − 𝑥

ℎ
)

𝑛

𝑖=1

 

 
where h is a function of the number of elements inside the sequence of the time series 
surrounding a peak or valley. The kernel function K(x) can be replaced by other kernel 
functions such as the Epanechnikov and the Gaussian. See Schneider (2011) for the 
analytical details for the calculation of the probabilities of this sequence.  
 
2.3 Methodology in this Paper 
The general methodology used in this paper is outlined as follows: 
 
Step 1. Derive a functional relationship between the GDP and time.  
 
Step 2. Derive a functional relation between unemployment and time. 
 
Step 3. Derive a functional relation between inflation and time.  
 
Step 4. Obtain the plot for leading indicators for all the variables of interest. 
 
Step 5. Obtain the plot for lagging indicators which is the unemployment variable.  
 
Step 6. Obtain the plot for coincident indicators, which is the GDP.  
 
Step 7. Obtain the functional relationships for leading, lagging, and coincidental 
indicators. 
 

 
2759



Step 8.  Apply the algorithm proposed by Schneider (2011) to obtain the local minimum, 
maximum, and global minimum and maximum based on the content from step 7. This 
includes the calculation of the minimization of the entropy function as briefly discussed 
in the previous subsection1 and the calculation of the probabilities of the points 
surrounding the potential peak and valley using a kernel function.  
 

3. Empirical Results2 
 
This section shows each of the steps in the application of this algorithm to determine 
peaks and valleys in the economic series. 
 
Step 1 Shows the plot of GDP and time for a linear and nonlinear functions.                                                                                   
 

 
 

Figure 1: Linear Relation of GDP Growth and Year 
 
 
 

 
1 The calculations were performed using algorithms in Matlab.  
2 The intermediate output for the application of this algorithm is numerous and is not provided 
here to maintain brevity. If the interested reader wishes to receive intermediate outputs, please 
contact the authors.  
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Figure 2: A linear and polynomial of GDP Growth and Year  

 
 
 
Step 2—shows the linear and nonlinear relationships of unemployment and year. 
 

 
Figure 3: Linear Relationship between Unemployment and Year 
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Figure 4: Nonlinear Relationship between Unemployment and Year 

 
Step 3—The graphical depiction of the linear and nonlinear relationships of inflation and 
year.  
 

 
Figure 5: A Linear Relationship between Inflation and Year  

y = -0.0004x2 + 1.4301x - 1433.5
R² = 0.8417

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

2008 2010 2012 2014 2016 2018 2020

U
n

em
p

lo
ym

en
t

Year

y = 0.0003x - 0.5142
R² = 0.0102

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

2008 2010 2012 2014 2016 2018 2020

In
fl

at
io

n

Year

 
2762



 
 

Figure 6: A Nonlinear Relationship between Inflation and Year 
 
 
Steps 4- 7 Obtained the data from the leading, lagging, and coincident indicators from the 
Conference Board. These data are summarized in Table 1.  

 
Table 1 Data for Leading, Lagging, and Coincident Indicators from Conference 

Board3 
 

Year Coincident Indicators Leading Indicators Lagging Indicators 
1970 62 82 94 
1972 60 71 101 
1974 63 76 92 
1976 67 85 93 
1978 70 83 95 
1980 71 78 106 
1982 71 82 97 
1984 72 90 96 
1986 75 93 98 
1988 82 95 102 
1990 84 97 104 
1992 85 94 98 
1994 92 96 95 
1996 95 98 94 
1998 104 97 100 

 
3 We did not present all the time series from the coincident, leading, and lagging indicators as a 
continuous time series to save on space.  
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2000 110 110 105 
2002 111 109 108 
2004 110 111 110 
2006 110 113 108 
2008 115 115 105 
2010 117 117 98 

 
The following figure shows the graph of the information from the preceding table. 
 

 
Figure 7: Behavior of Leading, Lagging, and Coincident Indicators 

 
The time series plot of leading, lagging, and coincident indicators is shown in Figure 7.  
After the plot of these time series, the algorithm by Schneider (2011) is performed to 
determine the peaks and valleys in the time series data by calculating the minimization of 
the entropy function. 
 
Steps 5-8 In these steps, we analyze how the variable is behaving over time by looking at 
the number of local maximums and local minimums as well as the global maximums and 
the global minimums using the algorithm proposed by Schneider (2011).  
 
The determination of the local maximums and minimums and the global maximums and 
minimums is calculated the algorithm. These results by leading, lagging, and coincident 
indicators are presented. In Tables 2 through 4, the time value pair is the result of the 
entropy function that is minimized and the calculation of the probabilities around the 
associated points surrounding the eventual peak and valley.   
 
 

Table 2: Analysis of the Time Series Plot of Lagging Indicators from Figure 7 
Extremum Time Value Pair 
Local Peak  (1973,100), (1980,105), (1990,101), (2000,110) 
Global Peak  (2000,110) 
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Local Valley (1975,95), (1984,96), (1994,94), (2005,99) 
Global Valley (1994,94) 

Note:  In the parentheses, the years of the local and global peaks are identified along 
 with their values. The latter would also be applied to the global and local valleys.   
 

Table 3: Analysis of the Time Series Plot of Coincident Indicators from  
Figure 7 
Extremum Time Value Pair 
Local Peak  (1970,73), (1980,75), (1990,83), (2000,112) 
Global Peak (2000,112) 
Local Valley (1976,70), (1980,75), (1992,84), (2004,108) 
Global Valley (1976,70) 

 Note:  In the parentheses, the years of the local and global peaks are identified along 
 with their values. The latter would also be applied to the global and local valleys.  

 
     Table 4: Analysis of the Time series Plot of Leading Indicators from Figure 7 

Extremum Time Value Pair 
Local Peak  (1973,100), (1980,105), (1990,101), (2000,110) 

Global Peak (2000,110) 
Local Valley (1974,76), (1981,79), (1992,95), (2002,105) 
Global Valley (1974,76) 
Note:  In the parentheses, the years of the local and global peaks are identified along 
 with their values. The latter would also be applied to the global and local valleys.  

 
4. Discussion of the Results and Conclusions 

 
The behavior of GDP, unemployment, and inflation is plotted, and the functional 
relationships were estimated using ordinary least squares (OLS). In addition, the 
components of the Business Cycle Index (BCI) - Leading indicators, Lagging Indicators 
and Coincident Indicators - have been studied in detail using the corresponding time 
series in the literature utilizing the algorithm proposed by Schneider (2011).   
 
From the results, the coincident index gives the lowest mean value of global peaks and 
valleys which indicates less undulations and hence better measures of the aggregate 
economic activity. Further study of these data can be performed using the principles of 
probability and statistics in terms of the exceedance of normal economic limits for 
leading, lagging, and coincident indicators. That is, to determine the peak and valley, we 
need at least three points in a range, and any points that are peaks and valleys need to be 
estimated by the entropy function which is minimized. The probabilities are calculated 
using kernel functions. The values presented in Tables 2, 3, and 4 show the outcomes 
from the minimization of the entropy function associated with the probabilities estimated 
by the kernel functions. In future research, we would like to look at additional economic 
variables and examine the behavior of those variables. Such variables would include the 
interest rates, industrial production, and other economic variables. More importantly, we 
would apply this algorithm to the quarterly data because we used annual data in this 
paper. Once all economic variables have been reviewed, we can create a CCI that will 
make it easier to tell us the current state of the US economy.  
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