## A Meta-Analysis of Bald and Golden Eagle Productivity Accounting for Spatial and Temporal Studies

Mark C. Otto\*

#### Abstract

When it is not possible to obtain direct survey estimates needed, it can be possible to obtain robust estimates using meta-analysis. As part of a larger effort to update and improve demographic parameters used in eagle population modeling efforts, Brennan and Millsap (2016) compiled a dataset of contemporary productivity information for bald and golden eagles, Haliaeetus leucocephalus and Aguila chrysaetos respectively, across the U.S. from 1995-2014. As in many ecological studies, individual surveys are done over multiple areas and/or multiple years. To obtain a representative estimate over areas and years, the variation over areas and years must be accounted for within the individual studies. Centered random effects accounted for separate spatial and temporal effects within studies so that overall estimates are apart from the individual study area and year variation. A random-effects meta-analysis model estimated the predictive distributions for bald eagle and golden eagle productivity. Differences between models were accounted for by differences in AIC. Bald eagle productivity differed by region with lower productivity in the Southwest (mean = 0.77, SE = (0.249) than in the rest of the continental U.S. (mean = 1.15, SE = 0.252), whereas golden eagle productivity did not differ by region (mean = 0.55, SE = 0.087). Apart from the fixed stratum differences for bald eagles, the best-supported models included standard errors for the random effects for study, area (bald eagles only), year given study, and overdispersion; the extent to which the random effect credible intervals overlapped zero varied by species.

Key Words: Meta-Analysis, Bayesian estimation, Random Effects Model, Over-dispersion, AIC

#### 1. Introduction

Meta-analyses combine results of different studies of the same subject in order provide stronger and more robust inferences (Borenstein et al. 2010). Meta-analyses are often used in the medical field to combine clinical trial data. Just as medical trials may have different methodologies, target populations, and sampling designs and selections, so do wildlife demographic studies (Johnson 2002) and (Koricheva et al. 2013). There are two main types of meta-analyses: fixed and random effect. Fixed effect models are used when the studies are thought to be functionally equivalent, whereas the random effect model assumes that they have common characteristics but are not the same (Borenstein et al. 2010). Thus a fixed effect model assumes that a single value is common to all studies, in contrast to a random effects model which assumes that the values belong to a common distribution (Higgins et al. 2009).

Summarizing a range of studies over different areas and time spans, accounting for the study, area, and annual components of variation also complicates the analysis with decisions on how to separate and characterize the different forms of variation. Rather than estimate the common value (in our case productivity), Higgins et al. (2009) recommend using predictive distributions. They also recommend for a small number of studies, using the *t*-distribution with *k* minus 4 degrees of freedom (*k* is the number of studies), instead of the normal distribution. Due to the combined complexities of deciding on the proper prediction variance and other model choices, we used the classic normal distribution for this analysis. The approach is similar to what is presented in New et al. (2015) for the prior

<sup>\*</sup>U.S. Fish and Wildlife Service, Migratory Bird Program, Laurel, MD

parameters for the eagle example where the authors created a mixture distribution from the small number of projects available and estimated parameters for a common distribution from the mixture. Our methods here similarly yield a common predictive distribution for productivity from the projects available.

## 2. Material and methods

#### 2.1 Data

Brennan and Millsap (2016) searched the published literature for bald and golden eagle productivity data and compiled datasets for each species from studies within the U.S. from 1995–2014. From their well-curated studies, we categorized the target populations for the included studies in terms of area and time span and accounted for separate values for multi-area and multi-year data. We used sample size (the number of nesting territories or nests), number of fledglings, productivity values, and standard errors reported in the studies. When not reported, We back-calculated sample size from number of fledglings and productivity. In one case where only the productivity value was reported, the sample size became the inverse of the productivity value—resulting in one fledgling in the study and the smallest weight possible given to that study.

There were 18 studies included in the bald eagle analysis: one multi-area study, nine multi-year studies, and two multi-area and multi-year studies. In cases where studies included multi-area or multi-year data, We used random effects for area or year nested within study. The data did not support interactions between area and year in the 2 multi-area and multi-year studies. There were 12 studies included in the golden eagle analysis: nine multi-year studies but no multi-area and multi-area, multi-year studies. This limited the golden eagle analysis to only considering study-to-study and year-to-year variation.

#### 2.2 Model

The productivity random effects model is a Poisson log-normal hierarchical model (although a gamma distribution could replace the log normal). The data are the number of successful fledglings in each study (with values separated by areas and years in multi-strata studies). The log sample sizes,  $S_{ijkl}$  number of nesting territories, are treated as offsets but are shown here on the original scale,

$$F_{ijkl} \sim Poisson\left(R_{ijkl}S_{ijkl}\right)$$

 $F_{ijkl}$  is the number of fledglings in the  $k^{th}$  area and  $l^{th}$  year of the  $j^{th}$  study in the  $i^{th}$  region. Not all subscripts are necessary if it is not multi-area and multi-year study.  $R_{ijkl}$  is the estimated random effect productivity estimate, and  $S_{ijkl}$  is the sample size in number of occupied nesting territories. Since the model conditions on occupied nesting territories, we only make the basic assumption that the likelihood occupied nesting territories were observed was not linked to the productivity rate. If the chances of detecting an occupied nesting territory early, even if it later fails, are good then the potential for such detection bias should be low. Log productivity is affected by the region, the study within that region, and if applicable a year within a given study.

$$\log(R_{ijkl}) = \mathbf{N} \left( r_i + \psi_{j|i} + \alpha_{k|ij} + \tau_{l|ij}, \sigma^2_{\text{Overdispersion}} \right).$$

Study,  $\psi_{j|i}$ ; area,  $\alpha_{k|ij}$ ; and year,  $\tau_{l|ij}$ , are nested random effects, with study nested within region, and area and year nested within study; there were no multi-region studies. The overdispersion variance is  $\sigma_{\text{Overdispersion}}^2$ .

