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Abstract 
The cumulative square root of the frequency method is a generally accepted statistical 
technique used for the construction of strata boundaries in stratified sampling. Many 
statistical consultants and state and federal taxing and auditing agencies utilize this 
statistical method originally developed by Dalenius and Hodges (1959). But there is a 
general lack of guidance on the determination and effects of interval (i.e., class) widths. 
Dalenius and Hodges originally proposed the application of their method using frequency 
distributions with class widths of 5 units. In this paper, we present the results of empirical 
tests to contrast Dalenius’ method with different class widths and to other approximate, 
non-iterative methods using several typical skewed accounting populations.  
 
Key Words: statistical sampling, tax auditing, cumulative square root of the frequency, 
class width 
 
 

1. Introduction 
 
The cumulative root frequency method (the “ 𝑐𝑢𝑚ඥ𝑓  method”) is a general accepted 
statistical method to construct strata boundaries. The purpose of the 𝑐𝑢𝑚ඥ𝑓 method is to 
approximate optimal boundaries by minimizing the product of the stratum weight 
multiplied by the true variance which the method seeks to accomplish by equalizing the 
𝑐𝑢𝑚ඥ𝑓 across the strata (Cochran 1977). It has been widely used for decades in audit 
sampling for the review of documentation associated with monetary amounts. It 
continues to be among the most prevalent and recommended design methods for 
consideration in revenue sampling manuals, audit sampling literature, statistical sampling 
research, and audit and statistical software.1  
 
Even with this historical use and the abundance of statistical literature on design methods, 
there is little guidance on determining the appropriate width of the interval or stated 
differently the number of class intervals. As Hedlin (2000) explained, there is no existing 
theory that determines the best interval width. Much of the statistical sampling literature 
recommends many classes or in other words small interval widths (Cochran 1961; 
Cochran 1977; Roberts 1978; Hedlin 2000; Hogan 2010). The reasoning behind this 
recommendation is that with a more refined class interval is a greater potential for 
precision in the equalization of the 𝑐𝑢𝑚ඥ𝑓  across the classes and thus for optimizing 
boundaries. But this guidance is general and provides no specific recommendation for 
determining the number of class intervals or interval widths other than “many” and 
“narrow.”   

                                                 
1  While we hope this research will be informative to sampling statisticians, the paper has 
specifically been written for consideration by revenue agents, auditors, tax consultants, and other 
practitioners that use and encourage sampling. 
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Notwithstanding the class widths chosen (and thus by association the final strata 
boundaries), Hedlin (2000) statistically reasoned that in practice “this might not be 
severe, as the estimator variance regarded as a function of the stratum boundaries is 
usually flat around its minimum, which makes minor deviations from the minimum 
negligible.”2 
 
With this history and guidance, the applied statistician and audit practitioner are often 
simply told to “determine” the class width with no further recommendations which has 
given rise to some informed but far from effective sample designs, some haphazard 
designs with million dollar consequences, and some casual audit sampling practices for 
implementing the 𝑐𝑢𝑚ඥ𝑓 method. For example, the guidance on using many class intervals 
has led some auditors to take the approach of extremely narrow interval widths (e.g., 
$0.01, $1.00) which this paper will explore further. 
 
Dalenius and Hodges (1959) originally proposed the application of their 𝑐𝑢𝑚ඥ𝑓 method 
using interval widths of 5 units. This specific interval width of 5 has thus been applied 
formulaically by some in the audit practice creating a legacy technique without 
consideration to a population’s unique characteristics.  
 
Referring to the class widths in the frequency distribution of Table 5A.11 in Cochran’s 
(1977) Sampling Techniques, there is no statistical requirement about the class width of 
5. It is our opinion that large data files were still being summarized in frequency 
distributions in 1977 (and often still are for the purpose of producing histograms, etc.) 
because of the difficulties of working with data populations without a mainframe 
computer. The intended purpose of a frequency distribution is to summarize large 
datasets in meaningful ways. The general guidelines were to have between 5 and 20 
classes which facilitated the development of histograms and line charts that highlight 
interesting features of the data. This practice too has found its way into the application of 
the 𝑐𝑢𝑚ඥ𝑓 method (and is not without its own merits when applied with an understanding 
of the data populations under consideration).  
 
The generalness of these guidelines has led other audit practitioners to believe there is no 
optimal class width and divide their populations up into wide intervals to simply allow 
for a quicker processing of data (and the subsequent stratification) without consideration 
to the statistical consequences of those widths. While there are other ways in which 
auditors determine class width (some ways better than others), these examples will 
suffice to illustrate the need for more detailed guidance. 
 
It is not our purpose to focus on creating optimal bounds (though we expect this study to 
contribute to that body of literature) but to explore if varying class width has an effect or 
is negligible and what influence varying class widths have on the accuracy and precision 
of estimates produced from samples selected from 𝑐𝑢𝑚ඥ𝑓 designs and contrasted to other 
design methods. 
 

2. Construction of Strata Boundaries in Tax Auditing 
 

                                                 
2  Hedlin, D. (2000), “A procedure for stratification by an extended Ekman rule,” Journal of 
Official Statistics, 16, 15-29. 
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There are several generally accepted statistical sampling techniques for the construction 
of strata boundaries outside of the 𝑐𝑢𝑚ඥ𝑓  method that are interesting and used by 
statisticians, but they lack practicality for most practitioners in audit sampling. Some of 
these methods are less frequently used for several reasons. They are intensive 
programmatic iterative algorithms, the algorithms have potential execution flaws due to 
numerical complications, a lack of common audit software support, an absence of 
practical guidance, etc. As Cochran (1961) concluded on approximately equalizing the 
standard deviation (Sh) among strata, these kinds of methods could be to intricate to 
implement in most sampling practices and often remain outside the purview of audit 
practices that lack strong operation resources and access to deep programming and 
statistical technical skills.  
 
Within tax auditing, both at the federal and state levels, the most frequently used, 
software supported, or programmatically designed methods are the 𝑐𝑢𝑚ඥ𝑓 method, the 
equal $ method (Roberts 1978), the geometric method (Gunning, Horgan, and Yancy 
2004), the equalization of the product of the weight and standard deviation, WhSh 
(Cochran 1977), and consideration to the coefficient of variation, CVh (Cochran, 1961). 
 
2.1 Comparing Stratification Methods 
Twelve scenarios of design techniques or derivatives of those methods are explored in 
this paper to conclude on the effects of varying class widths and comparative 
performance of those interval widths to other common audit sampling design methods.  
 
The 𝑐𝑢𝑚ඥ𝑓 method at the following seven classes widths: $0.01, $1, $5, $50, $100, $250, 
$500. These widths consider the narrowest, narrow, moderate, wide, and comparatively 
width interval widths. The $0.01 width creates a great statistical quality to explore around 
the empirical cumulative distribution function (and its use is some audit software). 
Additionally, one other 𝑐𝑢𝑚ඥ𝑓 width interval is considered and determined by a simple 
formula: median/100. This is of interest as it is dynamic and leverages a population’s 
attributes.  
 
The equal $ amount method is an important technique for its simplicity of use and robust 
and practical handling of skewed, large dollar account populations. Many audit sampling 
packages support this technique and it is another historical and prevalent design method 
in audit and financial sampling.  
 
The geometric method per Gunning and Horgan (2004) frequently creates constant 
coefficients of variation among strata. This is a great statistical quality and one that 
Cochran (1961) remarks is frequently associated with optimal strata boundaries. It is also 
another design method supported by common audit sample packages though it is a 
comparatively new method. Its weakness, because of the inherit mathematical property of 
geometric progression, is with populations that have very small monetary amounts that 
must be sampled (Gunning and Horgan 2004). But this weakness can be advantageous as 
many audit situations will apply a de minimis threshold and set aside small valued items 
as being negligible to their review. 
 