The random effects use an Ottomert transformation that converts n-1 random variables into n centered variables with the same standard deviation and the same correlations among all the effects. See the appendix for a description. The transformation corrects for the under-estimation of the standard deviation caused by generating and centering n random variables. The area in multi-area random effects and year in multi-year random effects are nested within study, so their effects are centered within each study.

$$\psi_{j|i} = \text{Ottomert} \left( Study_j | Region_i) N(0, \sigma_{Study}^2) \right)$$
  

$$\alpha_{k|ij} = \text{Ottomert} \left( Area_k | Study_j) N(0, \sigma_{Area}^2) \right)$$
  

$$\tau_{l|ij} = \text{Ottomert} \left( Year_l | Study_j) N(0, \sigma_{Year}^2) \right)$$

Because studies are nested within region, the area and year effects are also nested within region. We assumed the study, area, and year variation were the same across regions. For bald eagles, there was only one multi-year study representing the Southwest and only one study representing the East for golden eagles.

We ran glm and glmer models in R (R Core Team 2014) to discriminate among models using AIC and then estimated the best-supported models using Stan (Stan Development Team 2015), which is equivalent to a Bayesian estimation with non-informative priors. We included overdispersion by adding a random effect where the effect was different for every observation and tested models for an overall mean only and an overall mean with overdispersion. We also calculated simple estimates of productivity by aggregating the fledged and occupied territory counts for each area and year of each study by region then taking the ratio.

#### 3. Results

Overdispersion gave a vast reduction in AIC ( $\Delta$ AIC) for both the bald eagle and golden eagle models (-118.49 and -35.37, respectively). For bald eagles, the best-supported model was a random effects model with overdispersion that included a fixed effect for region (separating the Southwest from the rest of the U.S.; Table 1). The Southwest had lower overall productivity (Table 2) than the rest of the U.S., but there was wide overlap between the predictive distributions (Figure 1). Both prediction distributions are right skewed and leptokurtic, therefore the best way to use the productivity information as part of a demographic model is to sample the posterior simulations.

All of the random effects (study, area, year, and overdispersion) were important to the model (-25.68); the estimates of the standard errors for the random effects are in Table 3. The random effects from the final model were more spread out than the simple estimates for both regional distributions (Figure 1). Normally we would expect random effects estimates to shrink or be less spread out, but the differences are small and likely due to separating out the study, area, and year random effects. The study, area, and year effects are all significant and the credible intervals do not overlap zero. The total random effect variance is the sum of the variances of all the random effects (Table 2).

For golden eagles, the best-supported model was the random effects model with overdispersion (Table 1). The study and year random effects were important to the model (-4.02), but there were no multi-area studies so We did not include area random effects. We explored models with a regional effect (e.g., Eastern U.S., Western U.S., Alaska) but there was no support for including any regional differences (-3.56 for 4 degrees of freedom;Table 6) so the final model estimated an overall productivity for the entire U.S. including Alaska (Table 2). The overall prediction estimate along with the 95% prediction intervals is shown in Figure 4. The estimates from the final model are a bit lower than simple estimates taken by aggregating the fledged and occupied territory counts then taking the ratio (Figure 4). Explaining this will require further exploration. The distribution is right skewed, skewness = 2.09, and is highly leptokurtic, kurtosis = 22.59, therefore sampling the posterior simulations is the best way to use the productivity estimates in other models, since they do not fit a common distribution.

The estimates of the standard errors for the random effects are in Table 2. The study and year random effects had low variation (medians 0.1 and 0.29, respectively), and all random effect credible intervals overlap zero (Figure 5). The non-significance of the study and year effects and the significance of the overdispersion reinforce the AIC differences observed in the model comparisons. The productivity estimates from the random effects model by study include the region effects and the study random effects; they vary from 0.48 to 0.57 (Table 5). The random effect model estimates which include the study, area, and year random effects for each study and year combination are included in Brennan and Millsap (2016) along with the simple productivity ratios.

#### 4. Discussion

We conducted this modeling effort with the specific goal of rapidly producing a usable predictive distribution for productivity that could be used in subsequent population modeling efforts. Though the approach was logical, there were a number of decisions that could be explored further. We only included the study random effect variances in the predictions. Though this is consistent with most meta-analysis models, it is unusual to have the additional complexities of multi-area and multi-year studies. An alternative approach may be to include both random effects and overdispersion in the prediction variation along with the additional consideration of using a *t*-distribution instead of a normal distribution. However all of this would make the already large prediction intervals larger, possibly to the point of no longer being useful. The current approach used to estimate the predictive distribution is consistent with other meta-analysis models and sampling the posterior simulations will provide reasonable productivity estimates given the data available.

#### REFERENCES

- Borenstein, M., L. V. Hedges, J. P. T. Higgins, and H. R. Rothstein. 2010. A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods 1:97–111.
- Brennan, M., and B. A. Millsap, 2016. Literature Review and Data Compilation. Pages 36–39 in Bald and Golden Eagles: Population demographics and estimation of sustainable take in the United States, 2016 update. Division of Migratory Bird Management, Washington D.C., USA.
- Higgins, J. P. T., S. G. Thompson, and D. J. Spiegelhalter. 2009. A re-evaluation of random-effects meta-analysis. Journal of the Royal Statistical Society 172:137–159.
- Johnson, D. H. 2002. The importance of replication in wildlife research. Journal of Wildlife Management 66:919–932.
- Koricheva, J., J. Gurevitch, and K. Mengersen, editors. 2013. Handbook of Meta-analysis in Ecology and Evolution. Princeton University Press, Princeton, NJ. URL http: //www.jstor.org/stable/j.ctt24hq6n.

- New, L., E. Bjerre, B. Millsap, M. C. Otto, and M. C. Runge. 2015. A collision risk model to predict avian fatalities at wind facilities: an example using golden eagles, *Aquila chrysaetos*. PLoS One 10(7):e0130978. URL http://dx.doi.org/10.1371/ journal.pone.0130978.
- R Core Team. 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project. org/.
- Stan Development Team. 2015. Stan Modeling Language Users Guide and Reference Manual, Version 2.8.0. URL http://mc-stan.org/.

### Appendix

#### **Centered Random Effects**

The Ottomert transformation both centers and returns effects that have a given variance. The transformation takes the form,  $T\sigma$ , were T is the correlation matrix, and  $\sigma$  is the standard error.

$$T = \begin{vmatrix} -a & -a & \cdots & -a \\ b - c & -c & \cdots & -c \\ -c & b - c & \vdots \\ \vdots & \ddots & -c \\ -c & \cdots & -c & b - c \end{vmatrix}$$

To center the effects, the columns must sum to zero. The crossproduct matrix, T'T, must be uncorrelated, so the off-diagonal elements are zero and the diagonal are all equal to the correlation with each other, n/(n-1). Here n is the number of random effects. To return the given correlation matrix, TT', must have ones on the diagonal and -1/(n-1) for the off-diagonal correlations. Solving these equations for a, b, and c yields:  $a = \frac{1}{\sqrt{n-1}}$ ,  $b = \sqrt{\frac{a^2 - n + 1}{2 - n}}$ , and  $c = \frac{b - a}{n - 1}$ . The matrix is easy to program in R, JAGS, or Stan.

**Figures and Tables** 



**Figure 1**: Bald eagle productivity for the Southwest U.S.(left) and the U.S. excluding the Southwest (right). The blue curve is the empirical density distribution of the estimates— which are shown via the rug just above the x-axis. The vertical blue line is the median with the area within the 95% credible intervals shaded blue. The red and green curves represent the log normal and normal distributions (respectively) defined by the estimated means and standard deviations.



## **Percent Year Effect Change**

**Figure 2**: Bald eagle productivity model random effects (percent change) and 95% credible intervals due to year given study.



## Study | Region Random Effects





**Table 1**: AIC values for bald and golden eagles from glm and glmer models which included overdispersion, study, area, year, and region effects with a mean. Region included Alaska, the Southwest (SW), the conterminous U.S. excluding the Southwest (Lower 48) and the entire continental U.S. (Overall) for bald eagles. Region included Eastern U.S. (East), Western U.S. (West), Alaska (AK) and Overall for golden eagles.

|              | Over-      | Fixed-            | Random- | Difference- |          |
|--------------|------------|-------------------|---------|-------------|----------|
| Species      | dispersion | Effects           | Effects | DoF         | AIC      |
| Bald Eagle   |            | Overall           | None    | 1           | 1,449.50 |
|              | Х          | Overall           | None    | 2           | 924.08   |
|              | Х          | Alaska+Lower48+SW | None    | 4           | 907.00   |
|              |            | Alaska+Lower48+SW | All     | 6           | 999.81   |
|              | Х          | Overall           | All     | 4           | 883.57   |
|              | Х          | Lower48+SW        | All     | 6           | 881.75   |
|              | Х          | Alaska+Lower48+SW | All     | 7           | 881.32   |
| Golden Eagle |            | Overall           | None    | 1           | 688.50   |
|              | Х          | Overall           | None    | 2           | 506.56   |
|              | Х          | Alaska+East+West  | None    | 4           | 510.01   |
|              |            | Alaska+East+West  | All     | 5           | 541.47   |
|              | Х          | Overall           | All     | 4           | 502.53   |
|              | Х          | East+West         | All     | 5           | 504.20   |
|              | Х          | Alaska+East+West  | All     | 6           | 506.09   |

**Table 2**: Regional prediction means, standard errors (SE), medians, and lower and upper limits (LCL, UCL) of the 95% credible intervals from the random effects models for bald and golden eagle productivity. The bald eagle model included a fixed effect for region and estimated productivity for the U.S. excluding the Southwest (U.S.–SW) and the Southwest (SW). The golden eagle model is an overall random effects model.

| Species      | Region        | Mean         | SE             | Median       | (LCL-UCL)                  |
|--------------|---------------|--------------|----------------|--------------|----------------------------|
| Bald eagle   | U.S.–SW<br>SW | 1.15<br>0.77 | 0.252<br>0.249 | 1.12<br>0.73 | (0.73–1.72)<br>(0.40–1.36) |
| Golden eagle | Overall       | 0.55         | 0.087          | 0.54         | (0.40-0.75)                |

Table 3: Productivity model random effect standard errors with 95% credible intervals. Productivity model random effect standard errors and lower and upper limits (LCL, UCL) of the 95% credible intervals for a) bald eagles and b) golden eagles. The total standard error is the square root of the sum of all the random effect variances.