The equalization of counts among strata (Nh) is explored as a method that is far less 
frequently used and far less statistically associated with efficient designs. Thus, it serves 
as a barometer in this research to the other methods and their derivatives. Finally, the 
research considers making constant the number of unique dollar amounts among strata. 
Not a technique the authors are aware of being used but a derivative on Equal (Nh) and 
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one that possess several of the same qualities of the 𝑐𝑢𝑚ඥ𝑓  method using “narrowest” 
widths without creating empty classes. 
 

Table 1: The Twelve Design Method Scenarios  
 

 
 

3. Populations of Interest and Simulation Methodology 
 
The population data of recorded amounts 3  of auditing, tax, accounting, business, 
financial, and in general monetary amounts often possess a “lack of symmetry about the 
population mean” as shown by their frequency distributions. This skewness can be 
extreme in audit situations with a majority of small and moderate amounts and few very 
large amounts (Roberts 1978). The tails of the population distributions are heavier than a 
normal distribution. For our purpose, the recorded amounts are the design (i.e., 
stratification) variable amounts and not the audited amounts. When graphing the 
frequency of differences (where differences = recorded amount – audited amount) an 
examiner regularly discovers high symmetry and a strong concentration of values around 
zero amount differences.  
 
3.1 Accounting Populations 
This research explores generally accepted stratum construction methods on common 
audit populations and for this purpose nineteen homologous accounting populations were 
developed paralleling data distributions such as is found in common industries (e.g., Oil 
& Gas, Financial Services, etc.) and accounting populations (Sales & Use Tax, Meal & 
Entertainment Expenses, etc.). Population d1 is the same as population d13 as is the 
population used by Rhyne & Falk (2007) in exploring treatment of negative values in 
audit populations. When creating the populations, all recorded amounts less than or equal 
to zero were removed. Table 2 includes the measurements of skewness and kurtosis to 
evaluate normality along with the standard population statistics. References in Table 2 to 
detail threshold and detail stratum will be explained in a following section of this paper 
under sample design.  
 

Table 2: Homologous Accounting Populations Constructed & Reviewed 
(Rounding for visual aesthetics and consumability)  

    
                                                 
3 Recorded amounts can represent a wide range of expenses, incomes, taxes, account balances, etc. 

(cum. √ f): 
0.01

(cum. √ f): 
1

(cum. √ f): 
median/100

(cum. √ f): 
5

(cum. √ f): 
50

(cum. √ f): 
100

(cum. √ f): 
250

(cum. √ f): 
500

Equal $ 
Amount

Geometric Equal Nh Equal Nh per 
unique $

m01 m02 m03 m04 m05 m06 m07 m08 m09 m10 m11 m12

Without Detail Stratum

Data Amount  Count  Min  Median  Mean 
 Standard 
Deviation  Skewness  Kurtosis 

 Detail 
Threshold  Skewness  Kurtosis 

d01 74,500,000$            20,000    0.4$          200$           4,000$             53,000         60            4,000      50,000$             10                   40          
d02 2,300,000,000$       22,000    1.0$          300$           105,000$          1,800,000    40            2,000      7,000,000$         20                   300        
d03 169,900,000$          8,000      0.1$          4,000$         23,000$            81,000         10            200        440,000$            5                     30          
d04 98,200,000,000$      58,000    0.1$          60,000$       1,706,000$       26,300,000   80            8,000      260,000,000$      20                   350        
d05 1,400,000$             500        1,000.0$    1,800$         3,000$             4,000          10            100        10,000$             2                     4            
d06 12,000,000$            3,000      1.4$          1,800$         4,000$             6,000          3              10          30,000$             2                     5            
d07 7,200,000,000$       10,000    2.4$          55,000$       748,000$          3,800,000    10            200        6,000,000$         4                     10          
d08 500,000$                500        0.1$          300$           1,000$             5,000          10            100        1,900$               1                     2            
d09 176,600,000$          16,000    1.3$          3,000$         11,000$            27,000         10            300        180,000$            4                     20          
d10 4,400,000$             12,000    1.0$          100$           400$                1,000          10            200        10,000$             10                   100        
d11 22,700,000$            75,000    0.1$          100$           300$                5,000          90            10,000    20,000$             10                   200        
d12 1,800,000$             16,000    0.6$          -$            100$                400             20            500        2,300$               10                   30          
d13 74,500,000$            20,000    0.4$          200$           4,000$             53,000         60            4,000      120,000$            10                   100        
d14 268,500,000$          28,000    1.2$          8,000$         10,000$            7,000          1              1            40,000$             1                     1            
d15 129,800,000$          89,000    0.1$          100$           1,000$             9,000          20            1,000      130,000$            10                   200        
d16 59,900,000$            38,000    0.1$          300$           2,000$             7,000          20            400        80,000$             10                   100        
d17 10,100,000$            48,000    0.1$          100$           200$                1,000          20            1,000      10,000$             10                   100        
d18 171,000,000$          15,000    6.0$          1,000$         12,000$            119,000       30            1,000      250,000$            10                   100        
d19 899,300,000$          460,000  0.1$          100$           2,000$             20,000         50            3,000      350,000$            20                   300        
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3.2 Estimation Variable 
The estimation variable is the error amount (i.e., audit amount, taxable amount) and can 
be thought of in terms of a tax exposure (i.e., underpayment) or a tax credit (i.e., 
overpayment). Common audit situation in sales and use tax is where a line item expense, 
the recorded amount, is either entirely non-taxable (0%) or completely taxable (100%). 
For this research, this all or nothing scenario was explored with an assumption that 20 
percent of the records4 in the population would be in error (i.e., error rate, discovery rate, 
population tax rate). All items in the populations have the same probability of being in 
error with 20 percent of them being randomly assigned as taxable and those assigned as 
taxable the audit amount equals the recorded amount. 
 
3.3 Upper Dollar Threshold 
To account for the unique population attributes of monetary data, an upper dollar 
threshold is customarily created as the top stratum and reviewed at 100 percent as these 
“large recorded amounts are of particular auditing concern.”5  (See also Falk & Rotz 
2003). This technique has several great qualities: it lessens the non-normality of the data, 
reduces the required sample size, decreases the variance, does not contribute to the 
sample error, and limits the projectability of these items to a statistical weight of one 
further stabilizing the point estimate. There are many names for this top dollar 100 
percent review stratum: census, take-all, detail, or certainty stratum. It is a generally 
accepted sampling technique that is encouraged by practitioners and statisticians and has 
broad acceptance by regulators and often found in regulatory sampling guidance. 
 
A detail stratum was created for all populations in this research. The threshold is 
determined judgmentally but quantitatively informed through use of distribution plotting, 
population coverage, data breaks, and normality statistics. Table 2 provides the before 
and after skewness and kurtosis statistics for the populations with the top dollar threshold 
value.  
 
3.4 Sample Design & Sample Sizes 
The strata boundaries were constructed, for all non-detail strata, using interval widths and 
design methods as mentioned above. All methods and populations except population d1 
were designed with six strata with the sixth stratum serving as the detail stratum. 
Population d1 is the same as population d13 but was designed with five strata to link to 
and build on prior research6 (Rhyne & Falk 2007) serving as a population and results 
barometer. Six strata were chosen due to common practices and experience with audit 
data, existing literature (Cochran 1977; Roberts 1978), and analysis on these populations. 
Method 8, 𝑐𝑢𝑚ඥ𝑓 500, due to incompatibility of width size to specific population attributes 
of m8, m12, and m19 did not run on those populations.  In designing with the geometric 
method, populations m3 - m4, m6 - m7, m8, m11, m14, m16 - m18 needed an extra step 
and to be analysed with seven to nine strata to accommodate the geometric handling of 
small values. Once this was done the extra starting strata containing the small dollar 
amount items were collapsed into one stratum, so all populations ended with six total 
strata. 

                                                 
4 In sales and use tax audits a 5 percent to 20 percent population error rate is common. 
5 Roberts, D. (1978), “Statistical Auditing,” New York, NY: American Institute of Certified Public 
Accountants, Inc. 1978. 
6  Includes an unpublished ASA Joint Statistical Meeting 2018 Presentation by Rhyne & 
Pfaffenberger, “Tax Auditing use of Cumulative Square Root of the Frequency Method.” 