| (a) Bald Eagle      |      |       |        |               |  |  |  |  |
|---------------------|------|-------|--------|---------------|--|--|--|--|
| Random<br>Effect SE | Mean | SE    | Median | (LCL-UCL)     |  |  |  |  |
| Study               | 0.21 | 0.047 | 0.20   | (0.14–0.32)   |  |  |  |  |
| Area                | 0.13 | 0.056 | 0.12   | (0.05 - 0.26) |  |  |  |  |
| Year                | 0.14 | 0.020 | 0.14   | (0.11–0.18)   |  |  |  |  |
| Overdispersion      | 0.02 | 0.016 | 0.02   | (0.01 - 0.06) |  |  |  |  |
| Total               | 0.26 | 0.041 | 0.25   | (0.19–0.35)   |  |  |  |  |

| (b) Golden Eagle    |      |       |        |               |  |  |  |  |  |
|---------------------|------|-------|--------|---------------|--|--|--|--|--|
| Random<br>Effect SE | Mean | SE    | Median | (LCL-UCL)     |  |  |  |  |  |
| Study               | 0.11 | 0.079 | 0.10   | (0.00-0.30)   |  |  |  |  |  |
| Year                | 0.27 | 0.132 | 0.29   | (0.02 - 0.49) |  |  |  |  |  |
| Overdispersion      | 0.31 | 0.120 | 0.32   | (0.07–0.51)   |  |  |  |  |  |
| Total               | 0.47 | 0.059 | 0.46   | (0.36–0.60)   |  |  |  |  |  |

**Table 4**: Bald eagle productivity model median random effects (and lower and upper limits, LCL and UCL, of the 95% credible intervals) apart from region. The effect medians are presented in descending order. Fledged and nest counts are aggregated over all areas and years for each study. Ratio is the simple ratio of the total fledged to the total occupied nesting territories across all areas and years.

| Study                       | Ratio | Median | (LCL-UCL)     | Fledged | Occupied<br>Nesting<br>Territories |
|-----------------------------|-------|--------|---------------|---------|------------------------------------|
| Allison et al. 2008         | 0.74  | 0.73   | (0.64–0.83)   | 234     | 317                                |
| Zwiefelholder 2007          | 0.84  | 0.84   | (0.78 - 0.92) | 836     | 998                                |
| Buck et al. 2005            | 0.93  | 0.85   | (0.76 - 0.94) | 766     | 828                                |
| Jenkins and Sherrod 2005    | 0.88  | 0.88   | (0.78 - 0.99) | 241     | 274                                |
| Todd 2004                   | 0.92  | 0.91   | (0.87-0.96)   | 1,916   | 2,091                              |
| Clark et al. 2007           | 0.97  | 1.00   | (0.81 - 1.24) | 62      | 64                                 |
| Stinson et al. 2007         | 1.04  | 1.03   | (1.00 - 1.05) | 8,074   | 7,784                              |
| McDowell et al. 2000        | 1.16  | 1.12   | (0.84 - 1.49) | 29      | 25                                 |
| McDowell and Itchmoney 1997 | 1.21  | 1.16   | (0.84 - 1.57) | 17      | 14                                 |
| Bowerman et al. 1998        | 1.21  | 1.16   | (1.08 - 1.25) | 1,817   | 1,497                              |
| McHugh and Chanda 2005      | 1.21  | 1.17   | (0.95 - 1.45) | 64      | 53                                 |
| Badzinski and Richards 2002 | 1.24  | 1.20   | (0.93 - 1.53) | 41      | 33                                 |
| Watts et al. 2008           | 1.26  | 1.20   | (1.16 - 1.25) | 4,001   | 3,181                              |
| Millsap et al. 2004         | 1.32  | 1.28   | (1.10–1.49)   | 158     | 120                                |
| Nye 2010                    | 1.31  | 1.30   | (1.22 - 1.37) | 1,540   | 1,178                              |
| Clark et al. 2013           | 1.38  | 1.35   | (1.15 - 1.55) | 177     | 128                                |
| Watkins and Mulhern 1999    | 1.71  | 1.42   | (1.09–1.86)   | 41      | 24                                 |
| Route and Key 2009          | 1.55  | 1.48   | (1.30–1.67)   | 254     | 164                                |

## JSM 2019 - Section on Statistics and the Environment



**Figure 4**: Golden eagle productivity for the U.S. The blue curve is the empirical density distribution of the estimates—which are shown via the rug just above the x-axis. The vertical blue line is the median with the area within the 95% credible intervals shaded blue. The red and green curves represent the log normal and normal distributions (respectively) defined by the estimated mean and standard deviation.

**Table 5**: Golden eagle productivity model median random effects (and lower and upper limits, LCL and UCL, of the 95% credible intervals) apart from region. The effect medians are presented in descending order. Fledged and nest counts are aggregated over all areas and years for each study. Ratio is the simple ratio of the total fledged to the total occupied nesting territories across all areas and years.