 
2729



 

 

 
A common practice in audit sampling is to apply constant sample sizes to each non-detail 
strata, though some states, other regulatory agencies, and consultants use a proportional 
or optimal allocation method. This constant sample size allows for a standard comparison 
among the populations and designs and an added applicableness to common audit 
sampling situations. Frequently seen is the allocation of 100 or 300 to each non-detail 
stratum. To accommodate the several populations analyzed in this research, a sample size 
of 80 units were assigned to each non-detail strata for a total sample size of 400 plus the 
detail stratum. Populations m2, m5, m7, and m8 were exceptions to accommodate how 
these design methods determined boundaries for those unique population characterises. 
Populations m2 and m7 were allocated 26 units (for a total of 130 plus detail stratum 
size) and m5 and m8 were allocated 15 units to all non-detail strata (for a total of 75 units 
plus detail).     
 
3.5 Simulation Methodology and Random Numbers 
One thousand iterations ran for each of the nineteen populations under each of the twelve 
stratification design methods: 1,000 iterations · 19 populations · 12 methods = 228,000 
simulations. The random numbers, sample selections, and iterations ran in SAS. The 
populations are sorted by the recorded amount. Using SAS’ RANUNI function, a random 
number generator, each iteration for a sample selection was given a seed of 0 (which uses 
the time of day as the seed). This created a different seed for every iteration applying a 
random number to each line for each population for every iteration. For each iteration, the 
population was sorted by strata and the random numbers.  The sample was pulled per the 
designated sample size. Each iteration’s sample was evaluated on the taxable amount 
(i.e., audit finding, the created correlated continuous variable) and projected to the 
population so that each stratification design method had 1,000 iterations · 12 methods = 
12,000 estimates and their associated accuracy measurements.  
 
3.6 Estimation 
Among practitioners, auditors, and regulators one of the most commonly used and 
preferred extrapolation methods, due its simplicity to project sample results, is the Mean 
per Unit (MPU) estimator (i.e., the direct projection method). This is but one of many 
generally accepted sampling techniques for extrapolation of audit results to the 
population which the statistical and audit literature support and can be found in writings 
like the seminal works of Cochran’s Sampling Techniques and Roberts’ Statistical 
Auditing (which was published by the American Institute of Certified Public 
Accountants, “AICPA”). 
 
The MPU estimator has other great characteristics.  “Over all possible samples the mean 
of the stratified mean estimator equals the total audited amount. Thus, the stratified mean 
estimator is unbiased.”7 This is a great quality for audit practitioners as estimate amounts 
often need to be broken out by years, accounts, etc. and this easily reconciles without 
additional algebraic steps. In most audit and financial documentation reviews, the MPU 
estimator’s “achieved precision” is approximately equal to or larger (i.e., more 
conservative)8 than the other generally accepted sampling techniques that meet criteria 
for use. The MPU estimation technique also does not require observed differences (i.e., 
the recorded amount less the audit amount) within each stratum (which a lack of observed 
differences is a frequent audit occurrences).  

                                                 
7 Roberts 1978, p. 101. 
8 Roberts 1978, p. 103. 
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This is not to say that the MPU estimator is the best audit estimator but possess several 
robust qualities that serve well for this research and for audit situations in which 
practitioners have resource constraints. As best practices, it is a generally accepted 
sampling technique, where feasible, to calculate estimates using multiple techniques and 
evaluate each on their own merits and comparatively to each other selecting the best in 
class based on the sample results attributes and other statistical criteria. But it is beyond 
the scope of this paper to further detail and explore estimators. 
 
For this research, all estimates are produced using the stratified MPU estimator: 𝑋෠ெௌ =

∑(𝑁௜𝑥̄௜) and where the estimated standard error is 𝜎ො൫𝑋෠ெௌ൯ = ඥ∑[𝑁௜(𝑁௜ − 𝑛௜)𝑆௫௜
ଶ /𝑛௜ (Roberts 1978). 

These formulae’s notations are the same as contained in the Internal Revenue Service’s 
Revenue Procedure 2011-42 providing federal “taxpayers with guidance regarding the 
use and evaluation of statistical samples and sampling estimates.”  While the notations 
can vary widely in the literature, the calculations are the same. Roberts’ notation of x for 
the audit error amount has often initially confused audit practitioners that are accustomed 
to seeing x represent the recorded amount and y the audit error amount. The notation can 
easily be adjusted as needed if it is plainly documented what it represents. 
 
Relative precision is the margin of error divided by the point estimate with the margin of 
error being the standard error (i.e., standard deviation) multiplied by the t-value. The 90% 
confidence limits, built around each estimated audit error amount, are based on the t-
value with the degrees of freedom estimated using the Satterthwaite approximation 
(Cochran 1977). 
 

4. Evaluation of Simulations and Comparison of Methods 
 
To evaluate sample design methods on these specific accounting populations, this 
analysis looks at estimation and variance accuracy and precision. These attributes are 
evaluated by analysis on the taxable estimates and those estimates compared to the true 
taxable amount. Per Cochran, “accuracy refers to the size of deviations from the true 
mean µ, whereas precision refers to the size of deviations from the mean m obtained by 
repeated application of the sampling procedure.”9 Thus, precision is reliability around 
producing similar (i.e., consistent) results and accuracy is the closeness of those results to 
the target (i.e., true value). The assessment considers data levels: the design method level, 
the population level, and the simulation method level. These statistics, and their 
derivatives, with the data level views allow for an assessment of the behaviors of the 
design methods and analysis to conclude on interval width effects for these audit 
populations.  
 
This paper seeks to disaggregate certain statistics that are often used in audit sampling 
research. When these statistics are presented at a rolled up, high level, it confounds 
essential qualities of the estimate, standard deviation, and design. Which confounded 
qualities should be transparent for use by audit practitioners in understanding best 
methods for specific circumstances and to prepare audit practitioners for a broader range 
of statistical behavior when it occurs. 
 

                                                 
9 Cochran, W. (1977), “Sampling Techniques, 3rd Edition,” New York, NY:  John Wiley & Sons, 
Inc., 1977, p. 16. 
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Specifically, the following five areas are discussed: (1) mean relative error, (2) relative 
error frequency, (3) confidence intervals, (4) estimated standard deviation to true taxable 
amount standard deviation, and (5) mean squared error. The reader should bear in mind 
during the following discussion that (1) populations 2, 4, and 7 are comparatively large 
dollar populations by average amount and (2) Method 8 due to incompatibility of interval 
width to specific population attributes of 8, 9, and 12 did not run on that population and 
thus had 3,000 less iterations than the other methods. Note than each subsection does not 
seek to exhaustively discuss the analysis outside of a high-level observation. The ending 
conclusion will go more in depth on a method by method analysis of observations.  
 
4.1 Mean Relative Error & Relative Error Range Frequency 
Table 3 displays that over all iterations by design method and population that on average 
the mean relative error was essentially 0%. This statistical quality is sought for when 
choosing statistical techniques and methods.  It says that if sampled enough times (and in 
this study 1,000 times for a population by a method) there is an “accurate” design 
because the 1,000 estimated taxable amounts average to the true amount. But in practice 
we do not sample 1,000 times but only once for a project. This balance supports but does 
not concluded a normality, so that when all errors are weighted over a several random 
samples, they are all essentially canceled out.  Very little else can be ascertained from the 
table and this aggregated statistic in recommending one method over another or one 
method best for a type of accounting population. To understand that we need to look at a 
plot of frequencies or a table, such as Table 4, that list these frequencies with a graphical 
component.  
   