| Productivity random effects   | Ratio | Median  | (I CL_UCL)    | Fledged | Occupied<br>Nesting<br>Territories |
|-------------------------------|-------|---------|---------------|---------|------------------------------------|
| Troductivity faildoin chects  | Katio | Wiculan | (LCL-UCL)     | Thugeu  | Territories                        |
| Hopi Navajo 2013              | 0.51  | 0.49    | (0.40 - 0.58) | 362     | 715                                |
| Hawkwatch International 2009a | 0.50  | 0.51    | (0.41 - 0.60) | 257     | 510                                |
| Morneau et al. 2012           | 0.49  | 0.53    | (0.40 - 0.67) | 24      | 49                                 |
| Hawks Aloft 2002              | 0.50  | 0.53    | (0.41 - 0.68) | 38      | 76                                 |
| McIntyre and Schmidt 2012     | 0.61  | 0.53    | (0.46 - 0.62) | 692     | 1,140                              |
| Preston 2014                  | 0.56  | 0.54    | (0.44 - 0.65) | 149     | 264                                |
| Hawks Aloft 2006              | 0.64  | 0.54    | (0.43 - 0.75) | 27      | 42                                 |
| McIntyre and Adams 1999       | 0.61  | 0.54    | (0.44 - 0.69) | 112     | 184                                |
| Isaacs 2011                   | 0.60  | 0.54    | (0.43 - 0.73) | 169     | 280                                |
| Berengia 2014                 | 0.60  | 0.55    | (0.45 - 0.69) | 117     | 196                                |
| Ritchie et al. 2003           | 1.18  | 0.56    | (0.45 - 0.87) | 13      | 11                                 |
| Hawkwatch International 2009b | 0.92  | 0.58    | (0.47–0.84)   | 85      | 92                                 |



# Percent Year Change Effect | Study Effects

**Figure 5**: Golden eagle productivity model random effects (percent change) and 95% credible intervals due to year given study. The random effect credible intervals all overlap zero.





**Figure 6**: Golden eagle productivity model random effects (percent change) and 95% credible intervals due to study after accounting for regional differences in the model (see Table 7 for the full list of studies with the associated region and year). The credible intervals all overlap zero.

|                          |        |                      |      |         | Sample |              | Model  |
|--------------------------|--------|----------------------|------|---------|--------|--------------|--------|
| Study                    | Region | Area                 | Year | Fledged | Size   | Productivity | Median |
| Watts et al. 2008        | Other  |                      | 1997 | 227     | 416    | 1.40         | 0.624  |
| Allison et al. 2008      | SW     |                      | 2003 | 25      | 42     | 0.60         | 0.677  |
| Allison et al. 2008      | SW     |                      | 2000 | 23      | 38     | 0.61         | 0.680  |
| Allison et al. 2008      | SW     |                      | 1998 | 21      | 34     | 0.62         | 0.692  |
| Allison et al. 2008      | SW     |                      | 1997 | 23      | 32     | 0.72         | 0.722  |
| Buck et al. 2005         | Other  | Lower Columbia River | 1997 | 32      | 54     | 0.59         | 0.737  |
| Buck et al. 2005         | Other  | Lower Columbia River | 1996 | 39      | 48     | 0.81         | 0.741  |
| Allison et al. 2008      | SW     |                      | 1996 | 23      | 30     | 0.77         | 0.742  |
| Todd 2004                | Other  |                      | 1996 | 141     | 203    | 0.69         | 0.747  |
| Allison et al. 2008      | SW     |                      | 2001 | 28      | 36     | 0.78         | 0.748  |
| Buck et al. 2005         | Other  | Lower Columbia River | 1995 | 22      | 35     | 0.63         | 0.759  |
| Allison et al. 2008      | SW     |                      | 1995 | 23      | 28     | 0.82         | 0.764  |
| Jenkins and Sherrod 2005 | Other  |                      | 1996 | 13      | 25     | 0.52         | 0.778  |
| Allison et al. 2008      | SW     |                      | 1999 | 31      | 36     | 0.86         | 0.780  |
| Jenkins and Sherrod 2005 | Other  |                      | 1999 | 20      | 32     | 0.63         | 0.796  |
| Allison et al. 2008      | SW     |                      | 2002 | 37      | 41     | 0.90         | 0.800  |
| Zwiefelholder 2007       | Other  |                      | 1997 | 368     | 460    | 0.80         | 0.812  |
| Jenkins and Sherrod 2005 | Other  |                      | 1998 | 21      | 28     | 0.75         | 0.836  |
| Jenkins and Sherrod 2005 | Other  |                      | 1997 | 19      | 26     | 0.73         | 0.837  |
| Zwiefelholder 2007       | Other  |                      | 2002 | 468     | 538    | 0.87         | 0.875  |
| Todd 2004                | Other  |                      | 2000 | 205     | 234    | 0.88         | 0.884  |
| Jenkins and Sherrod 2005 | Other  |                      | 2000 | 29      | 33     | 0.88         | 0.891  |
| Todd 2004                | Other  |                      | 2003 | 273     | 309    | 0.88         | 0.891  |

|                          |        |                      |      | Sample  |      |              | Model  |
|--------------------------|--------|----------------------|------|---------|------|--------------|--------|
| Study                    | Region | Area                 | Year | Fledged | Size | Productivity | Median |
| Jenkins and Sherrod 2005 | Other  |                      | 1995 | 17      | 19   | 0.89         | 0.895  |
| Todd 2004                | Other  |                      | 1995 | 176     | 192  | 0.92         | 0.916  |
| Jenkins and Sherrod 2005 | Other  |                      | 2001 | 31      | 32   | 0.97         | 0.917  |
| Stinson et al. 2007      | Other  |                      | 1995 | 509     | 558  | 0.91         | 0.917  |
| Stinson et al. 2007      | Other  |                      | 1995 | 509     | 558  | 0.91         | 0.917  |
| Todd 2004                | Other  |                      | 1998 | 189     | 202  | 0.94         | 0.933  |
| Jenkins and Sherrod 2005 | Other  |                      | 2002 | 38      | 38   | 1.00         | 0.945  |
| Stinson et al. 2007      | Other  |                      | 1996 | 564     | 599  | 0.94         | 0.946  |
| Stinson et al. 2007      | Other  |                      | 1996 | 564     | 599  | 0.94         | 0.946  |
| Todd 2004                | Other  |                      | 1999 | 207     | 216  | 0.96         | 0.950  |
| Buck et al. 2005         | Other  | Oregon               | 1997 | 244     | 248  | 0.98         | 0.960  |
| Todd 2004                | Other  |                      | 2002 | 280     | 290  | 0.97         | 0.962  |
| Buck et al. 2005         | Other  | Oregon               | 1996 | 215     | 230  | 0.93         | 0.964  |
| Todd 2004                | Other  |                      | 2001 | 266     | 269  | 0.99         | 0.979  |
| Stinson et al. 2007      | Other  |                      | 1997 | 565     | 574  | 0.98         | 0.986  |
| Stinson et al. 2007      | Other  |                      | 1997 | 565     | 574  | 0.98         | 0.986  |
| Buck et al. 2005         | Other  | Oregon               | 1995 | 214     | 213  | 1.00         | 0.989  |
| Todd 2004                | Other  |                      | 1997 | 179     | 176  | 1.02         | 0.993  |
| Clark et al. 2007        | Other  |                      |      | 62      | 64   | 0.97         | 1.005  |
| Bowerman et al. 1998     | Other  | Michigan Great Lakes |      | 81      | 90   | 0.90         | 1.006  |
| Jenkins and Sherrod 2005 | Other  | -                    | 2003 | 53      | 41   | 1.29         | 1.083  |
| Stinson et al. 2007      | Other  |                      | 1998 | 713     | 648  | 1.10         | 1.097  |
| Stinson et al. 2007      | Other  |                      | 1998 | 713     | 648  | 1.10         | 1.097  |

|                             |        |                    |      | Sample  |      | Model        |        |
|-----------------------------|--------|--------------------|------|---------|------|--------------|--------|
| Study                       | Region | Area               | Year | Fledged | Size | Productivity | Median |
| Stinson et al. 2007         | Other  |                    | 2005 | 925     | 840  | 1.10         | 1.098  |
| Stinson et al. 2007         | Other  |                    | 2005 | 925     | 840  | 1.10         | 1.098  |
| Stinson et al. 2007         | Other  |                    | 2001 | 761     | 673  | 1.13         | 1.127  |
| Stinson et al. 2007         | Other  |                    | 2001 | 761     | 673  | 1.13         | 1.127  |
| McDowell et al. 2000        | Other  |                    |      | 29      | 25   | 1.16         | 1.129  |
| McDowell and Itchmoney 1997 | Other  |                    |      | 17      | 14   | 1.21         | 1.157  |
| Bowerman et al. 1998        | Other  | Michigan Interior  |      | 207     | 176  | 1.19         | 1.168  |
| McHugh and Chanda 2005      | Other  |                    |      | 64      | 53   | 1.21         | 1.174  |
| Bowerman et al. 1998        | Other  | Wisconsin          |      | 694     | 583  | 1.19         | 1.186  |
| Badzinski and Richards 2002 | Other  |                    |      | 41      | 33   | 1.20         | 1.193  |
| Bowerman et al. 1998        | Other  | Ohio               |      | 38      | 30   | 1.27         | 1.195  |
| Nye 2010                    | Other  |                    | 2003 | 87      | 75   | 1.16         | 1.208  |
| Millsap et al. 2004         | Other  |                    | 1998 | 12      | 12   | 1.00         | 1.213  |
| Millsap et al. 2004         | Other  |                    | 1998 | 16      | 12   | 1.33         | 1.213  |
| Watts et al. 2008           | Other  |                    | 1998 | 563     | 462  | 1.20         | 1.216  |
| Millsap et al. 2004         | Other  |                    | 1999 | 13      | 12   | 1.08         | 1.222  |
| Millsap et al. 2004         | Other  |                    | 1999 | 15      | 12   | 1.25         | 1.222  |
| Nye 2010                    | Other  |                    | 2005 | 112     | 92   | 1.22         | 1.235  |
| Nye 2010                    | Other  |                    | 2007 | 153     | 124  | 1.24         | 1.245  |
| Millsap et al. 2004         | Other  |                    | 2000 | 15      | 12   | 1.25         | 1.246  |
| Millsap et al. 2004         | Other  |                    | 2000 | 15      | 12   | 1.25         | 1.246  |
| Route and Key 2009          | Other  | Apostle Island NRA | 2007 | 10      | 9    | 1.10         | 1.249  |
| Bowerman et al. 1998        | Other  | Minnesota          |      | 797     | 618  | 1.29         | 1.276  |