Table 3: Mean Relative Error 

(𝑀𝑒𝑎𝑛 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 =  
ଵ

௑
∑

௒
^

೔ି௒

௒

௑
௜ୀଵ ) 

 

 
 

Table 4a breaks down Table 3 to the iteration level within method showing the 
frequencies of the relative errors within 25% intervals. Here data shape is transparent and 
assist in understanding the errors of over and under estimating the true taxable amount. 
The values of the frequency of the relative error show normal distribution tendencies, 
peaking strongly around the true taxable amount with a tight -25% to 25% error range. 
There visually appears, and in the associated count summation, to be roughly 50% of 
estimates on both sides of 0% (or the true taxable amount) but the length and the tails are 
not symmetrical. The table shows that even though both sides are balanced in the taxable 
error weight the data does not all exhibit proportional shape with overestimating the true 
value having a long downward tail (i.e., skewed to the right for a graph). The extreme 

(cum. √ f): 
0.01

(cum. √ f): 
1

(cum. √ f): 
median/100

(cum. √ f): 
5

(cum. √ f): 
50

(cum. √ f): 
100

(cum. √ f): 
250

(cum. √ f): 
500

Equal $ 
Amount

Geometric Equal Nh Equal Nh per 
unique $

Population 
% Mean

Data m01 m02 m03 m04 m05 m06 m07 m08 m09 m10 m11 m12
d01 0.1% -0.1% 0.2% -0.1% -0.2% -0.2% 0.2% 0.0% 0.0% 0.3% 0.1% 0.0% 0.0%
d02 -2.5% -0.4% 0.1% 0.6% -0.4% -0.7% -0.5% -0.7% -0.6% -0.1% 1.6% 1.4% -0.2%
d03 0.0% -0.2% -0.3% 0.2% 0.3% 0.0% -0.3% -0.2% 0.7% -0.6% -0.2% -0.3% -0.1%
d04 1.1% -2.8% -0.5% -0.4% 0.2% -0.5% 0.9% -1.2% -0.4% -0.7% 1.1% 1.2% -0.2%
d05 -1.0% 0.3% 0.1% 0.4% 0.7% -0.5% -0.8% 0.1% -1.2% 0.1% -1.9% -1.2% -0.4%
d06 0.7% 0.3% 0.3% -0.4% 0.1% 0.2% -0.2% -0.1% 0.1% 0.8% 0.2% 0.2% 0.2%
d07 -0.6% 0.6% 0.4% 1.3% -1.2% -0.4% 0.1% 0.8% -0.4% -1.0% -0.5% -1.1% -0.2%
d08 0.4% -0.3% 0.2% 0.3% -0.7% -0.1% 0.1% n/a -0.3% 0.5% 0.3% 0.1% 0.0%
d09 0.5% -0.7% 0.1% 0.5% -0.3% -0.2% 0.1% 0.3% 0.3% 0.3% 0.4% 0.6% 0.2%
d10 0.4% 0.3% -0.1% -0.1% 0.4% -0.3% 0.0% 0.1% -0.3% -0.2% 0.1% -0.4% 0.0%
d11 1.1% 0.1% 0.3% 0.0% 0.5% 0.3% -0.2% 0.0% 0.0% 0.7% 0.6% -1.0% 0.2%
d12 0.0% -0.1% -0.1% 0.4% 0.1% -0.2% -0.2% n/a 0.3% 0.2% 0.1% 0.5% 0.1%
d13 -0.1% 0.6% 0.0% 0.6% 0.0% 0.2% -0.1% -0.2% -0.2% -0.3% -1.0% -0.3% -0.1%
d14 0.4% -0.2% 0.2% -0.5% -0.1% 0.1% 0.0% 0.0% -0.1% 0.8% 0.1% 0.2% 0.1%
d15 0.9% -0.2% 0.6% -0.6% 0.0% 0.2% 0.2% 0.3% -0.4% 0.5% -0.3% -0.5% 0.1%
d16 -0.6% -0.7% -0.1% -0.3% -0.2% -0.7% 0.1% 0.0% -0.6% 0.1% 1.6% -0.8% -0.2%
d17 -0.9% -0.3% 0.0% 0.2% -0.1% 0.4% 0.0% -0.6% -0.3% -0.3% -0.3% 0.2% -0.2%
d18 0.6% -0.2% -0.5% -0.6% 0.2% 0.0% -0.1% 0.2% 0.0% 0.6% 0.5% -0.1% 0.1%
d19 1.1% -0.1% 0.3% -0.1% -0.3% -0.1% -0.1% n/a -0.3% 0.8% 1.1% 0.0% 0.2%
Method % Mean 0.1% -0.2% 0.1% 0.1% -0.1% -0.1% 0.0% -0.1% -0.2% 0.1% 0.2% -0.1% 0.0%
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outliers occur infrequently but can overestimate the true error rate by up to 425%, an 
extremely exaggerated error level (a distinct challenge of dealing with accounting data). 
 

Table 4a: Relative Error Frequency 
 

 
 
What at first, from Table 3, appears no one estimator projecting more accurate estimates, 
or no distinguish effect for the interval widths, Table 4 clearly exposes an interval width 
effect and one that runs counter to existing guidance of having narrow intervals (i.e., 
many classes).  (The authors have initially used a table and not a graph in the belief that 
graphs and plots are essential but overused in data analysis at the expense of tables.  
Tables can often preserve more information, and more cleanly, than graphs and exhibit it 
in ways that uniquely and unexpectedly emphasis the data’s shape graphically.)  While 
serving as a barometer, the Equal $ Method is the most accurate design method for the 
specific situations.  It has a tight error range, a strong peak, and no comparatively 
extreme projection errors. No other tested method approaches the Equal $ Method in 
exhibiting this level of accurateness or precision in estimating the true taxable amount.  
 
This is not the only design quality that should be explored. Before going on to the other 
areas of assessment this analysis removes the comparatively extreme large dollar audit 
populations 2, 4, and 7 from this frequency table as seen in Table 4b. (See accounting 
population Table 2 for further details on these specific populations.)  Without those large 
dollar populations, some of the other design methods and interval widths look to perform 
as well as the Equal $ Method. Here the advantages of the Equal $ Method are vastly 
lessened though it continues to exhibit the strongest normal tendencies of all the methods.  
The effect of interval widths continues to be present in excluding large dollar 
populations. 
 

Table 4b: Relative Error Frequency (Excluding the large dollar populations) 

 

(cum. √ f): 
0.01

(cum. √ f): 
1

(cum. √ f): 
median/100

(cum. √ f): 
5

(cum. √ f): 
50

(cum. √ f): 
100

(cum. √ f): 
250

(cum. √ f): 
500

Equal $ 
Amount

Geometric Equal Nh Equal Nh per 
unique $

Population 
Total

Populatio
n % Mean

m01 m02 m03 m04 m05 m06 m07 m08 m09 m10 m11 m12
(-75%) - (-50%) 135 150 1 92 23 21 4 3 3 15 261 135 843 0.4%
(-50%) - (-25%) 2,011 1,381 860 1,060 726 621 571 536 128 1,086 2,544 1,797 13,321 5.9%
(-25%) - 0% 8,151 8,396 8,973 8,556 8,813 8,807 8,845 7,446 9,436 8,550 7,686 8,336 101,995 45.3%

0% - 25% 6,459 7,625 8,071 8,132 8,620 8,859 8,862 7,304 9,182 7,823 5,942 6,609 93,488 41.6%
25% - 50% 1,592 1,039 828 784 593 520 559 595 248 1,337 1,670 1,544 11,309 5.0%
50% - 75% 377 217 186 209 144 116 105 89 3 165 457 340 2,408 1.1%
75% - 100% 144 92 57 84 53 37 38 19 19 207 116 866 0.4%

100% - 125% 69 48 15 47 15 13 14 8 5 83 59 376 0.2%
125% - 150% 24 26 6 15 6 2 1 45 20 145 0.1%
150% - 175% 9 13 2 6 4 3 32 20 89 0.0%
175% - 200% 10 5 1 7 1 1 1 27 7 60 0.0%
200% - 225% 5 3 6 2 24 8 48 0.0%
225% - 250% 5 3 1 9 3 21 0.0%
250% - 275% 7 1 1 6 4 19 0.0%
275% - 300% 1 1 1 3 0.0%
300% - 325% 3 2 5 0.0%
325% - 350% 2 2 0.0%
350% - 375% 0.0%
375% - 400% 1 1 2 0.0%
400% - 425% 0.0%

Method Total 19,000 19,000 19,000 19,000 19,000 19,000 19,000 16,000 19,000 19,000 19,000 19,000 225,000 100.0%

Range

T
rue T

axable A
m

ount

(cum. √ f): 
0.01

(cum. √ f): 
1

(cum. √ f): 
median/100

(cum. √ f): 
5

(cum. √ f): 
50

(cum. √ f): 
100

(cum. √ f): 
250

(cum. √ f): 
500

Equal $ 
Amount

Geometric Equal Nh Equal Nh per 
unique $

Population 
Total

Populatio
n % Mean

m01 m02 m03 m04 m05 m06 m07 m08 m09 m10 m11 m12
-100% -75% 0.0%

-75% -50% 20 17 1 8 3 12 132 17 210 0.1%
-50% -25% 1,188 596 297 337 141 126 123 167 113 694 1,713 966 6,461 3.4%
-25% 0% 7,211 7,464 7,770 7,575 7,657 7,600 7,613 6,139 7,778 7,283 6,776 7,401 88,267 46.7%

0% 25% 5,905 7,069 7,349 7,544 7,950 8,084 8,048 6,416 7,936 6,922 5,384 6,196 84,803 44.9%
25% 50% 1,358 785 548 503 248 185 210 268 167 1,002 1,402 1,227 7,903 4.2%
50% 75% 248 63 34 31 4 5 6 10 3 79 343 164 990 0.5%
75% 100% 47 6 1 2 7 148 24 235 0.1%

100% 125% 22 1 54 5 82 0.0%
125% 150% 24 24 0.0%
150% 175% 1 9 10 0.0%
175% 200% 6 6 0.0%
200% 225% 5 5 0.0%
225% 250% 1 1 0.0%
250% 275% 3 3 0.0%

Method Total 16,000 16,000 16,000 16,000 16,000 16,000 16,000 13,000 16,000 16,000 16,000 16,000 189,000 100.0%

Range

T
rue T

axab
le A

m
o

unt
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4.2 Confidence Interval Coverage 
The 90% confidence intervals are built to review the variance and normality assumptions. 
Table 5 show the percentage of times, the true taxable amount is contained within the 
estimated taxable amount interval. The average coverage among methods of the true 
taxable amount ranged from 79% to 88% and on average 85%. The effect of interval 
widths can be seen with the wider intervals being comparative to the equal $ amount 
method.  Though once again the equal $ method performs most consistently among all 
populations demonstrating its robustness exceptionally well on the extraordinarily large 
dollar populations where the other methods and specific interval widths fell short. 
Without the large dollar populations, the average coverage is 87%. Given some of the 
small sample sizes based on population attributes, the potential for some designs being 
less effective than others, and the skewness of accounting data in general, there was an 
expectation that the coverage rate would fall below but remain close to 90%. 
 

Table 5: Confidence Interval Coverage of the True Taxable Amount 
(Extraordinarily large dollar populations in red) 

 

 
 
4.3 Estimated Standard Deviation and True Standard Deviation 
To assess the design methods’ standard deviation behavior, the percent difference 
between sample standard deviation and the true standard deviation is listed in below 
Table 6 and calculated as (𝑆𝑎𝑚𝑝𝑙𝑒 𝐸𝑟𝑟𝑜𝑟 − 𝑇𝑟𝑢𝑒 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛) ÷ 𝑇𝑟𝑢𝑒 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛.  

(Note that when this activity is done for the variance differences the percent errors 
difference balances out to essentially 0%.)  When viewing the Table 6, recall that m08 
has 3,000 less iterations.  
 
The table shows a normal tendency to the frequencies with the interval widths showing 
tighter tails and higher peaks as the interval width widens. The equal $ method shows a 
unique characteristic compared to the other methods. It is far less inclined to 
underestimate the true standard deviation and one of the highest peaks at the -25% to 
25% range and among the tightest distributions.  It does have a long but thin tail of 
overestimating the variance.  The Geometric method gave the least occurrences of and 
the shortest tail in overestimating errors though its central peak is not as high as other 
methods.  
    
 
 
 

(cum. √ f): 
0.01

(cum. √ f): 1 (cum. √ f): 
median/100

(cum. √ f): 5 (cum. √ f): 
50

(cum. √ f): 
100

(cum. √ f): 
250

(cum. √ f): 
500

Equal $ 
Amount

Geometric Equal Nh Equal Nh 
per unique $

Population 
% Mean

Stratum non-
detail

Data m01 m02 m03 m04 m05 m06 m07 m08 m09 m10 m11 m12 Sample Size
d01 81% 83% 87% 89% 88% 90% 90% 92% 87% 84% 78% 81% 86% 80               
d02 56% 58% 59% 63% 69% 71% 74% 76% 80% 75% 50% 64% 66% 26               
d03 87% 85% 89% 86% 90% 90% 89% 90% 89% 86% 85% 87% 88% 80               
d04 67% 68% 79% 68% 73% 78% 78% 76% 87% 79% 70% 69% 74% 80               
d05 86% 85% 91% 89% 90% 91% 91% 91% 89% 89% 86% 88% 89% 15               
d06 90% 88% 89% 88% 91% 90% 91% 90% 90% 89% 89% 90% 90% 80               
d07 66% 66% 73% 67% 69% 69% 70% 74% 87% 75% 72% 59% 71% 26               
d08 86% 86% 86% 88% 88% 87% 90% n/a 89% 86% 89% 87% 87% 15               
d09 87% 87% 89% 91% 88% 92% 89% 90% 90% 89% 88% 90% 89% 80               
d10 88% 90% 89% 89% 90% 92% 90% 88% 90% 89% 87% 86% 89% 80               
d11 76% 86% 88% 88% 91% 90% 90% 88% 89% 88% 72% 77% 85% 80               
d12 88% 90% 91% 91% 88% 89% 88% n/a 90% 89% 87% 90% 89% 80               
d13 76% 85% 85% 88% 88% 90% 90% 89% 88% 88% 73% 77% 85% 80               
d14 89% 89% 88% 88% 90% 90% 90% 90% 89% 89% 91% 89% 89% 80               
d15 83% 87% 86% 87% 90% 91% 92% 90% 88% 87% 74% 81% 86% 80               
d16 79% 81% 86% 88% 89% 90% 90% 90% 89% 88% 78% 79% 86% 80               
d17 83% 89% 89% 91% 89% 92% 89% 85% 89% 88% 80% 85% 87% 80               
d18 83% 83% 88% 86% 90% 89% 91% 88% 90% 89% 81% 84% 87% 80               
d19 78% 86% 86% 87% 87% 90% 90% n/a 88% 85% 68% 81% 84% 80               
Method % Mean 80% 83% 85% 85% 86% 87% 87% 87% 88% 86% 79% 81% 85%

 
2734



 

 

Table 6: Frequency of Difference between Sample and Population Standard Deviation 
 

 
 
4.4 Relative Precision  
Per Roberts, precision is a “measure of closeness between a sample estimate and the 
corresponding unknown population characteristic” (Roberts 1978). It is a widely used 
measurement in audit sampling and when certain thresholds of precision (e.g., 10%) are 
not met the taxpayer often must us the lower bound of the confidence interval (Falk, 
Petska, & Rhyne 2008). For the degrees of freedom (df), the Satterthwaite approximation 
was used (Cochran 1977). Here again the incrementally increasing improved effect is 
seen for the widening interval widths.  The Equal $ Method stands out as the best 
preforming method on these methods with a mean relative precision of 15.3%.  The 
Geometric method comparatively performs poorly. 
 

Table 7: Mean Relative Precision by Method & Population 

(𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
௧(ௗ௙)ට௩(௒)

^

(௒)
^  where Y is the taxable amount) 

 

 
 
As above with the other analysis, the following Table 8a and Table 8b will disaggregate 
this statistic to the iteration level by method and view it with and without the large dollar 
populations where the same effects and conclusions can be observed as already 
identified. 