|                          |        |                     |      | Sample  |      |              | Model  |
|--------------------------|--------|---------------------|------|---------|------|--------------|--------|
| Study                    | Region | Area                | Year | Fledged | Size | Productivity | Median |
| Nye 2010                 | Other  |                     | 2010 | 244     | 192  | 1.27         | 1.278  |
| Millsap et al. 2004      | Other  |                     | 2001 | 13      | 12   | 1.08         | 1.280  |
| Millsap et al. 2004      | Other  |                     | 2001 | 19      | 12   | 1.58         | 1.280  |
| Nye 2010                 | Other  |                     | 2009 | 223     | 173  | 1.29         | 1.286  |
| Watts et al. 2008        | Other  |                     | 1996 | 490     | 377  | 1.30         | 1.291  |
| Nye 2010                 | Other  |                     | 2004 | 111     | 84   | 1.32         | 1.310  |
| Nye 2010                 | Other  |                     | 2008 | 190     | 145  | 1.31         | 1.311  |
| Nye 2010                 | Other  |                     | 2001 | 83      | 62   | 1.34         | 1.317  |
| Watkins and Mulhern 1999 | Other  |                     | 1995 | 5       | 5    | 1.00         | 1.327  |
| Nye 2010                 | Other  |                     | 2002 | 94      | 70   | 1.34         | 1.329  |
| Route and Key 2009       | Other  | Lake Superior shore | 2007 | 18      | 14   | 1.30         | 1.330  |
| Clark et al. 2013        | Other  |                     |      | 177     | 128  | 1.38         | 1.343  |
| Nye 2010                 | Other  |                     | 2000 | 71      | 51   | 1.35         | 1.347  |
| Watts et al. 2008        | Other  |                     | 1995 | 464     | 340  | 1.40         | 1.347  |
| Watts et al. 2008        | Other  |                     | 1999 | 650     | 472  | 1.40         | 1.362  |
| Route and Key 2009       | Other  | St. Croix NRA upper | 2007 | 28      | 19   | 1.50         | 1.372  |
| Route and Key 2009       | Other  | St. Croix NRA lower | 2007 | 6       | 4    | 1.50         | 1.378  |
| Route and Key 2009       | Other  | Apostle Island NRA  | 2008 | 8       | 8    | 1.00         | 1.386  |
| Watts et al. 2008        | Other  |                     | 2001 | 849     | 601  | 1.40         | 1.398  |
| Watkins and Mulhern 1999 | Other  |                     | 1998 | 11      | 7    | 1.57         | 1.405  |
| Millsap et al. 2004      | Other  |                     | 1997 | 17      | 12   | 1.42         | 1.426  |
| Millsap et al. 2004      | Other  |                     | 1997 | 23      | 12   | 1.91         | 1.426  |
| Route and Key 2009       | Other  | Apostle Island NRA  | 2006 | 16      | 11   | 1.50         | 1.440  |

|                          |        |                         |      | Sample  |      |              | Model  |
|--------------------------|--------|-------------------------|------|---------|------|--------------|--------|
| Study                    | Region | Area                    | Year | Fledged | Size | Productivity | Median |
| Watkins and Mulhern 1999 | Other  |                         | 1996 | 9       | 5    | 1.80         | 1.449  |
| Watts et al. 2008        | Other  |                         | 2000 | 758     | 513  | 1.50         | 1.454  |
| Route and Key 2009       | Other  | Mississippi River pools | 2008 | 36      | 24   | 1.50         | 1.494  |
| Nye 2010                 | Other  |                         | 2006 | 172     | 110  | 1.56         | 1.494  |
| Route and Key 2009       | Other  | Mississippi River NRA   | 2007 | 22      | 15   | 1.50         | 1.532  |
| Route and Key 2009       | Other  | St. Croix NRA lower     | 2008 | 16      | 10   | 1.60         | 1.534  |
| Watkins and Mulhern 1999 | Other  |                         | 1997 | 16      | 7    | 2.29         | 1.556  |
| Route and Key 2009       | Other  | St. Croix NRA upper     | 2006 | 31      | 20   | 1.60         | 1.582  |
| Route and Key 2009       | Other  | St. Croix NRA lower     | 2006 | 9       | 5    | 1.80         | 1.589  |
| Route and Key 2009       | Other  | Mississippi River NRA   | 2008 | 30      | 14   | 2.10         | 1.704  |
| Route and Key 2009       | Other  | Mississippi River NRA   | 2006 | 24      | 11   | 2.20         | 1.770  |

**Table 7**: Golden eagle studies included in the analysis, their simple productivity ratios, and the final random effect model median estimates for each year of the studies.