(cum. √ f): 
0.01

(cum. √ f): 
1

(cum. √ f): 
median/100

(cum. √ f): 
5

(cum. √ f): 
50

(cum. √ f): 
100

(cum. √ f): 
250

(cum. √ f): 
500

Equal $ 
Amount Geometric Equal Nh

Equal Nh per 
unique $

m01 m02 m03 m04 m05 m06 m07 m08 m09 m10 m11 m12 Total
(-100%) - (-75%) 829 746 420 585 323 250 169 95 53 1188 805 5463
(-75%) - (-50%) 2403 1164 794 878 851 765 712 685 396 767 2766 2164 14345
(-50%) - (-25%) 3522 2743 2454 1916 747 737 945 1198 1376 2271 3448 3327 24684
(-25%) - 0% 4855 6189 6821 7048 7973 7956 7938 6187 8639 7113 4545 5303 80567

0% - 25% 4307 5789 6547 6812 8263 8598 8313 6753 7589 6790 4120 4458 78339
25% - 50% 1741 1686 1365 1304 380 276 479 744 790 1447 1502 1667 13381
50% - 75% 680 390 367 155 226 254 248 222 134 404 673 716 4469
75% - 100% 315 111 97 90 129 74 124 91 20 123 337 226 1737

100% - 125% 142 49 48 77 49 54 51 18 20 23 122 159 812
125% - 150% 93 50 32 42 38 21 17 4 14 7 106 90 514
150% - 175% 38 19 46 58 14 10 2 3 3 2 54 41 290
175% - 200% 32 31 4 22 4 3 1 10 50 18 175
200% - 225% 21 23 7 2 2 1 4 11 7 78
225% - 250% 9 6 3 2 1 4 19 10 54
250% - 275% 6 3 2 1 1 19 6 38
275% - 300% 6 3 19 3 31
300% - 325% 1 1 2
325% - 350% 18 18
350% - 375% 2 2
375% - 400% 1 1

Min -98% -99% -97% -98% -97% -96% -97% -94% -71% -96% -100% -100% -100%
Mean -9.8% -6.8% -4.7% -5.0% -3.4% -3.1% -2.7% -3.1% -2.7% -3.1% -11.9% -9.2% -5.5%
Max 396% 318% 267% 287% 232% 215% 201% 170% 268% 169% 353% 299% 396%

Total # of Iterations 19,000 19,000 19,000 19,000 19,000 19,000 19,000 16,000 19,000 19,000 19,000 19,000 225,000
Total # above 100% 348 182 135 212 108 90 72 25 56 32 421 334 2,015

Range
T

rue Standard D
eviation

(cum. √ f): 
0.01

(cum. √ f): 
1

(cum. √ f): 
median/100

(cum. √ f): 
5

(cum. √ f): 
50

(cum. √ f): 
100

(cum. √ f): 
250

(cum. √ f): 
500

Equal $ 
Amount

Geometric Equal Nh Equal Nh 
per unique $

Population 
% Mean

Data m01 m02 m03 m04 m05 m06 m07 m08 m09 m10 m11 m12
d01 15.9% 11.2% 10.1% 9.1% 7.1% 6.8% 6.7% 6.7% 7.5% 13.2% 16.7% 15.4% 10.5%
d02 31.3% 33.3% 31.9% 32.3% 27.9% 25.9% 23.8% 22.0% 12.8% 25.2% 35.1% 33.0% 27.9%
d03 32.5% 30.1% 20.8% 27.2% 20.0% 18.0% 15.8% 14.3% 12.9% 30.1% 35.2% 31.6% 24.0%
d04 59.2% 58.0% 37.4% 55.3% 48.1% 45.3% 41.9% 38.1% 19.1% 39.4% 60.3% 59.0% 46.8%
d05 43.4% 42.7% 36.0% 39.7% 32.7% 31.2% 30.5% 31.4% 30.4% 30.1% 43.4% 43.2% 36.2%
d06 23.2% 22.0% 17.1% 19.4% 15.7% 15.3% 14.9% 14.9% 14.2% 24.8% 24.2% 22.7% 19.0%
d07 42.3% 42.6% 37.5% 42.4% 40.4% 39.6% 38.4% 37.7% 19.8% 36.6% 36.5% 44.9% 38.2%
d08 22.7% 21.6% 20.1% 18.6% 15.4% 14.3% 13.7% n/a 13.8% 27.9% 21.0% 23.0% 19.3%
d09 31.0% 31.0% 21.9% 27.7% 20.9% 19.5% 18.1% 17.4% 16.9% 33.9% 35.4% 28.4% 25.2%
d10 25.0% 15.8% 15.2% 13.6% 12.6% 12.7% 13.2% 18.1% 12.6% 18.8% 25.4% 24.3% 17.3%
d11 32.3% 18.9% 20.4% 15.8% 13.9% 13.8% 14.8% 19.1% 13.8% 21.3% 38.4% 28.1% 20.9%
d12 26.6% 16.0% 17.5% 15.0% 14.8% 16.2% 24.1% n/a 14.8% 21.0% 30.9% 24.3% 20.1%
d13 23.7% 17.4% 15.1% 13.7% 9.5% 8.8% 8.1% 7.8% 8.5% 14.5% 24.2% 22.5% 14.5%
d14 20.9% 19.8% 18.2% 18.6% 18.2% 18.2% 18.1% 18.1% 17.4% 32.4% 21.0% 21.0% 20.1%
d15 40.9% 26.5% 26.8% 20.8% 17.0% 16.4% 16.0% 15.8% 17.5% 31.8% 47.9% 37.0% 26.2%
d16 33.1% 25.0% 21.7% 20.6% 16.1% 15.3% 14.6% 14.9% 14.9% 22.7% 38.2% 31.3% 22.4%
d17 29.8% 18.6% 19.7% 16.5% 15.3% 15.3% 18.2% 26.4% 15.6% 25.5% 35.6% 27.1% 22.0%
d18 25.6% 23.1% 17.0% 19.4% 14.1% 12.6% 11.2% 10.7% 10.4% 15.0% 29.1% 24.1% 17.7%
d19 42.4% 28.2% 26.8% 22.5% 17.3% 16.5% 16.1% n/a 17.7% 33.9% 56.6% 35.5% 28.5%

Method % Mean 31.7% 26.4% 22.7% 23.6% 19.8% 19.0% 18.8% 19.6% 15.3% 26.2% 34.5% 30.3% 24.1%
- without 2, 4,7 29.3% 23.0% 20.3% 19.9% 16.3% 15.7% 15.9% 16.6% 14.9% 24.8% 32.7% 27.5% 21.5%

Total # of Iterations 19,000 19,000 19,000 19,000 19,000 19,000 19,000 16,000 19,000 19,000 19,000 19,000 225,000
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Table 8a: Relative Precision Frequency Ranges 

 

 
 

Table 8b: Relative Precision Frequency Ranges 
(Excluding the large dollar populations) 

 

 
 
4.5 Mean Squared Error 
As the Mean Squared Error statistics is not a relative measurement and will not be 
averaged among the population but only across the design methods. The Mean Squared 
Error equals (𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡𝑎𝑥𝑎𝑏𝑙𝑒 𝑒𝑠𝑡𝑖𝑎𝑚𝑡𝑒) + (𝑏𝑖𝑎𝑠)ଶ where bias is the taxable estimate less the 
true taxable amount (Cochran 1977). The same patterns as seen above hold in this Table 
9.  
 