|                               |        |      |         | Sample |              | Model  |
|-------------------------------|--------|------|---------|--------|--------------|--------|
| Study                         | Region | Year | Fledged | Size   | Productivity | Median |
| McIntyre and Schmidt 2012     | AK     | 2002 | 4       | 73     | 0.05         | 0.296  |
| Hopi Navajo 2013              | West   | 2003 | 9       | 60     | 0.15         | 0.358  |
| Hawkwatch International 2009a | West   | 2001 | 13      | 60     | 0.22         | 0.397  |
| Hopi Navajo 2013              | West   | 2010 | 6       | 29     | 0.21         | 0.415  |
| Hopi Navajo 2013              | West   | 2002 | 20      | 71     | 0.28         | 0.417  |
| McIntyre and Schmidt 2012     | AK     | 2003 | 19      | 71     | 0.27         | 0.420  |
| McIntyre and Schmidt 2012     | AK     | 2004 | 20      | 73     | 0.27         | 0.424  |
| Hopi Navajo 2013              | West   | 1997 | 7       | 25     | 0.28         | 0.445  |
| Preston 2014                  | West   | 2012 | 15      | 48     | 0.31         | 0.447  |
| Hawkwatch International 2009a | West   | 2003 | 26      | 78     | 0.33         | 0.448  |
| Hawkwatch International 2009a | West   | 2002 | 23      | 68     | 0.34         | 0.456  |
| Hopi Navajo 2013              | West   | 2012 | 23      | 60     | 0.38         | 0.468  |
| Hawks Aloft 2002              | West   | 2002 | 12      | 33     | 0.36         | 0.474  |
| Morneau et al. 2012           | East   | 2007 | 4       | 14     | 0.29         | 0.474  |
| Preston 2014                  | West   | 2011 | 17      | 44     | 0.39         | 0.480  |
| Morneau et al. 2012           | East   | 2002 | 2       | 8      | 0.25         | 0.481  |
| McIntyre and Adams 1999       | AK     | 1995 | 25      | 59     | 0.42         | 0.484  |
| Preston 2014                  | West   | 2013 | 17      | 42     | 0.41         | 0.485  |
| Morneau et al. 2012           | East   | 1997 | 2       | 7      | 0.29         | 0.492  |
| Hawkwatch International 2009b | West   | 2008 | 8       | 16     | 0.50         | 0.494  |
| Hopi Navajo 2013              | West   | 2001 | 35      | 75     | 0.47         | 0.496  |
| McIntyre and Schmidt 2012     | AK     | 1995 | 24      | 56     | 0.43         | 0.497  |
| McIntyre and Adams 1999       | AK     | 1996 | 30      | 62     | 0.48         | 0.504  |
| McIntyre and Schmidt 2012     | AK     | 2001 | 31      | 68     | 0.46         | 0.505  |
| McIntyre and Schmidt 2012     | AK     | 1996 | 28      | 61     | 0.46         | 0.506  |
| McIntyre and Schmidt 2012     | AK     | 1998 | 33      | 66     | 0.50         | 0.518  |
| McIntyre and Schmidt 2012     | AK     | 2005 | 38      | 76     | 0.50         | 0.520  |
| Hawkwatch International 2009a | West   | 2004 | 42      | 84     | 0.50         | 0.520  |
| Hopi Navajo 2013              | West   | 1996 | 14      | 26     | 0.54         | 0.521  |
| Berengia 2014                 | West   | 2012 | 21      | 41     | 0.51         | 0.521  |
| Hawkwatch International 2009a | West   | 2007 | 34      | 67     | 0.51         | 0.522  |
| Preston 2014                  | West   | 2014 | 29      | 54     | 0.54         | 0.530  |
| Hopi Navajo 2013              | West   | 1999 | 39      | 70     | 0.56         | 0.531  |
| Hopi Navajo 2013              | West   | 2004 | 43      | 76     | 0.57         | 0.535  |
| Berengia 2014                 | West   | 2011 | 23      | 42     | 0.55         | 0.535  |
| Hawks Aloft 2002              | West   | 2000 | 12      | 22     | 0.55         | 0.539  |
| Morneau et al. 2012           | East   | 1998 | 3       | 5      | 0.60         | 0.540  |
| Hawks Aloft 2006              | West   |      | 27      | 42     | 0.64         | 0.542  |
| Isaacs 2011                   | West   |      | 169     | 280    | 0.60         | 0.544  |
| Hawkwatch International 2009b | West   | 2007 | 8       | 11     | 0.73         | 0.546  |
| Morneau et al. 2012           | East   | 2004 | 6       | 9      | 0.67         | 0.557  |
| Ritchie et al. 2003           | AK     |      | 13      | 11     | 1.18         | 0.558  |
| Berengia 2014                 | West   | 2013 | 26      | 41     | 0.63         | 0.561  |

|                               |        |      |         | Sample |              | Model  |
|-------------------------------|--------|------|---------|--------|--------------|--------|
| Study                         | Region | Year | Fledged | Size   | Productivity | Median |
| Berengia 2014                 | West   | 2014 | 26      | 41     | 0.63         | 0.564  |
| Berengia 2014                 | West   | 2010 | 21      | 31     | 0.68         | 0.572  |
| McIntyre and Schmidt 2012     | AK     | 2010 | 49      | 75     | 0.65         | 0.575  |
| Hawks Aloft 2002              | West   | 2001 | 14      | 21     | 0.66         | 0.579  |
| Hopi Navajo 2013              | West   | 2005 | 59      | 84     | 0.70         | 0.583  |
| Hopi Navajo 2013              | West   | 2000 | 55      | 76     | 0.72         | 0.584  |
| McIntyre and Schmidt 2012     | AK     | 2008 | 52      | 75     | 0.69         | 0.585  |
| McIntyre and Schmidt 2012     | AK     | 2000 | 51      | 70     | 0.73         | 0.596  |
| Preston 2014                  | West   | 2010 | 34      | 43     | 0.79         | 0.615  |
| Hopi Navajo 2013              | West   | 1998 | 52      | 63     | 0.83         | 0.621  |
| Hawkwatch International 2009a | West   | 2005 | 67      | 87     | 0.77         | 0.621  |
| Hawkwatch International 2009a | West   | 2006 | 52      | 66     | 0.79         | 0.624  |
| Morneau et al. 2012           | East   | 2000 | 7       | 6      | 1.17         | 0.633  |
| McIntyre and Schmidt 2012     | AK     | 1997 | 58      | 69     | 0.84         | 0.636  |
| Hawkwatch International 2009b | West   | 2005 | 32      | 35     | 0.91         | 0.640  |
| McIntyre and Schmidt 2012     | AK     | 2007 | 73      | 81     | 0.90         | 0.658  |
| McIntyre and Schmidt 2012     | AK     | 2009 | 67      | 74     | 0.91         | 0.660  |
| McIntyre and Schmidt 2012     | AK     | 2006 | 76      | 80     | 0.95         | 0.675  |
| McIntyre and Adams 1999       | AK     | 1997 | 57      | 63     | 0.90         | 0.675  |
| McIntyre and Schmidt 2012     | AK     | 1999 | 69      | 72     | 0.96         | 0.677  |
| Preston 2014                  | West   | 2009 | 37      | 33     | 1.11         | 0.718  |
| Hawkwatch International 2009b | West   | 2004 | 37      | 30     | 1.23         | 0.732  |

**Table 7**: Golden eagle studies included in the analysis, their simple productivity ratios, and the final random effect model median estimates for each year of the studies. *(continued)*