Table 9: Mean Relative Precision by Method & Population 
 

 
 
 

(cum. √ f): 
0.01

(cum. √ f): 
1

(cum. √ f): 
median/100

(cum. √ f): 
5

(cum. √ f): 
50

(cum. √ f): 
100

(cum. √ f): 
250

(cum. √ f): 
500

Equal $ 
Amount

Geometric Equal Nh Equal Nh per 
unique $

Population 
Total

Population 
% Mean

m01 m02 m03 m04 m05 m06 m07 m08 m09 m10 m11 m12
0% - 10.0% 364 478 555 821 1,547 1,962 2,077 2,048 2,437 184 485 383 13,341 6%
10% - 20.0% 2,117 6,337 8,649 9,097 12,315 12,847 12,174 8,773 14,129 4,454 1,953 2,489 95,334 42%
20% - 30.0% 8,085 6,959 6,376 5,552 2,373 1,662 2,326 2,518 1,750 7,971 6,361 8,697 60,630 27%
30% - 40.0% 4,286 2,842 1,985 1,436 1,336 1,213 1,352 1,744 656 4,950 4,555 4,050 30,405 14%
40% - 50.0% 2,034 1,003 804 874 477 535 456 472 28 1,116 2,963 1,746 12,508 6%
50% - 60.0% 994 454 436 464 567 503 446 383 258 1,208 671 6,384 3%
60% - 70.0% 630 504 82 399 260 179 121 50 56 570 315 3,166 1%
70% - 80.0% 242 185 53 183 62 59 44 12 11 346 260 1,457 1%
80% - 90.0% 101 93 46 82 35 30 4 229 225 845 0%
90% - 100.0% 71 74 14 37 18 8 138 88 448 0%

100% - 110.0% 38 40 27 7 2 86 39 239 0%
110% - 120.0% 18 14 22 3 51 23 131 0%
120% - 130.0% 15 12 6 37 12 82 0%
130% - 140.0% 5 5 18 2 30 0%

Total # of Iterations 19,000 19,000 19,000 19,000 19,000 19,000 19,000 16,000 19,000 19,000 19,000 19,000 225,000 100%
Total # above 40% 4,148 2,384 1,435 2,094 1,429 1,316 1,071 917 28 1,441 5,646 3,381 25,290

Range

(cum. √ f): 
0.01

(cum. √ f): 
1

(cum. √ f): 
median/100

(cum. √ f): 
5

(cum. √ f): 
50

(cum. √ f): 
100

(cum. √ f): 
250

(cum. √ f): 
500

Equal $ 
Amount

Geometric Equal Nh Equal Nh per 
unique $

Population 
Total

Population 
% Mean

m01 m02 m03 m04 m05 m06 m07 m08 m09 m10 m11 m12
0% - 10.0% 212 319 429 691 1,460 1,886 2,001 2,000 1,908 161 239 224 11,530 6%
10% - 20.0% 1,764 5,991 8,186 8,726 11,891 12,393 11,675 8,173 12,608 3,962 1,588 2,137 89,094 47%
20% - 30.0% 7,534 6,432 5,802 5,057 1,831 1,046 1,677 1,924 892 7,362 6,019 8,247 53,823 28%
30% - 40.0% 3,951 2,505 1,342 1,056 775 667 639 888 579 4,099 4,213 3,564 24,278 13%
40% - 50.0% 1,649 629 234 423 43 8 8 15 13 394 2,317 1,395 7,128 4%
50% - 60.0% 644 108 7 45 22 808 360 1,994 1%
60% - 70.0% 170 13 2 360 63 608 0%
70% - 80.0% 64 2 186 9 261 0%
80% - 90.0% 10 1 133 1 145 0%
90% - 100.0% 2 72 74 0%

100% - 110.0% 39 39 0%
110% - 120.0% 20 20 0%
120% - 130.0% 5 5 0%
130% - 140.0% 1 1 0%

Total # of Iterations 16,000 16,000 16,000 16,000 16,000 16,000 16,000 13,000 16,000 16,000 16,000 16,000 189,000 100%
Total # above 40% 2,539 753 241 470 43 8 8 15 13 416 3,941 1,828 10,275

Range

(cum. √ f): 
0.01

(cum. √ f): 
1

(cum. √ f): 
median/100

(cum. √ f): 
5

(cum. √ f): 
50

(cum. √ f): 
100

(cum. √ f): 
250

(cum. √ f): 
500

Equal $ 
Amount

Geometric Equal Nh Equal Nh per 
unique $

Population 
Mean

Data m01 m02 m03 m04 m05 m06 m07 m08 m09 m10 m11 m12
d01 6.0E+12 2.6E+12 2.0E+12 1.5E+12 9.4E+11 8.7E+11 8.6E+11 8.0E+11 1.1E+12 3.8E+12 7.3E+12 5.3E+12 5.3E+12
d02 6.0E+16 6.4E+16 5.6E+16 4.8E+16 2.4E+16 1.9E+16 1.5E+16 1.1E+16 4.6E+15 1.6E+16 1.6E+17 5.4E+16 5.4E+16
d03 9.4E+13 8.3E+13 3.7E+13 6.7E+13 3.4E+13 2.7E+13 2.1E+13 1.7E+13 1.5E+13 8.2E+13 1.2E+14 8.9E+13 8.9E+13
d04 1.9E+20 1.6E+20 4.0E+19 1.5E+20 8.6E+19 6.6E+19 5.6E+19 4.2E+19 8.2E+18 4.2E+19 1.9E+20 1.8E+20 1.8E+20
d05 8.4E+09 8.7E+09 5.7E+09 7.2E+09 4.9E+09 4.3E+09 4.3E+09 4.5E+09 4.3E+09 4.2E+09 8.7E+09 8.3E+09 8.3E+09
d06 2.1E+11 1.9E+11 1.2E+11 1.5E+11 9.7E+10 9.2E+10 8.6E+10 8.8E+10 7.9E+10 2.5E+11 2.3E+11 2.0E+11 2.0E+11
d07 4.9E+17 5.3E+17 3.4E+17 5.2E+17 4.2E+17 4.0E+17 3.8E+17 3.2E+17 6.8E+16 2.7E+17 3.0E+17 8.2E+17 8.2E+17
d08 3.7E+08 3.3E+08 3.0E+08 2.5E+08 1.7E+08 1.5E+08 1.3E+08 n/a 1.4E+08 5.9E+08 3.0E+08 3.8E+08 3.8E+08
d09 8.8E+13 8.6E+13 4.2E+13 6.7E+13 3.8E+13 3.2E+13 2.8E+13 2.7E+13 2.4E+13 1.0E+14 1.1E+14 7.2E+13 7.2E+13
d10 3.7E+10 1.4E+10 1.2E+10 1.0E+10 8.7E+09 8.3E+09 9.5E+09 1.8E+10 8.4E+09 1.9E+10 3.9E+10 3.4E+10 3.4E+10
d11 2.3E+12 5.2E+11 6.0E+11 3.4E+11 2.6E+11 2.6E+11 2.9E+11 5.1E+11 2.6E+11 6.5E+11 4.0E+12 1.5E+12 1.5E+12
d12 6.6E+09 2.3E+09 2.7E+09 2.0E+09 2.0E+09 2.3E+09 5.4E+09 n/a 1.9E+09 4.0E+09 9.2E+09 5.5E+09 5.5E+09
d13 1.5E+13 6.4E+12 4.8E+12 3.7E+12 1.7E+12 1.4E+12 1.2E+12 1.1E+12 1.4E+12 4.0E+12 1.7E+13 1.3E+13 1.3E+13
d14 8.7E+13 8.0E+13 6.8E+13 7.1E+13 6.6E+13 6.7E+13 6.5E+13 6.6E+13 6.0E+13 2.1E+14 8.5E+13 8.9E+13 8.9E+13
d15 1.3E+14 4.2E+13 4.7E+13 2.6E+13 1.6E+13 1.5E+13 1.4E+13 1.4E+13 1.8E+13 6.4E+13 2.2E+14 1.0E+14 1.0E+14
d16 1.6E+13 8.2E+12 5.6E+12 4.9E+12 3.0E+12 2.5E+12 2.3E+12 2.4E+12 2.5E+12 5.8E+12 2.5E+13 1.3E+13 1.3E+13
d17 3.1E+11 1.0E+11 1.1E+11 8.1E+10 7.0E+10 6.6E+10 1.0E+11 2.2E+11 7.3E+10 1.9E+11 5.0E+11 2.5E+11 2.5E+11
d18 6.3E+13 4.9E+13 2.4E+13 3.2E+13 1.6E+13 1.3E+13 9.8E+12 9.9E+12 8.7E+12 1.9E+13 9.0E+13 5.3E+13 5.3E+13
d19 6.7E+15 2.2E+15 2.0E+15 1.3E+15 7.8E+14 6.9E+14 6.2E+14 n/a 8.3E+14 3.3E+15 1.9E+16 4.0E+15 4.0E+15
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5. Conclusion 
 
The research supports the conclusion that interval width (i.e., class width) has a 
meaningful effect on the 𝑐𝑢𝑚ඥ𝑓  method and the associated representativeness of the 
sample and the accuracy and precision of the estimate. In much of the existing literature 
on sample designs, in which stratification methods have been compared to the 𝑐𝑢𝑚ඥ𝑓 
method, there must be a consideration that the interval widths in those analysis were 
potentially far from appropriate for those populations and further consideration should be 
given where no explanation was provided for the chosen width(s).     
 
Cochran wrote, which he applied to a different issue, but one stated here: “Only a few 
examples from actual data are available in the literature. To supplement them, a simple 
theoretical approach is used.”10 This research does the opposite. In discussing interval 
widths, this research does not seek a theoretical approach, but actual data driven analysis 
with more populations than is characteristically seen in applicable research. But nineteen 
populations are still a small number of (non-random) populations and there is risk they 
don’t represent the broader universe of accounting data. 
 
With these populations, the larger interval widths resulted in better statistical 
measurements which runs counter to common guidance in the literature of narrow 
interval widths (or “many” classes). The similarities in performance of intervals $0.01 
and $1 to the corresponding Equal Nh and Equal Nh per unique $ stood out in the analysis 
and supports the conclusion that narrow widths is not, in general, an effective strategy for 
highly skewed, large dollar populations. 
 
But this research is not for concluding on best design methods or optimal interval widths. 
These interval widths were not chosen to maximize the best statistical qualities but to 
explore narrow, moderate, and wide interval widths and to conclude on their general 
effects with the 𝑐𝑢𝑚ඥ𝑓 method. The other methods analyzed in this research are used as 
barometers for the 𝑐𝑢𝑚ඥ𝑓 method and those methods performance compared to the 𝑐𝑢𝑚ඥ𝑓 
method does not allow for any generalization on them being better or worse methods 
outside of conclusions on the specific interval widths used in respect to the populations 
considered in this study. 
 
It is our opinion the 𝑐𝑢𝑚ඥ𝑓 method is a highly effective sample design method for highly 
skewed accounting data when used dynamically toward an understanding of a 
population’s unique attributes and consciously to create desirable statistical qualities such 
as equalizing some product of Sh among strata (Cochran 1961; Cochran 1977).  Of 
interest is how a simple interval width formula, median/100, performed in relation to the 
other interval widths and encourages looking into a formula that considers more suitable 
population attributes. 
 
The Geometric method often exhibited distributions, in both estimate error and standard 
deviation error, that were not extremely skewed with or without the large dollar 
populations. It showed a tighter but flatter (i.e., not as high of a peak around the center) 
distribution. Comparatively, it had tendencies to underestimate the true taxable amount 
with the larger populations and overestimate with the smaller populations. It was among 
the poorest performers in relative precision. 

                                                 
10 Cochran, W. (1977), “Sampling Techniques, 3rd Edition,” New York, NY:  John Wiley & Sons, 
Inc., 1977, p. 132. 
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The Equal $ Method showed a superior performance among the large dollar populations 
and among the best performance in most circumstances. It had higher and tighter relative 
error frequency distributions. What is very interesting is in Table 6 where it clearly shows 
its ability to control for underestimating the true standard deviation though it has a long 
but extremely thin tail for overestimating standard deviation. While it is skewed to the 
right, it still had less occurrences than all other methods above 50% difference in 
overestimating standard deviation. Its great statistical performance continued with 
relative precision. This is not to recommend the Equal $ Method above the 𝑐𝑢𝑚ඥ𝑓 method 
as again this research was not centered on identifying optional interval widths for the 
𝑐𝑢𝑚ඥ𝑓 method.  Table 9 and Table 10 provide some additional high level summaries of 
the analysis. 
 

Table 9: Mean Relative Precision and Mean Relative Error Summary 
 

 
 
Table 10: Mean Relative Error Range Coverage and Best Relative Precision by Method 
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ID Description Min Max Mean Min Max Mean Min Max Mean Min Max Mean
m01 (cum. √ f): 0.01 -2.5% 1.1% 0.1% 15.9% 59.2% 31.7% -1.0% 1.1% 0.2% 15.9% 43.4% 29.3%
m02 (cum. √ f): 1 -2.8% 0.6% -0.2% 11.2% 58.0% 26.4% -0.7% 0.6% -0.1% 11.2% 42.7% 23.0%
m03 (cum. √ f): median/100 -0.5% 0.6% 0.1% 10.1% 37.5% 22.7% -0.5% 0.6% 0.1% 10.1% 36.0% 20.3%
m04 (cum. √ f): 5 -0.6% 1.3% 0.1% 9.1% 55.3% 23.6% -0.6% 0.6% 0.0% 9.1% 39.7% 19.9%
m05 (cum. √ f): 50 -1.2% 0.7% -0.1% 7.1% 48.1% 19.8% -0.7% 0.7% 0.0% 7.1% 32.7% 16.3%
m06 (cum. √ f): 100 -0.7% 0.4% -0.1% 6.8% 45.3% 19.0% -0.7% 0.4% -0.1% 6.8% 31.2% 15.7%
m07 (cum. √ f): 250 -0.8% 0.9% 0.0% 6.7% 41.9% 18.8% -0.8% 0.2% -0.1% 6.7% 30.5% 15.9%
m08 (cum. √ f): 500 -1.2% 0.8% -0.1% 6.7% 38.1% 19.6% -0.6% 0.3% 0.0% 6.7% 31.4% 16.6%
m09 Equal $ Amount -1.2% 0.7% -0.2% 7.5% 30.4% 15.3% -1.2% 0.7% -0.1% 7.5% 30.4% 14.9%
m10 Geometric -1.0% 0.8% 0.1% 13.2% 39.4% 26.2% -0.6% 0.8% 0.3% 13.2% 33.9% 24.8%
m11 Equal Nh -1.9% 1.6% 0.2% 16.7% 60.3% 34.5% -1.9% 1.6% 0.1% 16.7% 56.6% 32.7%
m12 Equal Nh per unique $ -1.2% 1.4% -0.1% 15.4% 59.0% 30.3% -1.2% 0.6% -0.2% 15.4% 43.2% 27.5%

Mean Relative PrecisionMean Relative Error Mean Relative Error Mean Relative Precision
Without populations 2, 4, & 7

ID Description (-5%) - 5% (-15%) - 15%
Mean Relative 

Precision 1st best 2nd best 3rd best % of Top 3
m01 (cum. √ f): 0.01 20% 54% 31.7% 0 0 0 0%
m02 (cum. √ f): 1 26% 65% 26.4% 0 0 0 0%
m03 (cum. √ f): median/100 30% 72% 22.7% 0 1 0 5%
m04 (cum. √ f): 5 31% 71% 23.6% 0 0 1 5%
m05 (cum. √ f): 50 37% 78% 19.8% 1 2 2 26%
m06 (cum. √ f): 100 39% 81% 19.0% 1 2 4 37%
m07 (cum. √ f): 250 40% 81% 18.8% 3 3 7 68%
m08 (cum. √ f): 500 38% 78% 19.6% 3 7 1 58%
m09 Equal $ Amount 44% 88% 15.3% 10 3 3 84%
m10 Geometric 26% 66% 26.2% 1 0 1 11%
m11 Equal Nh 18% 49% 34.5% 0 1 0 5%
m12 Equal Nh per unique $ 21% 56% 30.3% 0 0 0 0%

Relative Error Mean Relative Precision
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2018 presentation which findings we determined to be interesting and exceptionally 
relevant to further explore forming the foundation of this more extensive JSM 2019 
research.  
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